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The use of diffusion methods to predict the distribution of the number of 
visits to a particular gene frequency in a class of finite population models is 
discussed. The models for which such approximations are accurate are found, 
and several results unified by this approach. Some difficulties in the application 
of diffusion methods to such sojourn times are highlighted. 

1. INTRODUCTION 

It is often the case in population genetics that diffusion approximations 
are used to model many properties of Markov chains which describe the evolution 
of the genetic composition of a population. It is therefore of interest to discover 
how accurate such approximations are. 

Specifically, consider a single locus in a population of fixed size M, at which 
there are two possible alleles, denoted A and B. {X, , n 2 0} is a Markov 
chain which gives the number of A alleles in the population. If there are no 
mutation pressures, then states 0 and IM are absorbing. Recently, Ewens (1973) 
introduced the method of conditioned diffusion equations to study approxima- 
tions to Markov chains {Xz} which are derived by conditioning the X process 
on eventual fixation (X = M). Pollak and Arnold (1975) (henceforth referred 
to as PA) used diffusion methods to approximate several properties of the 
sojourn time distributions of the conditioned version of the Wright model. 
In this paper we look at a class of processes, discussed by Cannings (1974) 
which includes the Wright model. These processes have the same diffusion 
approximation. We determine for which models in this class the diffusion 
process predicts accurately the behavior of the sojourn time distributions. 
This unifies and extends the work of PA, and Maruyama (1972, 1973). 

2. THE MARKOV CHAINS, AND APPROXIMATION TO MEAN SOJOURN TIMES 

Let V be the class of Markov chains X, with state space (0, l,..., M}, whose 
transition matrix P = (&) satisfies 

ri = &f--l (1) 
PG = PM--i,~-j (2) 
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where rri is the probability that X is absorbed at M, given X0 = i, and which, 
after suitable time and state space scaling we may approximate by a diffusion 
X(t), with state space [0, 11, which has drift coefficient m(x) and diffusion 
coefficient V(X) given by 

m(x) = 0, w(x) = x(1 - x). (3) 

Condition (2) is a consequence of the exchangeability approach to a wide 
variety of Markov chains of use in genetics (Cannings (1974)). Two chains 
in 9 are the Wright model, for which 

pij = (7)(2l)’ (1 - 2J-j 

and the Moran model (e.g., Moran (1962)), for which 

i(M - i) 
pij = M2- = pi ; j=i-l,i+l 

= 1 - 2pi ; 

= 0; 

j=i 

Ii-j1 > 1. 

(4) 

(5) 

For 1 < i, j < M - 1, let Tij be the number of visits to j, given X,, = i, 
and let nij = ETij , and N = (nij). Denote by T$ , nz , N*, pt , etc. the 
corresponding conditioned quantities. From (3), and Ewens (1973), the elements 
of n$ are approximated by (resealed versions of) 

t*(x) = 241 -P> 
P 

PV - x> 
o<x<p 

(6) 
=2 p,<x<l, 

where t:(r) is the mean of the time T;(x) spent at x for the conditioned diffusion 
process with X*(O) = p. Equation (6) suggests that, for some constant c > 0, 
we should have 

* nij = c 1 <i<j<fif--1. (7) 

The approximation holds on the diagonal by continuity of t;(x) at p. The 
constant c depends on the time and state-space scaling used to derive (3). 
For example, Wright’s model gives c = 2, Moran’s model c = M. The 
distribution of T$ is determined by N* (cf., PA). We therefore want to know 
which chains in %? have n$ given by (7). 

Let Q* = (&) be the matrix of transition probabilities between the transient 
states {l,..., M - l}. 
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jlr* = (I - Q*)-1 

and 

/ N* 1 = c(c - n,*,) a.. (c - n;-1.M-2) # 0. (8) 

THEOREM 1. Let (X,) be any chain in %?, for which N* satisfies (7). Then 

(0 PS4 = 0, j = 1, 2,..., M - 2 

P!z&,M = l/c 

(ii) qi*j = 0, l<i<j-2<M-3. 

Proof. Since (I - Q*) N* = I, p remultiplying the last column of N* by 
(I - Q*) gives 

M-l 

c-c z1 nz = %.M-1 
( 1 

where aij = 0, i # j; Sji = 1, i = j. It follows that c(1 - Cf=yr q$) = 8i,M--1 . 
Hence p$,, = 0, j = I,..., M - 2, and psPl,, = l/c, so (i) is proved. Next, 
premultiplying the (M - 2)th column of N* by (I - Q*) gives, for 1 < i < 
M- 2, 

so that 

c(&:M-1 + p&4) - &ln~-l,n-2 = 6 i.M-2 * 

Rearranging and using (i) gives 

so that, from (8), q&,p1 = 0, 1 < i < M - 3. Continuing in this way com- 
pletes the proof. 

We now use conditions (1) and (2) t o reconstruct P from the form of P* 
given by Theorem 1. It is, of course, possible to construct other matrices 
P* which satisfy (7). However, if we do not know the absorption probabilities 
of the unconditioned chain, we cannot reconstruct P, and so deduce the form 
of the underlying process (X,}. However, (1) and (2) yield 

COROLLARY 1. I f  {X,) E V, and N* satisjies (7), then P must be tridiago?aal. 
Hence P is the transition matrix of a (possibZy state dependent) random walk, 
which, by (l), must be symmetric. 
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The symmetric random walk has transition matrix determined by 

pij = 0; Ii-j1 > 1 

P&i+1 = P,.i-1 = Pi 1 o<pi<+ 

p,,i = 1 - 2p< . 
(9) 

LEMMA 2. For a random walk {X,} with absorbing barriers at 0 and M, and 
transition matrix as (9), 

n,j = w - i)j 
MPj 

l<j<i 

i(M - j) =-- 
MP, 

i<j<M-1. 

Proof. This is a special case of a result of Ewens (1964, p. 146). 
Lemma 2 enables us to find precisely those {X,} in V for which (7) holds. 

We know from Corollary 1 that such a model must be a random walk. From 
the lemma, equation (l), and Ewens (1973, p. 23, Eq. (6)) we find that the 
conditioned random walk satisfies 

g, = w - 4i” 23 Mip? 
1 ,<j<i 

AM - j) 
(10) 

=-- 
MP~ 

i<j<M-1 

so that if (7) holds, we must have pi = j(M - j)/Mc, and so we have proved 

THEOREM 3. Let (X,} E%‘:. Then N* satisJies (7) if, and only ;f, {X,} is a 
symmetric random walk, for which pi = j(M - j)/Mc. 

In particular, Moran’s model is such a random walk, and so satisfies (7) 
(a result which can be verified from (10)). However, Wright’s model is not, 
and so we cannot expect the diffusion approximation to give the correct form 
for the elements of N*. It follows that the diffusion process which approximates 
this class of Markov chains is really a continuous state-space version of Moran’s 
model, and so diffusion approximations to sojourn time distributions are just 
(resealed) multiples of the known results for the Moran model. In particular, 
for other models in the class %?, it is necessary to check the adequacy of the 
diffusion approximation to N* in each particular case. PA have obtained some 
improved approximations for the case of the Wright model. They notice that 
the diagonal elements n$ as predicted by the diffusion result are too small. 
The reason for this is not that the initial position, X,, = j, is not counted when 
computing nx, but that the diffusion process is only “recreating” Moran’s 
model. 

653/15/r-8 
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3. APPROXIMATION TO HIGHER MOMENTS OF Tz . 

It is well known from the theory of Markov chains (cf., PA) that the variance 
of Tc is given by 

Var(T,*i) = niyl:(Zrzz - n: - 1) (11) 

while for the dif-htsion process, Nagylaki (1974) has shown that 

Var(T,*(x)) = t,*(x)(2tz(x) - t;(x)). (12) 

It is apparent from (11) and (12) that we have two methods for estimating 
Var(T$) from the diffusion approximation. Method 1 is to rescale t%(x) to 
approximate nz , and then use (12) as an approximation to Var(T$). For 
Wright’s model, we obtain 

Var(T,*j) = 4, i<j. (13) 

This is essentially the method used by Maruyama (1972), and (13) agrees with 
his result. However, another method is to use the approximation to $ , and 
apply (11). Wright’s model yields 

Var(Tc) = 2, i <j. (14) 

Applied to Moran’s model, we get 

Var(T$ = M2, i<j (15) 

Var(Tz) = M” - M, i\<j (16) 

for the first and second methods respectively. We notice that (15) and (16) are 
asymptotically equivalent, but that (13) and (14) are not. The reason for this 
discrepancy is accounted for by Theorem 3. We cannot expect asymptotic 
equivalence because the approximation really only applies to Moran’s model. 
We note that (16) is th e exact result for Moran’s model. The approximations 
to Var(T$) for Wright’s model which are derived in PA use the second method, 
but differ from (14) because they use an improved approximation to the diagonal 
elements, rzj*j . 

CONCLUSIONS 

We have shown that certain results derived from the diffusion equation 
approach are continuous analogues of explicitly known properties of Moran’s 
model. Largely for reasons of mathematical tractability, it is usual to use 
diffusion approximations to processes which are essentially discrete in nature. 
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The discrete models discussed in the introduction differ considerably in the 
probabilistic mechanism involved in the reproduction of individuals. However, 

all models in this class are approximated by the same diffusion process. This 
arises because the parameters that determine the diffusion are based only on 

the mean and variance of local changes in gene frequency, so that the class 
looks, locally at least, the same. Thus the net effect of the approximation is to 
remove any differences that we have modelled in reproductive strategy. Sext, 

using the diffusion process, we try to recreate properties of the underlying 
models; the problem that now arises is the assessment of how well we can do 
this. In the context of sojourn time distributions, the results of this note show 

that the diffusion process accurately models only one chain in the class, and 
furthermore that results for this model are know explicitly (so there is no need 
for approximation anyway). Since we want to use the diffusion approximation 

to give qualitative and quantitative estimates for the other models, it is apparent 
that we must check their adequacy in each case. It is usually the case that 
such approximations are qualitatively reasonable, but quantitatively they may 

be quite inaccurate. 
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