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A method is given for justifying some recent approaches to the definition of 
the age of an allele in two-allele diffusion-type population genetic models. T h e  
method uses the notion of the dual of a diffusion, and introduces naturally an 
interesting application of killed diffusions. Many results in the literature are 
shown to be special cases of this approach. 

INTRODUCTION 

Recently, much attention has been paid to developing methods of determining 
reasonable definitions for the age of an allele, given a current allele frequency, 
in a wide variety of population genetics models. The pioneering work in this 
field is due to Kimura and Ohta (1973)) who derived moments of what was then 
taken to be the age of an allele in diffusion-type models with absorbing, or exit, 
boundaries. In a more general context, Levikson (1977) described a method of 
defining the age distribution for Markov chains with absorbing barriers by 
introducing return processes, which jumped to the nearest point in the interior 
of the state space whenever an absorbing barrier was hit. The age distribution 
is then defined to be the (limiting) distribution of the time that has elapsed 
since one of the boundaries was last visited, conditional on some current position. 
Levikson assumed that the return processes were positive recurrent. A useful 
reference to the ideas involved is provided by Watterson (1977). The results for 
Markov chains have been extended by Pakes (1977, 1978) in cases where the 
return process need not be positive recurrent. Levikson postulated how this 
method could be applied to diffusion processes, unifying some results of Li 
(1975), Kimura and Ohta (1973)) and Maruyama (1974). Watterson (1977) 
showed how to extend the diffusion results by a reversibility-type argument, 
and in particular showed how the (past) age of an allele and the (future) absorp- 
tion time of an allele are related in a special case of the return process considered 
by Levikson. He also showed how reversibility in this special case could lead 
to a simple solution to the ‘Which allele is the oldest I’ problem in the context 
of two allele models. TavarC (1978a, b) showed that for recurrent processes, 
the age distribution of a Markov chain is just the extinction time distribution 
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of a related dual chain (see the next section for some details about duals). The 
idea is to compute the dual, or time reversed, chain generated by the stationary 
distribution, and kill the dual whenever one of the absorbing barriers is reached. 
The method of exhibiting the age in terms of a well-specified Markov chain was 
shown to lead to simple ways of deriving a wide variety of properties of age 
distributions. The restarting distributions are arbitrary, save only that the return 
process is positive recurrent. In most cases, the dual chain is not stochastically 
identical to the return process; that is, the return process is not symmetrically 
reversible. It follows that the (past) age distribution and (future) absorption 
time distribution need not be identical. We will show how certain dual diffusions 
lead simply to a variety of results for the age distribution of a dihsion process 
which is killed, or stopped, at a killing time. The age distribution is identical 
to the killing time distribution. 

We consider in this paper diffusion processes which have two absorbing 
boundaries. These are assumed to correspond to two-allele genetic models, 
in which there are no mutation pressures. The details for models with one 
absorbing barrier, corresponding for example to genetic models with one-way 
mutation, are similar, and will not be presented here. Special cases of the results 
here may be found in Watterson (1977), Levikson (1977), Maruyama (1974, 
1977), Kimura and Ohta (1973), Maruyama and Kimura (1975), and Narain 
(1978). Sawyer (1977) has rather a different approach to the age problem in 
the case of an infinite-allele genetic model. 

1. MARKOV CHAIN METHODS AND DUALITY 

Let X = { X ,  , n 2 0) be a Markov chain with state space S = (0, 1 ,..., M}, 
and absorbing boundaries at 0 and M. Let B = (1, 2, ..., M - 1) be the set of 
transient states, and denote the transition matrix by P. We can write P in the 
form 

1 0 0  
(1) 

pi and ph are (M - 1) x 1 vectors which given the one-step probabilities of 
entering the absorbing states. Denote the n-step transition probabilities by 
(pi;)) .  The return process = (x,, , n 2 0) is defined by specifying how 
the X process is restarted whenever an absorbing boundary is reached. We 
will only consider the case where x jumps to a if 0 is hit, or to b if M is hit, 
where a E B and b E B. We can then write the transition matrix P of x in the 
form 

0 e, 0 
(2) 
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where e( is a vector with elements equal to 0, except in the ith position, which 
is 1. Assuming that Xis  aperiodic and irreducible, X has a stationary and limiting 
distribution with positive elements denoted by (o+, , ar, ,..., aM). We associate 
with X the dual, or time reversed process P, whose transition matrix P* = (plr,) 
is obtained from P by the formula 

(3). 

Associated with P is the dual absorbing chain Y which is obtained from by 
killing P whenever 0 or M is reached. From (3) we see that the resulting 
absorbing chain has transition matrix P* given by 

1 0 0 

0 1 
(4) 

where D is a diagonal matrix with elements (a1, as ,..., aM-l). 

determined by 
The limiting age G, of X, given current position jE B has distribution 

P(G, = n) = lim P(X,,,-, E (0, M}, X,-,E B, 0 < K < n I X, = j ) .  
m-m 

It is shown in TavarC (1978a) that this distribution is the same as the absorption 
time distribution of Y given Yo = j, and is given by 

where ro(i) = 1 - rM(i) = P(X absorbed at 0 1 Xo = i), and n( i ,~?  = x:4 pi;’ is the mean sojourn time at j, given Xo = i. Further, it was shown that 
9 
As the X process evolves, we will observe occasional jumps from 0 to a or 

from’M to b, while we observe occasional jumps from a to 0 or from 6 to M 
as the Y process evolves. The Y process coincides with P until the first visit 
to 0 or M,  when the Y process stops. We have shown above how the age distribu- 
tion can be found from properties .of the Y process. We remark that if the X 
process is stationary, so that P(Xo = j) = a, for 0 < j < M, then the age 
distribution specified by P(X,-, E (0, M}, E B, 0 < K < n I X, = j )  is 
independent of m, and is again given by (5).  

h0(b) n(a, j) + 4 4  n(b, j), j E B. 

2. DIPFUSION PROCESSES 

We will use the same suggestive notation as the previous section to describe 
the corresponding quantities for the diffusion processes. X is a diffusion with 
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drift coefficient Is), diffusion coefficient et(%), state space S = [0, 11, and 
absorbing (exit) boundaries at 0 and 1. Denote the transition density of X by 
P(t, y I x); that is, 

LW PO, y I 4 dr = P(S < X(t )  < w I X(0)  = 4. 

Again, define r0(x) = P(X absorbed at 0 I X(0) = x) .  Using standard formula 
(cf. Goel, Richter-Dyn, 1974, p. 65), we have: 

and 

The corresponding X process is obtained from X by forcing instanteous 
return to the point a if 0 is visited, or to the point b if 1 is visited, where 0 < a < 
b < 1. It can be shown from the work of Feller (1954, p. 23) that X has a 
stationary distribution a(%), defined by 

where k is a norming constant. a(x) is integrable over [0, 11 because the mean 
absorption time for X from any point in S is finite. We will later only need 
ratios of a(*), so we can take k = 1 in (8). When k = 1, we use (6), (7), and (8) 
to obtain the formula: 

= n(a, x), x 2 b. 

If we suppose that the X process is stationary, we can reverse time to obtain 
the process y which jumps in the following way. P is occasionally interrupted 
at the point a and restarted from 0, or interrupted at b and restarted from 1. 
The stationary age of the process X given current positiomy is defined by the 
time taken by the y process to be interrupted, starting from Y(0) = y .  We 
therefore want to find the interruption or killing time density of the Y process, 
which is derived by killing P at the first jump. 
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3. THE D u u  OF X 

Suppose that the transition density p(t ,  y I x) of X satisfies the backward and 
forward differential equations given by 

respectively, with appropriate boundary conditions. The P process has transition 
densityp*(t, x I y)  defined by 

P(t,Y I 4 44 (12) 
4 Y )  P*(t,  x I Y )  = 

We can show using (10) and (1 1) that p* satisfies the backward equation 

+*@, I y )  = L*p*(t, x I y )  - k(y)p*(t ,  x 1 y )  
at 

(13) looks just like the usual backward equation, with drift coefficient denoted 
m*(.), except for the last term. Following Dynkin (1965, p. 10, $9, $10) we 
can interpret k( y )  in the following way. Given the history of up to time t, 
and given that y(t) = x, the probability that the process is interrupted in time 
[t, t + h) is k(x)h + o(h). This is just the probability that Y is killed in [t, t + A), 
given Y(t) = x. 

It remains to compute the drift coefficient m* and the killing density of Y. 
Noticing that k( y)  = ea/.( y), and the fact that n(x, y )  satisfies the differential 
equation Ln = --S(x - y), we can compute the following: 

and 
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As expected, Y can only be killed from u or b, corresponding to the fact that Y 
can only be interrupted from u or b. This is clearly the analogue of the discrete- 
time behaviour discussed in section 1. 

4. AGE DISTRIBUTIONS 

4.1. The Age Density 

We first establish a formula for the density of the age distribution, given 
current position y. This is the density of the killing time of the Y process, given 
Y(0) = y. For convenience, we will denote this random variable by r. From 
the argument after (13), we derive the density y,,(-) of r as follows. 

t 2 0. 

This is the form for the age density given by Levikson (1977, section 2). See also 
Watterson (1977, p. 186). 

4.2. Moments of Functions of the Age 

It is useful to determine the mean time spent by Y at the frequency 2 before 
the killing time; this will lead to formulae for the mean age, for example. Define 
a*( y, 2) to be the sojourn time density of the Y process up to the killing time; 
thus n*( y, 2) d2 is approximately the mean time spent in the interval [2, 2 + &) 
before the killing time. We can write 

n*(y, 2) = E ( [ S ( Y ( u )  - 2) du I Y(0) = y). 

where S(x - y )  = 1 if x = y, and =o if x # y. 
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We again argue via conditional densities to see that 

- - NI,  Y )  
4 Y )  

9 

where the last equality follows from (12) and (16). 
In a similar way, we could derive the useful formula 

wheref(*) is a bounded function on S. (cf. Maruyama, 1977, (4.72).) Some special 
cases of f(.) are f ( x )  = S(x - I ) ,  which leads back to (17), and f ( x )  = 1, 
which leads to 

Some applications of (18) appear in section 5. 

4.3. Conditioned Killing Time 

Let r b  be the t h e  until the process is killed at b. Note that r b  need not be a 
proper random variable. Using a method similar to that which lead to (16), 
we can see that r b  has a density yyb( *), such that P(rb E [t, t + h) I Y(0) = y )  = 
yyb(t)h + o(h), and that 

Hence we have the result 

(21) m:(y) = P(ki1led at b, not a I Y(0) =y) = 4 4  4 6 ,  Y 1 
4 Y )  

Using (6), (7), and (9), we can see that 

= 711(4, Y < a ;  

a < Y < 6;  

= %(4, Y b 6. 

4 ( Y )  = %(Y), 
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5. APPLICATIONS AND E ~ ~ P L E S  

We have derived some formulae related to the age of a dif€ueion process with 
absorbing boundaries. In  this section we will consider some of the results which 
have applications to genetic models. Consider a single locus in a population of 
individuals. There are two possible alleles at this locus, denoted by A and B 
reapectively. The Markov chains {X,, , n 2 0) given in section 1 describe the 
evolution of the number of A-alleles in the population, which has fixed size M. 
The diffusion processes are the ‘approximations’ to these chains, X(t )  now 
being the proportion of A alleles at time t in a population of large size M. 

The usual specification of m(x) and u(x) is 

where +(x) is an arbitrary polynomial (cf. Watterson, 1977, 4.3). The process 
{X(t) ,  t 2 0) then has absorbing boundaries at 0 and 1. We will discuss the 
results in (16), (17), (M), (19), and (20) in some s p e d  cases. Recall that the Y 
process jumps from b to 1 or from u to 0. If the jump is to 1, then the A allele 
is the oldest, in the sense that it has persisted in the population longer than the 
B allele. Thus we may interpret the probability of a jump from b to 1 (before 
a jump from u to 0) aa the probability that the A allele is the oldest, and this is 
given by the function @( y) in (20), (21) (cf. Levikson (1977), Watterson (1977)). 

5.1. Wuttersm-Type Models 
One type of return boundary of particular interest to geneticists is the case 

where the return process moves arbitrarily close to the absorbingbouncbuy. 
This corresponds to an allele being reintroduced at frequency l/M, where M 
is the (large) population size. Here we are interested in the limiting case as 
u + 0, b --+ 1. The important part is the limiting value of n*(y, x )  in (17). 
From (7) and (9) it is easy to see that 

lim 0-0 n*(y, 2) = n(y, 2). 

b+ 1 

I . Hence 

which, as noted by Watterson, is just the mean extinction time of X from 
X(0) = y. Similarly, it follows from (22) that the probability that the A allele 
is the oldest is given by 
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5.2. Kimura and Ohta Trpc Models 

Kimura and Ohta (1973), and Maruyama (1974) were more interested in the 
age of an allele which has current frequency y, and started from X(0) = p .  
We can describe this situation by using the special case a = b = p ,  so that 
the return process X jumps to p whichever of 0 and 1 is hit. From (9) and (16) 
we arrive at the age density 

This is the formula which they used to compute moments of what they took to 
be the age distribution. We remark that this is formally equivalent to the age 
of a process with only one absorbing boundary as originally suggested by 
Levikson; cf. Watterson, (3). Here of course the interpretation is rather different. 
We arrive from (17) at the result 

and hence 

We also have the formula for age distributions 

The right-hand side of (29) is formally the right-hand side Qf Maruyama and 
Kimura (1975, (4)). The left-hand side in their case (and our notation) is I 

I. 
L 
B 

which clearly depends on t .  (29) shows how to interpret the formula on the right 
side of (29) in a time-independent way. Sawyer (1977, Sect. 4) has another way 
of deriving their formula. (27) has appeared implicitly in a different context in 
Maruyama (1977, p. 88, (5.25), (5.26)). 

5.3 One Barrier Models 
It is possible to use the method presented here to derive age distributions for X 

processes which have only one absorbing boundary. The crucial step is that 
the absorption time from a point X(0) = x should have finite mean. This is 
almost always the case in studying population genetic models. Such models 
may arise from, for instance, processes with one-way mutation pressure, or 
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the conditioned diffusions of Ewens (1973). It is clear how these results will 
encompass many already in the literature, but since the details are similar 
we will not describe them here. For an example of how age distributions apply 
to X-diffusions which are already recurrent, see for example Tavarb (1978b). 

5.4. An Example of the Method 

For concreteness, we derive a variety of results for the classical genetic 
diffusion (random drift) models where X has drift coefficient m(x) = 0, and 
diffusion coefficient v(x) = x(l - x). It is well known that in this case, n(-, a )  

is given by 

In table 1, we give the corresponding a*( y, 2) functions, in table 2 the mean 
allele age for given frequencyy, and in table 3 some limiting cases. In table4, 
we give an example of (19), in which f ( x )  = 2x(1 - x). Table 4 thus gives 
results on the mean total heterozygosity of the age process, given current 
frequency y. Table 5 contains some limiting values, and table 6 gives the form 
of the probability of the A-allele being the oldest, given current frequency y. 

5.5. Some Comments 
Levikson showed that for discrete time Markov chains it was possible to 

express the age distribution in terms of a conditioned last visit distribution of 
the X process. This was extended by TavartS (1978b) to continuous time Markov 
chains with arbitrary restarting distributions. It is argued in that paper that this 

TABLE 1 

Values of n*(y,  z), 0 < a < 1 (17) 

2. 
2(1 - b) 

, a < a < b  a 
y < z < a  ‘‘ - Y )  , a < a < y 

1 - 2  

a < z < b  2Y - , a y < a < b  2, b < z < y  

2y(l - a) 2y(l - a) 
41 - Y )  ’ 

2u(l - a) 
b < z  z < b  Z > Y  . z(1 - b) ’ s(1 - a )  ’ 



KILLED DIFFUSIONS AND AGE DISTRIBUTIONS 

TABLE 2 

Mean Age of Allele, E ( r  1 Y(0) = y) (19) 

263 

(1 - y)ln(l - y) I ab In b + u l n a  + 11 
1 - b  

y < a: -2 

yblnb (1 -y)(l -a)ln(l  -a)] 
1 - b  (1 

1 + ylny + (1 - y)ln(l - y) + - + 

+ 

(1 - o)(l - b) ln(1 - a)' 
y > b: - 2 [ F  + (1 - b)ln(l - b) + 

1 -  a 

, TABLE 3 

Limiting Cases of E(I' I Y(0) = y) (25), (28) 

a - , O , b - r l :  - 2 ( y l n y + ( 1  -y)In(l  - Y ) ) ~  O < y < l "  

Watterson, Sect. 4.3. 
Kimura, Ohta (1973, 11). 

TABLE 4 

Expected Total Heterozygosity with Dual Process with Y(0) = y 
((IS), withf(2) = 2z(1 - 2)) 

2 2  
3 3  

y < a: -2u' - -y' + -a(a' + 3 - (b - I)¶) 

20' 2 
3 3  

a < y < b :  -2y'-- + -Ha* + 3 - (b - 1)') 
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a, Y < U  

q Y )  = Y ,  a < y < b  

b, y > b  

TABLE 7 

Limiting Cases of n:(y) 

u -+ 0, b + 1: a:(y) = y, O < Y < P  

a + P , b  +P: q Y )  = P. O < Y < l  

Watteraon (1977, (16)) 

analogy is most easily reconciled with age distributions in the case of X processes 
which have only one absorbing boundary. In the case of difision processes, 
let L, be the time of the last visit of X to the pointy before absorption. Then, 
conditional on L, < 00, L, has density Z,(*) given by 

P(t,YlP) , t 2 0 .  
4 P, Y) Iu(t) = 

TABLE 5 

Limit Cases of Mean Total Heterozygosity 

This is just the same as (26). The explanation of the age for the process with 
I a # b as a (conditional) last visit distribution is, however, less intuitive. 

a -* 0, b + 1 :  2y(l - y ) ,  0 < y  < 10 

a , b  + p :  2 / 3 ( ~ ( 2  -PI - us), Y < P  

2 1 3 ~ 2  - Y) - P S I ,  Y > P b  

Maruyama (1977, (4.29)). 
Maruyama and Kimura (1975, (21)). 
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6. CONCLUSIONS 

In this paper, we have studied one possible way of determing the age distribu- 
tion of a diffusion process bith absorbing boundaries. The results presented 
here are an extension of those postulated by Levikson. The age in this context 
is defined to be the time that has elapsed since a boundary was last visited, 
given some ‘current’ position. To avoid problems involving imprecise knowledge 
of what ‘current’ means, we have assumed that the return process that generates 
the age distribution was itself stationary. We then have a stationary age, which 
also applies if the return process has been running for a long time (cf. Watterson). 
The time-reversal’ or dual, of this return process makes occasional jumps from 
inside the state space to its boundaries. The age distribution is shown to be 
identical to the time of the first such jump. Some special cases of the results 
have been analysed in detail, and some previous results unified by this approach. 
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