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TIME REVERSAL AND AGE DISTRIBUTIONS, 
I. DISCRETE-TIME MARKOV CHAINS 

S. TAVARl,* University of Sheffield 

Abstract 

The connection between the age distribution of a discrete-time Markov chain 
and a certain time-reversed Markov chain is exhibited. A method for finding 
properties of age distributions follows simply from this approach. The results, 
which have application in several areas in applied probability, are illustrated by 
examples from population genetics. 
MARKOV CHAINS; AGE DISTRIBUTION; DIFFUSION APPROXIMATION; GENETICS; TIME 

REVERSAL; DUALITY 

1. Introduction 

Several authors have considered statistical approaches to estimating the 'age' 
of a Markov process (Stigler (1970), Thompson (1976)). In this context, the 'age' 
is the absolute time origin of the process, and estimation is based on some 
'current' observations. More recently, Levikson (1977) considered the problem 
of finding the age distribution of Markov processes with state space S, a set of 
absorbing states, C, and transient states B = S - C. His method is to restart the 
process whenever C is visited by forcing instantaneous return to the nearest 
point of B. Between such returns, the probabilistic description of the two 
processes is identical. Given 'current' value j E B, the age Gj has distribution 
determined by the limiting distribution of the time that has elapsed since C was 
last visited. 

We now consider discrete-time Markov chains {X,}, with corresponding 
return processes {X,}. We make a minor modification to Levikson's restarting 
procedure. Instead of requiring instantaneous returns, we assume that it takes 
one step for a return to take place. This ensures that both processes have the 
same state space, which is a useful simplification (cf. Tavare (1978a), Pakes 
(1978)). It is assumed that the return process is irreducible, aperiodic, and 
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positive recurrent (as will usually be the case in genetic applications). The 
distribution of Gj is then given by 

(1.1) P(Gj = n)= gj"' = lim P(X,,_ 
E C, X,, C, < k < n X,, =). 

Levikson used renewal theory methods to derive the distribution (1.1) in terms 
of the original chain, and some interesting properties of such an age. The 
purpose of this note is to give a simple method of deriving such results for an 
arbitrary restarting distribution. The idea is to relate the age distribution defined 
by (1.1) to a property of a certain time-reversed Markov chain. Such a 
representation considerably simplifies the analytical methods required to derive 
results about ages, and suggests some interesting problems in the theory of 
diffusion processes and weak convergence. Time-reversal has been used before 
in a genetic context to explain properties of asymptotic conditional distributions 
of the type 

limP(Xm = j Xm EB ), 

and 

lim limP(X, = j,m < n 
IX,, EB). m -w n--*cc 

See, for example, Darroch and Seneta (1965), and Seneta (1966). 

2. Two-barrier models 

We suppose that S = {0, 1, . , M}, and C = {0, M}. This is the natural 
description of a wide variety of models that arise in population genetics. We 
begin with some notation. Suppose {X } has transition matrix P = (pu;), which we 
write in the form 

1 0 0 

(2.1) P= pO O p 
. 

0 0 1 

Here,' denotes transpose. The fundamental matrix is denoted N = (nli), where 

nm = E (number of visits to j I Xo = i); i, j E B. Let irik = P(X-chain absorbed at 
k IXo= i), iEB, kEC, and set roo= rM = 1, rTOM =i r = 0. Let OTk= 

(Tlk,, 
T 

"2k 
* *, 

.•TM-1, k). 

Following Kemeny and Snell (1960), we have the results 

N= (I - Q)-1, 
(2.2) and 

,rr 
= Np I, k E C. 
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To construct the transition matrix P = (p•) of the return process {X.} we have 
to specify the elements {fio, P": 

1 E S}. The remaining elements of P are 
identical to the corresponding elements of P, since probabilistic descriptions of 
the two processes are identical as long as the processes are in the set B. For 
notational convenience, we will set for = ro0, p = r,, 1 E S, and define 

ro = (r0, r02,"" ", rO,M-1), 

(2.3) and 
rM = (rM1, rM2,, rAM M-1). 

We can write P in the form 

roo ro roM 

(2.4) P = pO p' 
rMO rM rMj 

The n-step transition probabilities of X and X are denoted p7) , and Pi, 
respectively, and the stationary distribution of the return process is denoted by 
(CIo, oil, 0"*I , am). 

It is then easy to check that for 0 < n _ m, 

P(Xm-n E C,IX-k0 C,O < k < n .M = j) 

(2.5) = (cf )p•m"-")/p) + (cJp'~n")/p •"), 

where 
{,pt)} 

are the n-step, C-avoiding transition probabilities of the return 
process, and pm")= P(Xm = 1) is taken to be generated by any initial distribution 
for Xo. It follows from (1.1) and (2.5) that 

(2.6) gfn) = (n7)ao+ (n) aM 

One method of deriving the form of (2.6) is to relate the quantities on the 
right-hand side to properties of the original absorbing chain; for example, 
moments of the age distribution can be computed by matrix-generating function 
methods. However, it is clear that the limit derived in (2.6) is independent of the 
distribution of Xo. Hence we may assume that Xo has the stationary distribution, 
(ao,- -", aM); the chain {X,} is then stationary. We may now reverse time, to 
obtain the dual chain {Y,}, which has the transition matrix P* = (p~ ), where 

(2.7) p?, = 
p, (aj/a,). 

If we let Do = diag {a1, 
.., aM-}, then it is easy to show that we can write 
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-1 
too a o1poDo a ol aMrMo 

(2.8) P*= aoDolr Do'Q'Do aMDor0 . 
-1 1 

aoa M roM amdpDo raN 

We also introduce the reversed absorbing process { Y,, } which is derived from 

{•,,} by making states in C absorbing. The corresponding transition matrix 

P* = (P 'j) is 

1 
o 

0 

(2.9) P* = aoDor' Do'QO'Do amDo'r . 

0 0 1 

It should now be clear that the age, Gj, of the {X,,} process is the absorption time 

of the reversed absorbing process, with Yo = j. By means of the representation of 
the age in terms of a well-specified Markov chain, we can now use standard 

Markov chain theory to derive a number of interesting properties of our age 
distribution. We begin with two lemmas. 

Lemma 1. Let a = (al,, -, aM-l). Then 

ao oc rM 
?r 

, + rMo, 

aM oc ro i /M + roM, 

and 

a oc (aoroN + amrMN)i, j E B. 

Proof. To find the stationary distribution of P, we solve (ao, a,am)= 

(ao, a, aM)P. Using (2.4), write this as 

aoroo + ap'o + aMrmo = ao, 
(2.10) 

aoroM 
+ apM + aMrMM = aM, 

(2.11) aoro 
+ aQ + 

aMrM 
= 

La. 

From (2.11) and (2.2), 

(2.12) a = aoroN + aMrMN. 

Substituting (2.12) into (2.10), and using (2.2) again yields 

(2.13) ao(roM + row ') = 
aM(rMt' + rMo). 

The conclusion of the lemma follows by substituting (2.13) into (2.12). 
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In what follows, denote by * the corresponding properties of the reversed 

absorbing chain { Y,}. For instance, N* is the fundamental matrix of the reversed 

absorbing process and T* is the absorption time distribution of Y, given Yo = j. 

Lemma 2. (i) N*= DoN'Do. 

(ii) r*' 
= 

akDo N'r'k, k E C. 

Proof. Immediate from (2.2), (2.9). 

To find the age distribution, we require the absorption-time distribution of the 
Y process. One can show that the n-step transition matrix of this process is given 
by 

1 0 0 

(2.14) P*" = Bp ' Q*" Bp*' , 

0 0 1 

where B = I + Q*+ 
...+ Q*("-. 

Then P(T = n)= P (age = n 'now' at 

j)= g I). Let gn = (g"', ... g',_). 
We then have the following result. 

Lemma 3. For n 1, 

g = *("-' (p *' + p t') 

= Do'(O')"-'(aor'+ aurM). 

Proof. The first statement is just by definition of g,, and the final statement 
follows from (2.8). 

The absorption probabilities of the reverse chain, Y, give the (limiting) 
probabilities of the X process having been restarted from a particular end of the 
state space, and will therefore be termed the restarting probabilities of X. A 

genetic interpretation, initially due to Levikson, will be given in the examples. 
We can now combine Lemmas 2 and 3 to give the following theorem. 

Theorem 4. For jE B, n -1, 

(rMk7)k 0 Ork(nk,E) + rok7TkM) (i r (unk1) 

(i) P(G,= n)= g"' 
=X•k-I o 

-1 

(ii) P(last restart of X process was at M 'now' at j)= 
?r*f 
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( 
M M-1 

M-1 M-1ri~o (M) + ( 
A4 

Ok1TkM) (*44'tkn) 

Proof. (i) follows from Lemma 3, and Lemma 1. (ii) follows from Lemma 2, 
and Lemma 1. 

From the representation of the age of X as the absorption time of Y, we can 

readily deduce the moments of the age from standard Markov chain theory. Let 
T = (T1, 

- - , TMI) be the vector of absorption times for the X process. Then, 
following Kemeny and Snell (1960), p. 49, we have 

ET' = NI', 
(2.15) Var T' = (2N - I)Nl' - (NI')2, 

where I = (1, 1, , 1) and, for a vector s = (ss2,s..-, 
S•), 

S 2 

(si, s•, , s2_1). The moments of the age distributions G = (G, 
.- 

, GM ,) are 

just the moments of the absorption-time distributions T* = (T*, , T*,), and 
these are computed using the following lemma. 

Lemma 5. 

ET*' = Do'N'Dol', 
and 

Var T*' = Do'(2N' - I)N'Do' - (Do'N'Dol')2. 

Another interesting problem related to the age process is the following. What 
is the (limiting) distribution of the number of visits to state i E B, between 
successive visits to C, for a given 'current' position j? This will give us added 
information on how the 'age process' is moving through its paths. We can easily 
reinterpret this distribution in terms of the reverse absorbing process. We are 

looking for the distribution of the number of visits to i before absorption, given 
Yo= j. Denote this random variable by N'i. Then the distribution of N', is 

given by 

P(NT* = m)= 1- I m = 0 

(2.16) * 
- 

m-I 

, " .nT -(1- m >l' 

3. A class of restarting distributions of use in genetics 

We consider the special case that arises from (2.3) by setting, for some i E B, 
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ro; =O,ji i;= 1,j = i, 
(3.1) and 

rm; =O,jy M- i;= l,j= M- i. 

The preceeding results then specialise to: 

ao 0C TM-i,o, 

(3.2) aM oc 
•4M, 

ai oc iT-0onfi + TiMnM-_j, j E T, 
(n - 1) (n - 

i) 
(3.3) g9' 7m= -oni + TT4M M-i n 1 jE B. 

(3.4) P(last restart of X process at M I'now' at j) - r4mfnM-I 
"TM-4onf, o+ ",MfnM-4,i 

and 

nik(IrM-4 ojii + T 
,MM- j ) (3.5) n *j = (1 rM-4onik + r, uMnM-k) 

The case i = 1 corresponds to the case considered by Levikson. The result of 

(3.2) suggests a new interpretation of a problem which has appeared in the 

genetics literature before. Diffusion processes are often used as approximations 
to the type of model described in the introduction. By suitably rescaling the time 
and state spaces, we arrive at a diffusion process X(t) on [0, 1], with drift and 
diffusion coefficients m(x) and v(x) respectively. In what follows, we will 
assume that 

v(x) =x(1- x), 
(3.6) m(x)= x(1- x)W(x), 

where 4(x) is an arbitrary polynomial. The specification in (3.6) ensures that 0 
and 1 are exit boundaries, corresponding to the absorbing barriers of the original 
model. Now write 

(3.7) G(x)= exp -2f V(Y) dyl. 

Then formal application of Wright's formula for stationary distributions (Wright 
(1937)) shows that X should have a stationary distribution a(x) of the form 

(3.8) a(x) ac {G(x)v(x)}-', 0< x <1. 

Since the specification (3.6) ensures that no stationary distribution can exist, 
what interpretation can be placed on (3.8)? This problem has received attention 
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before; for a fuller discussion, see Ewens (1963). We can now give another 
interpretation. The elements ni correspond to the pseudo-transient function of 
the diffusion, given by 

n(p,x)= 2Po(p) G (y)dy, 0 < x p G(x)v(x) jx 

(3.9) 

= 2P(p) ' 

G(y)dy, 
p x < 1 

G(x)v(x) 
where P,(p) = 1 - Po(p) = P(X absorbed at 1 X(0) = p), and 

(3.10) 
Pl(p)= f G(y)dy/ o 

G(y)dy. 

We introduce the instantaneous return process (iRP) Y(t), which is derived 
from X by jumping instantaneously to E if the barrier at 0 is hit, and to 1 - E if 
the barrier at 1 is hit. We may take 0 < e < 1. This process is again a diffusion 
with state space (0, 1). It clearly has a stationary distribution, a *(x) and it can be 
shown from Feller (1954), p. 23 that it satisfies 

D1, O<x<e 

ld 
(3.11) d {v(x)a*(x)}- m(x)a*(x)= D2, E < X <1- E 

D3, 1 - E < X < 1, 

where Di are constants, determined by requiring a* to be continuous at E and 
1 - E, and integrable on (0, 1). By analogy with (3.2), a substitution of the form 

a*(x) oc Po(1- E)n(E,x)+ P,(e)n(1- E,x) 

has the required property, and it follows that 

G(y)dy , 

Gf(x)v (x) 
dy G (y)dy, 0 < x 

_-E 
1 

a*(x)= Ex < l1-E G(x)v(x)' 
(3.12) _, 

f, 
G(y)dy , G (x)v(x) fG (y)dy, 1 - E x < 1 

with 

(3.13) D,1= 2 G(y)dy , D2 = 0, D3= 2 G(y)dy}. 
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Wright's formula is derived by solving 

1d 
(3.14) 2 dx {v(x)a (x)}- m (x)a (x) = O, O < x < 1. (3.14) 1 

dOx 

It follows by comparing (3.12), (3.13) with (3.14), that as E -- 0, the stationary 
measure of the i"P is given by the solution of (3.14). A simple genetic explanation 
of such a process is as follows: we can suppose that rare mutation events 
reintroduce a particular allele into the population whenever it is lost. As e -- 0, 
this corresponds to reintroducing a single copy of an allele at frequency 1/M, or 
1.- 1/M, where M is the (large) population size. 

4. Age distributions for a class of genetic models 

We specialise the results of (3.1)-(3.5) to the case i = 1, in the context of a class 

of genetic models introduced by Cannings (1974). Consider a single locus in a 

population of fixed size M in each generation. There are two possible alleles, 
denoted A and B. Let X, be the number of A -alleles at time n. In the absence of 

mutation pressures, {X, } is a Markov chain of the required type. Two models in 

this class are: 
(i) Wright-Fisher model. 

(4.1) P =(M)( 1 S- M-, 
i, iE S. 

(ii) Moran's model (Moran (1958)). 

i(M- i) 
PXi+l = PAi-i 

= 
M2 iEB 

(4.2) p", = 1 - 
P4,+l 

- pj-1, iE EB, 

Pi; = 0, i - I > 1. 
These models both satisfy rTo = 1- i/M = 1- 7?,M. However, the elements of N 

are only of a manageable form in the case of Moran's model. (The recent paper 
of Piva and Holgate (1977) may produce an explicit, but complicated, expression 
for N in the case of the Wright-Fisher model.) For Moran's model one obtains 

M(M 
- i) i (4.3) nj= (M-)' 1-jSi, 

and 
n,,= 

M-, 
i-jsM-1. (M -j) 

The elements of N for other members of the class are usually given by (rescaled) 
diffusion approximations (cf. Ewens (1969)). For the Wright model, we have 

2(M-i) a 
(4.4) n1- 

(M_, 1lj-i, 

and 
n1;-2-, 

i-j-M-1. 
(M - j)J 
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These are of course, just multiples of the exact result in (4.3). It follows from the 

previous formulae that, for the Moran model, 

* - I -1i = i= 
iM ML,, + nl M 

(4.5) and M-1 (i- 
ET* = EGI = (n, + NI-,) 

nl- 
= ET. 

1=1 l11 + nM-1,j 1=1 

These results could be anticipated by noticing that for the Moran model with 

restarting points 1 and M - 1, we have P* P, i.e. the process is completely 
reversible, and so the age distribution of X is just the absorption distribution of 
X (cf. Watterson (1977)). The quantities irT M have been interpreted by Levikson 
as the probability of the A allele being the oldest, given current frequency j. For 
the Moran model, irM = i7riM, as predicted by reversibility. However, for 

Wright's model, the process is not reversible, and so (4.5) is only the 'diffusion 

approximation' to what we want. It is therefore of interest to determine how 
accurate such an approximation is. In Table 1, exact results for the last restart 
probabilities, the mean and variance of the age, and mean and variance of the 

absorption times are compared with the corresponding diffusion approxima- 
tions. It can be seen that the results are surprisingly good. For further comments 
on the adequacy of diffusion approximations to N in this context, see, for 

example, Tavar6 (1979), Pollak and Arnold (1975). 

5. One-barrier models 

The state space of the X-chain is now S = {0, 1, ..., M}, but M = oo is allowed. 
The absorbing state is C = {0}, and again B = S - C. The notation of the 

previous sections will be used again. In order for the return process to be 

recurrent, it is obvious that we must have the absorption probabilities of the 

absorbing process identically 1. This will be assumed throughout. We are again 
interested in the limiting distribution specified by (1.1). The transition matrix P 
of the X-chain is written 

(5.1) P= 1, 0) (P 0 

while the return process transition matrix is given by 

(5.2) /=(= 
• 

o) 

where ro = (roi, r02,.. ). P is assumed to be the transition matrix of a positive- 
recurrent, irreducible, aperiodic Markov chain, whose stationary distribution we 
denote (ao, a1,.. ). The limit in (1.1) is now given by 
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TABLE 1 

Exact and diffusion approximations (DA) for Wright's model 

M = 10 M = 15 

f EG1 Var G, *, EG Var G, 

(DA) (DA) (DA) (DA) (DA) (DA) 

ET, Var T, ET1 Var T, 
j 
1 0.0771 4.950 52.180 0.0505 5.548 91.511 

(0.1000) (5.658) (62.880) (0.0667) (6.503) (114.313) 
5.753 60.866 6.624 111.113 

3 0.2918 11.517 90.655 0.1921 14.164 193.443 
(0.3000) (11.279) (90.119) (0.2000) (14.070) 196.481 

11.031 91.009 13.825 195.873 

5 0.5000 13.299 92.543 0.3297 18.477 214.381 
(0.5000) (12.913) (90.487) (0.3333) (18.134) (212.541) 

12.509 92.655 17.751 214.669 

7 0.7082 11.517 90.655 0.4659 20.158 216.394 
(0.7000) (11.279) (90.119) (0.4667) (19.761) (212.966) 

11.031 91.009 19.327 216.490 

9 0.9229 4.950 52.180 0.6022 19.604 216.131 
(0.9000) (5.658) (62.880) (0.6000) (19.225) (213.215) 

5.753 60.866 18.808 216.261 

11 0.7388 16.697 208.519 
(0.7333) (16.443) (208.541) 

16.116 209.272 

13 0.8701 11.240 164.772 
(0.8667) (10.863) (169.467) 

10.743 167.420 

g j')= o•i7a; 
n= 

1, jE B, 
aj 

where op(7' is the n-step, 0-avoiding transition probability of the return process. 
Under the stated conditions, the limit is again independent of the distribution of 
Xo, which will now be taken to be (ao, 

a1,' " -). The corresponding return 
processes { jY} and {Y.} have transition matrices given by 

(5.3) P* = roo aDo'oQDo aaoDlrnd Do''Do 
and 
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(5.4) 
P.= 

(1 0Q 
aoDo r' Do OQ'D 

respectively. Here Do = diag {a1, 
a2," "}, 

and Do' = diag {1/a,, 1/a2, - . The 
result concerning the fundamental matrix N is given by 

(5.5) N(I - Q) = (I - Q)N = I. 

If M < oo, then (5.5) reduces to (2.2). If M = oo, then N is the minimal positive 
right (and left) inverse of (I - Q). See, for example, Kemeny, Snell and Knapp 
(1966), p. 108. Again the age distribution of the X-process is related to the 

absorption time of the reverse process. The following lemma is useful in 

determining when the (recurrent) return process is positive, and in finding the 

stationary distribution in terms of N. 

Lemma 6. (i) The return chain is positive if, and only if, I'=, rOkETk < oo, 

(ii) ao 0 1, a o rOknk, j E B. 
k=1 

Proof. Let a = (a, 
a2,"'). 

The chain is positive if, and only if, (ao, a) = 

(ao, a)P has a non-trivial non-negative solution, with al'<o00, where 1 = 

(1, 1,... ). From (5.2), (5.5) we see that a = aoroN so that al' < oo if, and only if, 
roNI' < 0, i.e. 

- 
2=1 rokETk < o. (ii) follows immediately. 

Theorem 7. (i) N*= DoWN'Do. 

rokp•ki (ii) 
g,= 

n1, jeB. 
9j, 

00 n j EB. 
I r0knkj 
k=1 

(iii) ET*' = Do'N'Dol'. 

(iv) Var T* = D 
•1(2N' 

- I)N'Dol' - 
(Do'N'Dol')2 

Proof. These follow by arguments analogous to the equivalent results in the 
two-barrier case, with the help of Lemma 6. 

Theorem 7 gives us the age distribution and some of its properties. If we 

specialise to the case ro = (1, 0,. ? 
.), so that the return is made to state 1, then we 

arrive at the equivalent of Levikson's models. In fact, we have the following 
corollary. 

Corollary 8 (Levikson-type models). If ET1 < oo, then for j, k E B, 
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(n-I) 

(i) gj= P(G = n 1. 

nik 
nl 

(iii) EG; = 1 n kfn k=l 1 ji 

We can again use (2.15) to give the distribution of the number of visits to a state i 
for the reversed process for a given starting state j. The special case i = j does 
not give us a good measure of the differences in behaviour of the two absorbing 
processes, since n r = ni,. If P = P*, then the two recurrent processes behave in 
an identical way. Then, of course, we will also have N = N*. The role of such 

reversibility is discussed in the next section. 

6. Reversibility and comments 

The role of complete reversibility in the determination of properties of age 
distributions is apparent, since if P = P* the process is reversible, and then the 
two absorbing processes are identical. The idea of complete reversibility has 
been discussed in the case of certain diffusion results by Watterson (1977). In any 
case, we can derive age results in a simple way via time-reversal, and the limiting 
operation of (1.1) can then be given a simple intuitive meaning. In the 
one-barrier model, it is possible for the (recurrent) return process to be null, in 
which case the limit in (1.1) need not exist, and need not be independent of the 
initial distribution. Pakes (1978) discusses such chains in the case of Levikson- 

type return boundaries. However, if we are prepared to believe that the return 

process is stationary, which seems reasonable from the point of view of 

applications, then the results of Section 5 still follow. They will be identical to the 
results of Pakes in the cases where the strong ratio limit property holds. It is 

possible that time reversal may also give some results in the case of transient 
return chains. 

For an application of reversibility to the infinite-allele Moran model, see Kelly 
(1977), and for another approach to age distributions see Sawyer (1977). The 
methods of this paper can be extended, under some restrictions, to continuous- 
time Markov chains. The results will be presented in Tavar6 (1978b). 

Acknowledgements 

I should like to thank Geoff Watterson and Tony Pakes for helpful remarks on 
an earlier draft of this paper, and the referee, whose comments have considera- 
bly improved the presentation. 



46 S. TAVARE 

References 

CANNINGS, C. (1974) The latent roots of certain Markov chains arising in genetics. I. Haploid 
models. Adv. Appl. Prob. 6, 260-290. 

DARROCH, J. N. AND SENETA, E. (1965) On quasi-stationary distributions in absorbing, discrete 

time, finite Markov chains. J. Appl. Prob. 2, 88-100. 
EWENS, W. J. (1963) The diffusion equation and a pseudo-distribution in genetics. J. R. Statist. 

Soc. B25, 405-412. 
EWENS, W. J. (1969) Population Genetics. Methuen, London. 
FELLER, W. (1954) Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77, 1-31. 
KELLY, F. P. (1977) Some exact results for the Moran neutral-allele model. Adv. Appl. Prob. 9, 

197-201. 
KEMENY, J. G. AND SNELL, J. L. (1960) Finite Markov Chains. Van Nostrand, Princeton, NJ. 
KEMENY, J. G., SNELL, J. L. AND KNAPP, A. W. (1966) Denumerable Markov Chains. Van 

Nostrand, Princeton, NJ. 
LEVIKSON, B. (1977) The age distribution of Markov processes. J. Appl. Prob. 14, 492-506. 
MORAN, P. A. P. (1958) Random processes in genetics. Proc. Camb. Phil. Soc. 54, 60-71. 
PAKES, A. (1978) The age distribution of a Markov chain. J. Appl. Prob. 15, 65-77. 
POLLAK, E. AND ARNOLD, B. C. (1975) On sojourn times at particular gene frequencies. Genet. 

Res., Camb. 25, 89-94. 
PIVA, M. AND HOLGATE, P. (1977) The eigenvectors of a finite population model. Ann. Hum. 

Genet. 41, 103-106. 
SAWYER, S. (1977) On the past history of an allele now known to have frequency p. J. Appl. Prob. 

14, 439-450. 
SENETA, E. (1966) Quasi-stationary distributions and time reversion in genetics. J. R. Statist. 

Soc. B28, 253-277. 
STIGLER, S. M. (1970) Estimating the age of a Galton-Watson branching process. Biometrika 57, 

505-512. 
TAVARE, S. (1978a) Age distributions for Markov processes in genetics (abstract). Adv. Appl. 

Prob. 10, 17-19. 

TAVARE, S. (1978c) Time reversal and age distributions. II. Continuous-time Markov chains. 

TAVARI, S. (1979) Sojourn times for conditioned Markov chains. Theoret. Popn Biol. 15, 
108-113. 

THOMPSON, E. A. (1976) Estimation of age and rate increase of rare mutants. Amer. J. Hum. 

Genet. 28, 442-452. 
WATTERSON, G. A. (1976) Reversibility and the age of an allele I. Moran's infinitely many 

neutral alleles model. Theoret. Popn Biol. 10, 239-253. 

WATITERSON, G. A. (1977) Reversibility and the age of an allele II. Two allele models with 

selection and mutation. Theoret. Popn Biol. 12, 179-196. 

WRIGHT, S. (1937) The distribution of gene frequencies in populations. Proc. Nat. Acad. Sci. 

USA 23, 307-320. 


	Article Contents
	p. 33
	p. 34
	p. 35
	p. 36
	p. 37
	p. 38
	p. 39
	p. 40
	p. 41
	p. 42
	p. 43
	p. 44
	p. 45
	p. 46

	Issue Table of Contents
	Journal of Applied Probability, Vol. 17, No. 1 (Mar., 1980), pp. 1-299
	Front Matter
	The Branching Diffusion with Immigration [pp. 1-15]
	Extinction Probability for Critical Age-Dependent Branching Processes with Generation Dependence [pp. 16-24]
	The Discrete Asymptotic Behaviour of a Simple Batch Epidemic Process [pp. 25-32]
	Time Reversal and Age Distributions, I. Discrete-Time Markov Chains [pp. 33-46]
	A Strong Variational Principle for Continuous Spin Systems [pp. 47-58]
	Maximum Likelihood Estimates of Incorrect Markov Models for Time Series and the Derivation of AIC [pp. 59-72]
	On Estimation of the Integrals of Certain Functions of Spectral Density [pp. 73-83]
	Non-Linear Time Series Models for Non-Linear Random Vibrations [pp. 84-93]
	A Remark on the Central Limit Question for Dependent Random Variables [pp. 94-101]
	A Representation for Discrete Distributions by Equiprobable Mixtures [pp. 102-111]
	Uniform Conditional Stochastic Order [pp. 112-123]
	Ergodic Properties of a Two-Dimensional Binary Process [pp. 124-133]
	On the Minimum of Gaps Generated by One-Dimensional Random Packing [pp. 134-144]
	Approximations to Densities in Geometric Probability [pp. 145-153]
	Reliability Analysis of Complex Repairable Systems by Means of Marked Point Processes [pp. 154-167]
	Inspection and Replacement Policies [pp. 168-177]
	On the Optimality of Stationary Replacement Strategies [pp. 178-186]
	Scheduling Tasks with Exponential Service Times on Non-Identical Processors to Minimize Various Cost Functions [pp. 187-202]
	Correlation Structure of Teletraffic Measurements from Randomly-Scanned Calls Arrival Data [pp. 203-217]
	Level Crossings and Stationary Distributions for General Dams [pp. 218-226]
	On the Transient Waiting Times for a GI/M/1 Priority Queue [pp. 227-234]
	Short Communications
	On a Stopping Time of Starr and Its Use in Estimating the Number of Transmission Sources [pp. 235-242]
	On Search for a Brownian Target [pp. 243-247]
	Moments of Ladder Heights in Random Walks [pp. 248-252]
	Transition Probability Matrices for Correlated Random Walks [pp. 253-258]
	A Continuous-Time Analogue of Random Walk in a Random Environment [pp. 259-264]
	Linear Processes and Bispectra [pp. 265-270]
	On Functional Equations and Measures of Information. II [pp. 271-277]
	Percolation on Subsets of the Square Lattice [pp. 278-283]
	On Multiple Covering of a Circle with Random Arcs [pp. 284-290]
	The Probabilistic Significance of the Rate Matrix in Matrix-Geometric Invariant Vectors [pp. 291-296]
	Convergence of Successive Approximations to a Stochastic Fixed Point [pp. 297-299]

	Back Matter





