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SUMMARY
A simple and useful representation is given for the asymptotic behaviour of the
Pearson )(2 test of independence in two-way contingency tables. This is used to analyse
the statistic when the data are generated by Markov chains. A robustness result,
showing when the Markov dependence has no effect on the usual limiting x2
distribution, is also given.
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1. INTRODUCTION

Considerable attention has recently been given to the asymptotic behaviour of goodness-of-fit
tests and tests of independence in two-way tables for data that arise from complex sample surveys
(Holt et al., 1979; Rao and Scott, 1981). A large body of results is also known for the analysis of
serially dependent data, as might for instance be generated by types of Markov dependence. See,
for example, Bartlett (1951), Patankar (1954), Anderson and Goodman (1957), Billingsley
(1961a, b) and Basawa and Prakasa Rao (1980).

In this paper, we focus exclusively on tests of independence for two-way 7 X ¢ contingency
tables. We assume that we have observations n;; on the joint occurrence of two random sequences
X={Xy,k=>0}and Y ={Y,, k>0}. That is, let

n;; = number of times X =i, Y, =j, 0<k<n-1,

ij
where X has r states, Y has ¢ states. The usual Pearson statistic for testing that X and Y are
independent is
n(ng; — npngj[n)?
C,= ) , (1.1)
i, ] Rix P j

where + denotes summation over that index. It is a familiar result that when X and Y are
independent trials processes (an assumption equivalent to the usual multinomial model), then
C, E4 X? ,asn—>oo where t=(r—1) (c — 1), 2 denoting convergence in distribution.

Recently, Holt et al., (1980) and Rao and Scott (1981) have analysed statistics based on (1.1)
when the multinomial model is not appropriate. The applications they had in mind involved data
generated from complex sample survey designs. We will describe briefly their results, which are
based on the following assumption.

Assumption

There is a set of underlying cell probabilities a;; >0, ay+ =1 such that the asymptotic
distribution of the vector of normed proportions

Jn Ny —a n12_a Nye —u
n 11, n 125 =« o n re
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is re-multivariate MV(0, X ). The covariance matrix X , which is singular, reflects the experimental
design that generated the counts n;;. Tests of the null hypothesis of independence of rows and
columns are usually based on the quantities
P G S L

h,-,'(a)—F— — i=1,...,r—=1; j=1,...,¢c—-1. (1.2)
Let A(a) = (hyy (@), hya(@), . . ., hg_1ye-1) ()T, and let H( o) be the (r— 1) (¢ — 1) x rc matrix
of partial derivatives H(a)=0A( o )/d( & ).When no estimate of X is available, it is common to
ignore the sample structure, and use the statistic (1.1).

Using the notation

al=(us,... Qo1 +)s al=(ay,.. 50 1) (1.3)

D,. = diag{a1+, Ce ey 0(,-__1’.}.}, ﬁc.={a+1, B N | },

Holt et al., prove that under the independence assumption

(1) (e-1)
C,— Y 0iZE, n—>eo (14)
i=1

where Z; are i.i.d. standard Normal variables, and the p; are the eigenvalues of the matrix E, where
E=R'HEHT, R=D,-&al) ® (D,—a.ak). (1.5)
Here, ® is the usual Kronecker product: A ® B = (q;;B).

Tavaré and Altham (1983) were also interested in application of tests based on (1.1), but where
the observations {”ii} were generated by 2-state Markov chains. If X is a Markov chain whose
transition matrix has non-unit eigenvalue A, Y a Markov chain whose transition matrix has non-
unit eigenvalue u, then they showed that if X and Y were independent,

g 1+uX
s —E0N2 nseo (1.6)
1—uA

so that the Markov dependence leads to either inflated or deflated values of the x? statistic. It is
often possible to estimate consistently both u and X from the data, in which case (1.6) can be used
as a test of independence for two two-state Markov chains. The Markov assumption is often used
as a first approximation to the structure of serially dependent data, and the study of the
asymptotics of C,, for such dependence arose because of its frequent appearance in psychological
experiments. Further details of this may be found in Tavaré and Altham, and the review article of
Castellan (1979).

The purpose of the present paper is to study the asymptotic behaviour of C,, when X and Y are
arbitrary (but positive recurrent) Markov chains. In particular, we will extend the result of (1.6)
for reversible Markov chains (which includes (1.6) as a special case). The results allow us to
quantify the behaviour of C,, in the presence of serially dependent data. As a consequence of the
analysis, another representation for (1.4) and (1.5) is obtained, which seems to be easier to work
with in practice.

2. PRELIMINARIES

Let A and B be matrices. The following properties of Kronecker products are well known; it
is assumed that matrices are conformable and invertible as required.

(A ® B)(C ® D) =AC ® BD
(A® B)! =A"'® B! (2.1)
(A ® Bl =AT® Bl
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For any matrix A of size m x n, write

am
so that a,-T is the ith row of 4. We define the vec operator vec (A) by

a,

vec (A) = , 2.2)

Ay
an mn X 1 column vector of the rows of A. The results of Neudecker (1969) readily give:
Proposition 1. For conformable matrices 4 and B,
vec(AB)= (A ® I)vec(B)=(I ® BT)vec(A).
We now turn to the statistic C,, defined at (1.1). Write

2
C =Y pffi T M) [T T (2.3)
" n n on n n |’ '

The assumption about the asymptotic behaviour of the random variables n;;/n made in the
Introduction can be described as follows. Define

- Mij _ 2
my;=~/n — ~% ], and let M = (m;;). Then vec(M) —> N, (0, £ ) as n > oo,

If we set

n n

it Nox Na:
c,-j=\/n(_nll -2 _t]_) , (24)

then under the above assumption, it is straightforward to show that cij—8ij—> 0 as n—>oo,
where
8ij = Mij — Qpy Mayj — Oy j M. (2.5)

The denominator in (2.3) converges in probability to o+, and it follows that C), has the same
asymptotic distribution as

vec(G)TD ! vec(G) (2.6)
where G = (g;;), D = diag{o;4a;} = D, ® D, where
D, = diag{o+, .. ..+ }, D, =diag{auy, ..., ) 2.7

3. ASYMPTOTIC REPRESENTATIONS FOR C,,
We will use the following notation in what follows:
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I,,, is the m X m identity matrix,
“rT = (04 - O, (3.1
al = (o, ... ap),

1,, is the m x 1 vector of 1’s.
From (2.5), we have

g = my = (o, 1)) M)y = M(1a )y
or
G=M-AIM-MA_,
where
A=10;, A.=1.0]. (3.2)
From Proposition 1, it follows that
vec(G) = vec(M) — vec(AF M) — vec(MA )
= vec(M)— (AT ® 1.)vecM)— (1, ® AT)vec(M)
= (e = (A7 ® 1)~ (@, ® AL)) vec(M)
=BT vec(M), say,
where
B=L.~(A ® L)~ ® A,)
=, —A) ® (I.-A)-A ® A, (3.3)

Hence vec(G) —9>N(0, BT £ B) as n— oo, and a standard result on the distribution of quadratic

forms of Normal random variables, together with (2.6), shows that the asymptotic distribution of
C,, can be written as

re
Cn v Z pi les
i=1
where Z; are i.i.d. standard Normal variables, and p; are the eigenvalues of the matrix D BT X B.
We highlight this discussion as

Proposition 2. The statistic C,, is asymptotically distributed as £}y p;Z?, where Z; are i.id.
standard Normal, and p; are the eigenvalues of D' BT £ B.

Remark. This is, in effect, contained in (1.4) and (1.5), although, as will be seen in the next
section, this representation seems easier to use than (1.5).

4. APPLICATIONS

The following proposition is useful. The proof is straightforward using (2.1) and (3.3). Set
a= o, ® a.. Then

Proposition 3

(a) Bis D-symmetric,ie. DB=BTDand D' BT =BD!
(b) Bl=-1,aTB=~aT wherel=1,,

©) B =(1~A)® (I.—A)+1al.
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Multinomial trials

If X and Y are generated by independent trials processes, then it is well-known that under the
null hypothesis that X and Y are independent

L =D-aal 4.1
Hence
D!BT LB =BD! (D-aal)B

=B(I-1 aT)B

=B*-Bl a’B

=L-A) ® (I —A.)
using Proposition 3. But I, — A, is idempotent, as is I, — A.. So then is their Kronecker product.
But Tr ((I,—A,) ® (I,—A)=Tr(I,—A,). Tr(I,—A.)=(—1)(c—1). Hence D™ BT X BT

has (r—1)(c—1) unit eigenvalues, and r+c— 1 zero eigenvalues. It follows that under Ho,
C, VX%, t=(r—1)(c—1),and we recover the standard test result.

Markov-dependent trials

We now assume that X and Y are stationary irreducible aperiodic Markov chains with 7 and ¢
states respectively. Under the independence assumption, the observations 7;; are generated by a
Markov chain W, say, with transition probability matrix P=P, ® P., and stationary vector
aT=af ® al, where P,, a T and P, a I are, respectively, the transition matrix and stationary
vector of X and Y. The central limit theorem for Markov chains (cf. Billingsley, 1961b) shows that

L =DZ+Z'TD-D-aaT 4.2)
where Z ' =1-P+1 aT,
Then we have
D'BT B =BD! LB
=BDY(DZ+Z'D-D- aaT)B
=B(Z+D'ZTD-1-1aT)B (4.3)

It remains only to identify the eigenvalues of this matrix. We might expect these eigenvalues to be
related to those of P, and hence to those of P, and P,. Clearly, they must be real. There is a large
class of Markov chains which have real eigenvalues, namely the reversible chains. X is said to be
reversible if P, is D,-symmetric, i.e. D,P, = PI'D,, and similarly for Y. Among reversible chains are
independent trials processes, two-state chains, and symmetric doubly stochastic chains (e.g.
Tosifescu, 1980, p. 152). If both X and Y are reversible, then so is W, since P=P, ® P,
D=D, ® D,. It is then easy to show that DZ™* = (ZT)™!D, so that D"?ZTD = Z. Hence (4.3)
reduces to ‘

D!BT £B =B(2Z-1-1 aT)B
“2BZ-DB+(@,—A) ® (I,—A,), (4.4)
using Proposition 3 again.

We have afP,= a T, P,1,=1,, and similarly for P,. Let n} be a left eigenvector of P, with
eigenvalue A # 1, and T be a left eigenvector of P, with eigenvalue u# 1. Let &,, §,. be the
corresponding right eigenvectors. Then nf1,= n3l,= af &,= al &.=0. It was established
in Tavaré and Altham (1983) that if nT=qT ® 07, then WTZ=(1-\)™' 07T, while
aTZ= aT. For such y we have

n‘TB= 'IT, ']T(Ir—Ar) ® (lc_Ac)= 'IT
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and hence from (4 .4),

T ltA T
1—2Au

2
TDBT EB=| ——~1
: (et »

Now consider any vector q T of the form nT= af x nT.
Then TITB=(°UT® n;r)((lr ®IL)-A® L)~ ® A)))
= 'lT_a;rAr® nI_ aiT ® ﬂgAc= nT_ nT=0T>

while nT(I, - A,) ® (I, —A,)=0T.
Hence n™D™'BT £ B=01. Similarly, if 7T is either of the form nT= af ® aT or
NT=nT ® al then nTD'BT T B=0T. We have then established:

Theorem 1. Let X and Y be reversible Markov chains. Then under the assumption that X and
Y are independent, the statistic C,, is asymptotically distributed as

c-1
- . . e

=1 =1 \ 1A

where Z;; are i.id.N(0, 1), and \;, u; are the non-unit eigenvalues of P, and P, respectively.

Remarks
(i) When r = ¢ = 2, the chains are necessarily reversible, and then

1+Au
C,~ 3
n (1_)\#))(1

as in (1.6).

(i) WhenP,=1,af P,=1,aT, then X and Y are (reversible) independent trials processes.
The non-unit eigenvalues of P, and P, are 0, and hence C,, v x7, £ = (r— 1) (c — 1). This
recovers the “multinomial trials” case.

(iii) Even when the chains cannot be assumed to be reversible, it is often possible to find
consistent estimators of the eigenvalues of D™'BT X B from the data. There is a well-
known test of independence for two Markov chains which is described, for example, by
Billingsley (1961a).

Example. The following example, due to Dr P.M.E. Altham, displays the effects of Markov
dependence in a simple way. Suppose that the transition matrix P, of X is given by

(Pr)ij =t (1 —q,) 9l(r), j=i
4.5)
=(1-a) 0", j#i
where each 0 >0, 2/_; (") =1, and a, is chosen to make (P,);;=0forall i,j. Whena, =0,
P, reduces to an independent trials process. It is readily checked that P, is reversible, and that P,
has eigenvalues o,(r — 1 times) and 1. Suppose that P, has the same structure as (4.5) for some
set {0{°)}, and . From Theorem 1, it follows that

1+a,a
c, 9 r&%

— 2 4.6

1= arac th ( )
where £=(r—1)(c—1). Thus (I —a,a,) (1 + &)™ C,, has asymptotically the “standard” x?
distribution. If &, o, > 0 (as would usually be the case) the statistic C,, must be deflated to allow
for Markov dependence. This shows that the application of the standard test (treating C,, as
though it were a x7 random variable) is likely to have misleading consequences.



106 TAVARE [No. 1,

5. A ROBUSTNESS RESULT

Examination of Theorem 1 shows that X is a (reversible) Markov chain, and Y is an
independent trials process, then C,, v x2, ¢ = (r — 1) (¢ — 1), so that no correction is required to the
asymptotic distribution of C,,. The dependence structure in X is in some sense “swamped” by the
independence of Y. It is intuitively clear that this result should hold when X is an arbitrary
(irreducible) Markov chain, and Y an independent trials process. This is the content of the next
theorem, the proof of which is straightforward, and is thus omitted.

Theorem 2. Let X be an arbitrary irreducible Markov chain, and let Y be an independent trials
process. Then, under the assumption that X and Y are independent,

Cn&)(?, f=(r—1)(c—l), as 11 —> oo,

6. CONCLUSIONS

In this paper, we have described a simple representation of the Pearson statistic C,, for testing
independence in two-way contingency tables. The representation is applied to the case of serially
dependent observations when the data are generated by stationary Markov chains. Explicit results
are available when the chains are assumed to be reversible (for example, two-state chains,
independent trials processes and symmetric doubly stochastic chains). The results show that
formal use of such a test statistic can be extremely misleading in the presence of serial dependence
in both constituent processes.

An interesting robustness result emerges however. When one component process is independent
trials, and the other an arbitrary stationary Markov chain the statistic C,, is still distributed as x?
with (r—1)(c—1) degrees of freedom; thus serial dependence of the above form in one
component process does not effect the asymptotic behaviour of the “usual’ test statistic.
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