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A variety of results for genealogical and line-of-descent processes that arise in 
connection with the theory of some classical selectively neutral population genetics 
models are reviewed. While some new results and derivations are included, the prin- 
ciple aim is to demonstrate the central importance and simplicity of genealogical 
Markov chains in this theory. Considerable attention is given to “diffusion time 
scale” approximations of such genealogical processes. A wide variety of results 
pertinent to (diffusion approximations of) the classical multiallele single-locus 
Wright-Fisher model and its relatives are simplified and unified by this approach. 
Other examples where such genealogical processes play an explicit role, such as the 
infinite sites and infinite alleles models, are discussed. 0 1984 Academic Press, Inc. 

1. INTRODUCTION 

Recent years have seen the development of a wide variety of results about 
the genealogical behavior of generations of individuals whose genetic 
composition is described by the classical population genetics models. 

Information obtained about genealogical processes and lines of descent is 
certainly interesting and important in its own right, but it also contains 
consequences for the underlying population genetic models. 

The purpose of this paper is to review some of the pertinent mathematical 
details about genealogical processes, lines of descent, and their structure and 
demonstrate how such ideas can be applied to produce a wide variety of 
classical results in the mathematical theory of population genetics. I hope 
that this review will correlate many existing results, and further exhibit the 
central role played by the genealogical process in explicit form. 

The most complete and elegant analyses of such genealogical processes 
have been obtained for single-locus multiple-alleles systems. It is on such 
cases that this review concentrates. Some new results and some alternative 
derivations of known results are included. Throughout, the emphasis will be 
on obtaining and studying “diffusion time scale” approximations to 
genealogical models, since most classical population genetic results are 
couched in terms of diffusion approximations. 
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The organization of the paper is as follows. Section 2 contains an 
overview of the Moran and Wright-Fisher multiple-allele single-locus 
models, and an introduction to genealogical Markov chains in a discrete-time 
finite population size setting. In Section 3, we look at Kingman’s coalescent 
process, which describes the family tree of a sample of individuals and their 
ancestors. Methods for approximating behavior of this discrete Markov chain 
by a more tractable continuous-time process are given, and applied to the 
ancestral chains of Section 2. 

In Section 4, we introduce an analogous process which takes into account 
the effect of mutation. Instead of studying the number of distinct ancestors of 
a sample in preceeding generations, we now look at lines of descent. A line 
of descent from a given individual is taken to be the descendents of that 
individual, but excluding any new mutants and their descendents. The 
diffusion time-scale approximating process, which has the structure of a 
Markovian death process, and which applies to a variety of underlying 
discrete reproduction mechanisms, is given. In Sections 5 and 6 some explicit 
results are given for the transition densities and related properties of these 
continuous-time death processes. Section 7, which forms the major part of 
the article, is devoted to applications of the line-of-descent and ancestral 
processes. We look at rate of loss of alleles, further properties of the 
coalescent, bivariate genealogical processes (which arise from subsampling 
the original sample of individuals), and properties of the diffusion processes 
that occur in the study of gene frequencies. 

Section 8 looks briefly at the infinite alleles model, with particular 
emphasis on sampling properties and ages of alleles, while in Section 9 the 
role of genealogy in the infinite sites models is discussed. 

Section 10 describes briefly some other issues arising from genealogical 
models, and tries to indicate some areas for future research. In order to 
maintain continuity in the text, two short appendixes of a more technical 
nature are included. 

2. SETTING THE SCENE 

Consider a populatin of fixed size 2N in every generation, and a single 
locus at which K alleles are possible. Each individual in the population is 
one of the K allelic types, denoted by A,, A*,..., A,. Let e) be the number 
of individuals of allelic type A, at. time n. Clearly, 

x,u) > 0. ’ i X”’ = 2N 
,=1* a 

n = 0, 1, 2 )... . P-1) 

Several Markov chain models are used to describe the evolution of 
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x, = <xy ,..., Xi”‘). We will assume selective neutrality, and allow mutation 
between the types. To this end, define for i # j, 

mu = P {allele of type A I mutates to Aj} 

and set 

mii = 1 - C mii. 
j+i 

(2.2) 

For notational convenience, let 

A = i = (iI,..., 
i 

iK) : ii > 0, 5 ii = 2N 
j=l i 

and 
A4 = (mij). 

If the current value of X, is i E A, then the fraction of allelic type Aj in the 
gene pool after mutation is 

nj = (2N) - ’ @tQj, j = 1, 2 ,..., K. (2.3) 

The Wright-Fisher model (cf. Ewens (1979, Chap 3) precribes the transition 
probabilities pi,i = iP {X,+ i = j 1 X, = i}, (i, j E A) by 

corresponding to random mating and multinomial sampling of the gene pool 
which is divided into fractions rrj of allelic type A,, j = l,..., K. This model 
has nonoverlapping generations. An analogous process due to Moran, in 
which generations overlap, can be described as follows (see, e.g., Karlin and 
McGregor, 1967; Kelly, 1976). For i E A, define 

r,,i = (iI ,..., i, + l,..., i, - l,..., iK), I# k. 

The transition probabilities are then determined by 

I# k, 

(2.5) 

These two models will be the basis of this paper, although, as will be 
indicated later, the “exchangeable” models of Cannings (1974) also fit into 
the framework of what follows. 
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Suppose now that there are no mutation pressures in the process. Then 
{X, , n > 0} describes the effects of “random drift” of allele frequencies, and 
eventually the population must comprise just one allelic type. Among many 
fundamental questions that are asked about this process is the following: “If 
a sample of i individuals (genes) is chosen without replacement from the 2N 
genes at time (or generation) n, how many distinct allelic types will be 
represented in the sample?” This question was addressed in a limited setting 
by Kempthorne (1967), and more fully by Felsenstein (1971); see also 
Karlin (1968a). 

Felenstein’s analysis reveals that if 

Pi;’ = P {sample of i alleles taken at time n 
containsj distinct allelic types} 

then 

(2.6) 

2N 

(2.7) 

where 

gik = P {i ind ivi ua s randomly selected without replacement d 1 
have k distinct parents}, l<k<i<2N. P-8) 

Under the assumption of no selection effects, and of constancy of the 
reproduction mechanism over time (certainly exhibited by the Wright-Fisher 
and Moran models), Eq. (2.7) may be iterated to give 

Pii”’ = i (G”),, P;’ , 
k=j 

(W 

where G = ( gii). 
The matrix G is itself the one-step transition matrix of a time- 

homogeneous Markov chain with state space { 1,2,..., 2N}. The i, jth element 
gi;’ of G” has the interpretation that for any s > 0, 

g!!’ = P { i individuals chosen at generation n + s lJ 
without replacement have exactly j distinct 
ancestors in generation s}. 

(2.10) 

The chain with transition matrix G will be denoted by {A,, n 2 0). This 
chain describes the genealogy of individuals in the population, and it will be 
referred to as the ancestral or genealogical process. Notice that the behavior 
of lines of descent in a sample of any size in the population can be analyzed 
by studying the single Markov chain {A,, n > 0). 
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The intimate connection between the genetic process X,, and the ancestral 
process A,, has been exploited in an elegant series of articles by Gladstien 
(1976, 1977, 1978), in which the effects of variable population size are also 
studied. The explicit form of G is known for a wide class of reproduction 
models whose structure can be described as follows (Cannings, 1974). 

Individual i produces a random number Yi of offspring (an “offspring” of 
an individual may be that individual himself if there are overlapping 
generations). Because the total population size is assumed fixed at 2N 
individuals, we must have Y, + ..+ + Y,, = 2N. Reproductive symmetry of 
individuals is reflected in the fact that the random variables (Y, ,..., Y2,,,) are 
assumed exchangeable, and we also assume that their joint distribution is 
invariant over time. 

Under these assumptions, Gladstien (1978) has shown that 

j= L...,k (2.11) 

where A(i,j) is the set ofj-tuples of strictly positive integers, whose sum is i. 
In the case of the Wright-Fisher model, (Y, ,..., Y,,) have a joint 

multinomial distribution with 

P[Y,=y,, l<i<2N]= 
i’G”ii&il’* 

Then (Watterson, 1975), we have 

gii=(2N)-‘2N(2N- 1) ... (2N-j+ l)yy’, 1 <j<i, (2.12) 

where yy) is a Stirling number of the second kind. Specifically, yy’, 
j = 0, l,..., i, satisfy 

xi= 2 Yy’x(x- I)... (x-j+ 1). 
j=O 

The form of ( gu) for the Wright-Fisher model confirms that each individual 
chooses his parent independently, uniformly and at random from the 
individuals of the previous generation. 

In the case of the Moran model (2.5), we find that 

Y = (1, l,..., 1) 

= (0, 2, l)...) l), 

with probability 1/2N 

or a permutation of this, with 
probability 1 - 1/2N. 

(2.13) 
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From this and (2.11) we see that 
. . 

gi* = l-~= 1 -gli_l, 1 <i<2N. (2.14) 

In anticipation of later results, we remark that (2.14), which is in a sense a 
“degenerate” genealogy, spcifies a death chain, in that the only possible one- 
step transitions are to the neighboring lower state. In particular, explicit 
results are available for G”, and hence for the properties of the ancestral 
process. We will not pursue the details here, because our interest will focus 
on more appropriate “diffusion time-scale” approximations. Eventually, of 
course, A, must reach state 1, corresponding to Malecot’s observation that 
eventually everybody in the population can be traced back to a single 
ancestor. 

3. A CLOSER LOOK AT FAMILY TREES. THE COALESCENT 

The genealogical process {A,, n > 0) of Section 2 describes the behavior 
of the number of distinct ancestors of a group of individuals chosen from the 
population at a given time. Kingman (1982a, b) has studied the behavior of a 
richer process that describes the entire family tree structure of the 
population. Briefly, here is how this works: 

Choose and fix a particular generation n, and consider a sample of i 
individuals (labeled Z ,,..., Ii) chosen without replacement from this 
generation. Kingman has shown that the family tree of these individuals and 
their ancestors can be described by means of a discrete-time Markov chain 

UV) r > 0) whose state space is the set gi equivalence relations on the set 
i$ ’ ,..., i). The chain is defined by saying that (1, m) E &‘lN) if I, and Z, 
have the same ancestor in generation n - r. (We are tacitly assuming here 
that the reproduction structure is extended indefinitely far into the past.) The 
distinct equivalence classes of J,. (N) then correspond to those members of 
generation 12 - r who give rise to I, ,..., Ii. We have &bN) = {(I, I): 1= l,..., i}, 
and, since eventually everyone is traced back to a single ancestor, d(N) must 
reach an absorbing state at {(Z, m): 1 Q 1, m < i}. 

Now for a E 4, let 1 a ( be the number of equivalence classes in a. Then 
the process 

A, = Is3qN)(, r-20; A,=i, (3-I) 

is precisely the ancestral chain described in Section 2. 
While it is possible to compute the transition probabilities {PaB, a, p E 41 

of d(N) their form is rather complicated. However, there is an important . 7 
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and useful way of approximating the process for large values of N. For 
a, /3 E 8’[ write /I < a if /.I is obtained from a by joining two of its equivalence 
classes. Then Kingman (1982a) has shown that for the Wright-type 
reproduction scheme, we have 

P,, = 6,, + r,,(2N)-’ + O(N-‘), N-r 03, (3.2) 

where 

r u/3 = -fk(k - 1) if a=/?, )a(=k, 

= 1 if P < a, 

=o otherwise, 

and c?,, = 1 if a =p; = 0 otherwise. 
It then follows that if PN = {pas, a, /3 E &}, 

(3.3) 

(3.4) 

where R = {r,,} is the infinitesimal generator of a continuous-time Markov 
chain (4, t > 0} on gi. Hence &‘$.l converges weakly to d. as N --) co. 
Kingman calls the process (Jl, t > 0; 1 .&I = i} the i-coalescent, and he 
describes some of its properties. In particular, the form of the transition rates 
in (3.3) is robust under a variety of other reproduction schemes (e.g., many 
of the exchangeable-type models introduced by Cannings (1974)). A 
“degenerate,” but important, case arises from the Moran model, where (3.2) 
is to be replaced by 

P,, = 6,, + r&2N’) - ’ 

and (3.4) by 
lim pI2N*tl = eRt 

N 
N-KC 

(3.6) 

The difference in time scale exhibited by (3.4) and (3.6) is attributable to 
allowing for conversion to generations in the Moran model (which operates 
in terms of birth-death events), and the extra factor of 2 follows from 
differences in the variance of the offspring distributions Y of the generations. 
As might be expected, these time-scale changes are ones that are used to 
approximate the genetic process (2N))’ X, by a diffusion process. 

Kingman’s approximation result applies immediately to the ancestral 
chain of Section 2 also. Using either (2.11) and (2.12) or (3.1), we can see 
that as N+ eo 
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where 

1,=2N (Wright case), 

= 2N2 (Moran case). 

Now {A,, t > O;A, = i} is a continuous-time Markov chain with state 
space { 1, 2,..., i} and inlinitesimal generator Q = (qtj) specified by 

; j = 1, 2 ,..., i, 

k=j- 1, 
(3.8) 

=o otherwise. 

Thus A, is a death process starting from A, = i, and ending at 1. 
We will return to a variety of applications of properties of A, in Section 7. 

But tirst we need to see what happens to lines of descent in the presence of 
mutation. 

4. LINES OF DESCENT WITH MUTATION 

Griftiths (1980a) uses diffusion methods to study lines of descent in 
neutral Wright-Fisher processes with mutation. Here a line of descent is 
defined as an inverted tree starting with a single individual at time 0, with 
branches at each generation where genes are produced from a parent in the 
line. It is important in what follows to suppose that new mutations are not 
included in the line of descent of their parents, but are considered to begin 
new lines of descent. 

While it is possible to analyze lines of descent for the general mutation 
structure (2.2), it is considerably simpler to study the special case in which 

mii= 1 -m for all i. (4.1) 

In this case, the mutation rate m away from any allelic type is the same for 
all types. This symmetrizing assumption means that we do not need to know 
the allele frequencies in the sampling generation. 

We now turn to the explicit computation of the distribution of the number 
of lines of descent in a sample of size i taken without replacement from a 
particular generation of the Moran model described in (2.5). 

Recall from (2.13) that the offspring vector Y is either (1, l,..., 1) or (a 
permutation of) (0,2, l,..., 1). In the first case, a random sample of i 
individuals will have i lines of descent going back one generation if the new 
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individual is in the sample, and does not mutate, or if the new individual is 
not in the sample. Thus 

P(i-+ i 1 Y = (1, l,..., I))+-+m)+l-&l-E. (4.2) 

In the second case, we have i lines of descent going back one generation if 
we pick the new individual but not his parent, and the new individual does 
not mutate, or if we do not pick the new individual. Thus 

P(i + i 1 Y = (0, 2, l,..., l))=l-&+(l-m&-(1-Q. (4.3) 

If we now define 

h, = P(sample of i genes hasj lines of descent 
in previous generation), 

then averaging (4.2) and (4.3) over the distribution of Y given in (2.13) 
shows that 

hii = 1 - hi,i&l = 1 - 
i(i - 1) 
T-g(1-y. (4.4) 

If m = 0, (4.4) reduces, as it must, to the ancestral probabilities (2.14). Now 
notice that by mutational symmetry and the equivalence and time- 
independence of reproductive behavior of individuals, we may extend the 
behavior of the sampling back through time to obtain the line-of-descent 
chain {B,, n > 0) which allows for mutation. The interpretation of the n-step 
transition probabilities A$” is 

h$’ = P(i individuals in generation n + s havej lines 
of descent in generation s), 

for any s > 0. Notice that 0 is an absorbing state, since eventually all 
original lines of descent must disappear due to the effects of sampling and 
mutation. 

While parameters (4.4) admit simple derivations of h{y’ in terms of 
independent, but not identically distributed, geometric random variables, our 
interest is again in asymptotic results valid for large N. We make the usual 
order-of-magnitude assumption that 

2Nm-+0>0 as N+co. (4.5) 



128 SIMONTAVARI? 

Writing H,,, for the transition matrix of B, starting from B, = i, we see from 
(4.4) that 

H,=I+ (2N*)-’ Q + O(N-3), (4.6) 

where Q = (qii) is given by 

qjj = -a + e - 1)/T j = 0, 1 ,..., i, 

qjj- 1 =j(j + 0 - I)/29 j = l,..., i, 

qjk = 0, otherwise, 

(4.7) 

Kingman’s argument (1982a, p. 3 1) then shows that 

lim ~(12N~~l) = ,Qf 
N 9 

N-m 
(4.8) 

effectively establishing that Bc12N211b converges to a ‘process B, as N+ co, 
where B, is a Markov chain on {0, l,..., i} with infinitesimal generator (4.7). 

We have described the effects of loss of original lines of descent using the 
Moran model mainly because the form of HN is more readily computed in 
this case. Grifftths (1980a) studied a similar problem for the Wright-Fisher 
model by entirely different means. He essentially showed that if 

lim 4Nm = 19; 
N-CC 

IN = 2N, (4.9) 

then BcIzNrIj converges to the process B, described above. So once again, a 
stability (or robustness) result emerges about the form of B, for different 
reproduction mechanisms. 

From now on, we will be interested in properties of B, (and of A,, 
obtained from B, by setting f? = 0) observed on their natural time scale. 

5. PROPERTIES OF {B,,t>Oj 

We will briefly look at some of the properties of the process B, in its own 
right. In Sections 7 and 8, a variety of applications of these results will be 
given. 

We will use the following notation throughout: 

au,=a(a+ l)*** (a+j-l), j>l; q,,=l, 

a,,=u(u-1)~~~(u-j+ I), j>l; ato,= 1. 
(5.1) 



LINE-OF-DESCENT AND GENEALOGICAL PROCESSES 129 

5.1. The Distribution of B, 

The distribution h,(t) = P [B, = j ) B, = i] is most expeditiously computed 
by finding the spectral expansion of the generator Q defined in (4.7). This is 
straightforward (see Appendix I); and leads eventually to 

h,(t) = i Pk(t) 
(-1)k-‘(2k + 8- l)(j + 8)(k-l) ilkI 

k=j j! (k -j)! (i + 8)(k) ’ 

h,(t) = 1 + ’ Pk(t) (-l)k(e>,k-,, it,@ + b’- 1) 

krl k! (i + e)(k) ’ 
(5.3) 

where 

pk(t) = exp{-k(k + 0 - 1) t/2}. (5.4) 

As one possible interpretation of these results, consider an infinite alleles 
model in which new mutations are to new types, and all initial types are 
different. Then h,(t) is the probability that a sample of i genes taken at time 
t contains j of the original types. 

5.2. Lines of Descent in the Whole Population 

Of great importance later on is the distribution of the number of lines of 
descent in the whole population. That is, we need to evaluate from (4.6) 

h,(t) = Ji”, h:‘,2;*‘“, + 

which is the probability that j lines of descent survive to time 1. Grifftths’ 
(1981, p. 47) method shows that 

lin: lim h!IZN’fI) = lim 
Ii 

h$~~*‘l) 7 
i-m N-m N-cc ’ 

so that h,(t) may be computed from (5.2) and (5.3) by taking i-+ co. This 
gives 

h,(t) = 2 Pkct) 

(-qk-‘(2k + 8 - l)(j + o)(kpl) 

j! (k -j)! 9 .i> 1, 
k=j 

= 1 + f Pk@) 
(2k + 8- w-1)” eO-lJ 

(5.5) 

k! 9 j= 0, 
k=l 

as found by Griffiths (1980a) by a different approach. 
The line-of-descent chain B, for the whole population is a Markov process 
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that starts from an entrance boundary at infinity, and ends eventually at 0, at 
which time all original lines of descent have been lost due to sampling or the 
effects of mutation. The structure of B,, starting from B, = i, 1 < i ,< 00, is 
simple to describe. Given that currently B, =j, the waiting time for the loss 
of the next line has an exponential distribution with mean 2[j(j + 8 - l)] -I. 
This implies in particular that 

1 O” h,(t) dt = 
2 

l<j<i<oo, 
0 j(j+S- 1)’ (5.6) 

and hence that the mean time to loss of the original lines, starting from 
B, = i, is 

mi= i 
2 

k(k+f?- 1)’ 
l<i<a. 

k=l 

See also Griffths (1980a). 

5.3. Approximations and Bounds 

It is clear from (5.2) that for 1 < m < i, 

P[B,>mIB,=i]=O@,(t)), t+OC), 

and that 

However, a simple argument (provided in Appendix I) allows us to find 
bounds uniform in i = B,. Indeed, for 1 < m < i, 

(m + Q,,, p,(t)~~IPB,~mlB,=il,<p,(t) , iLml 
m. (i + @cm, 

< p,(t) (m + e)(m) 
(W 

m! * 

Setting m = 1 in (5.8) gives 

epet” < 1 - hi,(t) < i(l!::) e-et/2 G (1 + 8) ,-em, i> 1, (5.9) 

which provides rather shap bounds for the probability that any of the 
original lines of descent survive to time t, at least when t9 is small. 
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Writing (5.9) in the form 

1 - hi,(t) < min 
c 

1, 41 + 6 e-et/2 

i+8 J 

and integrating this from 0 to co gives bounds for the mean time ltti to loss 
of lines in the form 

(5.10) 

so that m, N 2/8 as 19 10, as found by Li and Nei (1977). 

5.4. Moments 
From the probability generating function of B,, given B, = i given in 

Appendix I, we find that 

E((Bt)[,, 1 B, = i) = /in p,(t)(21+ 6 - 1) ( f: : ) (e 1-i :B):,: il’l 

and in particular when n = 1, 

F(Bt~B,=i)=~p,0(21+8--I)(i~~) . 
I=1 (I) 

Letting i-+ 03 gives Griffiths’ (1980a) result 

E(B, 1 B, = 00) = f p,(t)(21+ 8 - 1). 
/=I 

5.5. Approximations for Large 13 

For fixed i < co, and large 8, the infinitesimal parameters (4.7) show that 
B,, starting from B, = i, runs like a pure linear death process. It is 
straightforward to verify that the process De(t) = Bztle converges to a 
process D, as 8+ co, where D, is a pure linear death process of rate 1 
starting from D, = i. 

6. THE GENEALOGICAL CHAIN {A,, t > 0) 

We now turn to the study of the ancestral process (A,, t > 0) with 
infinitesimal generator defined at (3.8). Many of these results follow from 
those of Section 5 letting 8 10. 
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Thus, letting gii(t) = P [A, =j 1 A0 = i], we have 

k=j 

(2k - l)(-l)k-q~k-l)i[k] 
5 Z<j<i, (6.1) 

j! (k -j)! qk) 

where pi(t) = exp{-k(k - 1) t/2}. For the case j = 1, we have 

gil(t) = 1 - 2 pi(r) (2k - 1:(;(l) 
k . 

Ilk1 , 
k=2 

(6.2) 

as in Griffiths (1979b) and Watterson (1982b). When i = co, we obtain (by 
the same reasoning as applied to the process B, of Section 5) the distribution 
of the number of distinct ancestors at time 0 of the population at time t: 

k=j 

(2k - l)(-qk-jj (k 1) _ 
(k -j)!j! ’ 

2<j< 00, (6.3) 

while the probability of the whole population at time 1 being descended from 
a single individual is 

s1w = 1 - 2 Pm2k - Wl>“, (6.4) 
k=2 

as found by Littler (1975), Griffiths (1980a), and Kingman (1982a). The 
expected length of time until a sample of i individuals has a single common 
ancestor is (as in (5.7)) 

mP= 21: 2 1 
kz2 k(k-1)=2 ‘-7 [ 1 

and the variance is 

- (my)2. 

As i+ co, we lind that the expected time to trace the population back to a 
single ancestor is ma0 o = 2, and the variance is 47r2/3 - 12 z 1.16 (Watterson, 
1982b). 

Bounds for the distributions of A, can be found by the same method that 
leads to (5.8). Indeed, for m < i, 

p:(t) < P [A, > m 1 A, = i] < p:(t) mfm)."ml <p:(t) 2. 
m! b) 

(6.5) 

When m = 2, we get 

e-’ < 1 - gil(t) < 3eC’, i = 2, 3,..., (6.6) 
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which bounds the distribution of time until the sample (or population) can be 
traced back to a single common ancestor. This result is due to Kingman 
(1982a). An analogous argument for the discrete-time Wright-Fisher model 
is provided in Kingman (1980, Appendix II). 

The moments of A, follow immediately from (5.11) by letting B 1 0. We 
record in particular that 

lE(A, ) A, = i) = i p;(t) (21 ;,b’ h 
/=I (6.7) 

(Griffiths, 198 1, p. 47). 

7. APPLICATIONS AND EXAMPLES 

Sections 5 and 6 focused on the properties of genealogical and line-of- 
descent processes in their own right. The underlying discrete-time models 
were approximated by continuous-time Markov processes whose structure is 
easy to describe. The passage from discrete time to continuous time 
corresponds to “infinite population size” models, the time scale being in 
units of 2N generations (for Wright-Fisher models) or in units of 2N2 
birth-death events for the Moran model. These time scales are the ones 
usually associated with diffusion approximations of the underlying genetic 
models described in Section 2. In this section, we will use the results about 
genealogical chains to evaluate properties of these approximating diffusion 
processes. While many of the results described here are well known, their 
derivation by considering ancestry and lines of descent serves to highlight the 
central role these processes should and do play. 

7.1. Rate of Loss of Alleles 

Consider the case of the K allele model X, defined in (2.1)-(2.5) in which 
there is no mutation. By suitably scaling time (as in (3.7)) the process 
(2N))’ X, is approximated by a diffusion process X(t), where X(t) = 
(X1(&., xx- ,W), with 

xj(t) = fraction of allele type Aj at time t (7.1) 

satisfying x,(t) > 0, CT= 1 xj(t) = 1. The analog of Felsenstein’s sampling 
equation (2.9) shows that the probability Pii that i individuals sampled at 
time t contain j allelic types is 

Pij(t> = C gi/At) ‘kjC”h 
k=j 

65312612.2 

(7.2) 
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and, for the whole population, the probability that there are j distinct allelic 
types at time t will be 

pj(t) = 2 gkCt) pkj("), 
k=j 

(7.3) 

where gik(t) and gk(t) are given by (6.1) and (6.3), respectively. 
If a sample of size k is taken from the initial generation in which 

Xj(0) =pj, j = l,..., K, then the distribution of the number of alleles of type 
Aj in the sample is multinomial, with parameters k, p, ,...,pK. The Pkj(0) is 
then the probability that j types are represented in the sample at time 0. That 
is, 

Pu(O) = s$, (-ly-’ (:I,” ) C, (pi, + **. +piJk, j= 1, 2,..., min(k, K) 

(7.4) 

where C, is the sum over all choices 1 < i, < i, < ..a < i, < K. Now consider 
the case of a two-allele model (K = 2). For an allele starting with initial 
frequency p, the probability f(p; t), say, that the allele is fixed by time t, is 
clearly 

f(P; t, = ,f g,dt)Pk* 
k=l 

(7.5) 

If we now substitute (7.5) and (7.4) into (7.3), we obtain 

Pi(t) = s$l (-ly-’ [;I:) Csf(Pi, + **’ +Pi,; t)y (7-c) 

a result derived by Littler (1975) by different means. See also Griffiths 
(1979). 

The mean number of types represented in a sample of size k at time 0 (i.e., 
the mean of the distribution Pk,(0), j = l,..., k) is 

5 {l-(l-Pj)kl 
j=l 

and it follows that the expected number of allelic types surviving at time t is, 
from (7.3), 

K 

K- Cf(l-Pj;t)* 
j=l 

(7.7) 

If T, represents the time at which for the first time there are exactly r 
allelic types in the population (r = 1, 2,..., K - l), then 
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P[T,>t]= 2 P,(t) 
j=r+l 

-(Pi, + *** +P,,)“lT (7.8) 

the last following from (7.4) and (7.3). Integrating (7.5) from t = 0 to t = co 
gives, using (5.6) with t9 = 0, 

X ln(1 -pi, - G-a -pi,>. 

When r= 1, this reduces to 

LET, = -2 5 (1 -pj) ln(1 -pi). 
j=l 

See Littler (1975) and Holgate (1979). 
Rates of loss of alleles may be obtained from the behavior of gl(t) from 

(6.3); see Littler (1975) and Kimura (1955b) for example. The discrete-time 
version of this rate of loss of alleles is studied by Karlin (1968a), Felsenstein 
(1979) and Burrows and Cockerham (1974). 

Finally, we mention that the time to fixation distribution (7.5) is precisely 
the probability generating function of A, (starting from A, = co) evaluated at 
p. From Appendix I, (A7), we get 

f(p; t) =p + ,g (21 t 1)(-1)‘P;+,(t)P(l -Ply t 291 - 1; %P) 

as per Kimura (1955b). See also Ewens (1979, p. 141). 

7.2. The Distribution of the i-Coalescent 

We return now to the i-coalescent 4 described in Sec&ion 3. This process 
has state space 6, the set of equivalence relations on { 1, 2,..., i}. Despite its 
apparently complicated structure, it is possible to compute the distribution of 
4. The process 4 moves through a sequence of equivalence relations 

Ei<Ei-I<*** <El, 

where E, = ((1, I): 1= l,..., i), E, = ((I, m): 1 < 1, m < i), and 1 E,I = 1, 
spending an exponentially distributed amount of time (with mean 2/1(1- 1)) 
in E,. 
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The Markov chain {IS,, I = i, i - l,..., l}, the jump chain of the process 
_pl;, has transition probabilities given by 

lP(Ek-,=j?IEk=a)= 
2 

k(k- 1)’ PXaY lal=k 

= 0, otherwise. 

This corresponds to choosing two of the equivalence classes of a at random, 
and merging them to form /3. Kingman (1982b) established that E, and A, 
are independent, and hence the representation 

4=&,, t > 0, 

implies that 

ip(4 = a) = P(A, = k /A, = i) P(E, = a) 

= gik(t) WEi= a), 

where g&t) is given explicitly by (6.1), while 

Ip(E 
k 

=a)= (i-k)!k!(k-l)! A , aee1 f 

i!(i- l)! 1’ k -2 

(7.9) 

(7.10) 

where 1 r ,..., Ak are the sizes of the equivalences classes of a. 
We now focus on another process which describes the family sizes of our 

sample of i individuals (cf. Kingman, 1982a, (5.2); Kendall, 1975). To 
describe this process let 

1 

i 

Cm 1 ,..., m,): mj > 0, C jmj = i . 
j=l I 

We define the family size process {T, t > 0) with state space q by 
collapsing the coalescent 4 as follows. For a E gi, m = (ml ,..., mi) E Zi, let 
f(a) = m if 

a E lm12m2 . . . imi, 

the notation on the right indicating that a has mj equivalence classes of size 
j, j= l,..., i. Let 

5 =fM)- 

We call {&, t > 0) the family-size process; 5 = (i, O,..., 0), and eventually 
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we must have s’= (0, O,..., 0, 1). It follows from (7.9) and (7.10) that if 
cf=i VQ = k, i.e., there are k families at time f, then 

W‘i = 4 = gdf) (:I: )-‘(:)* (7.11) 

Given that there are k families, the sizes of these families have distribution 

This last follows from (7.10) by multiplying by the number of a having the 
given A1 ,..., A, ; the latter distribution is familiar in the context of occupancy 
problems (cf. Feller, 1968, pp. 38-40). 

In principle the family size process 6 can be used to study the 
distribution of gene frequencies in a sample from the models discussed in 
Section 7.1. For the flavor of this, see Griffiths (1979b, p. 335). 

7.3. Joint Distribution of Number of Distinct Ancestors in Nested 
Subsamples 

Here we will consider the following subsampling scheme. Suppose that a 
sample of size i is taken at some time which we will label 0 for convenience. 
From this sample of size i we extract without replacement a further random 
sample of size j. We now record the number of distinct ancestors 
(A,(n), A,(n)) of our sample and the subsample, respectively, n generations 
earlier. The bivariate process {(A,(n), A,(n)), n > 0) is a Markov chain with 
state space 9 = (1, = l,..., i; I, = 1, 2 ,..., min(j, 1i)}. Explicit results are 
available for the transition structure of (Al(n), A,(n)) for the Wright-Fisher 
reproduction scheme (see Watterson, 1982b), and a comprehensive analysis 
of the Moran version is given in Saunders et al. (1984). 

From the latter paper, we extract the following results. After transforming 
the time scale as described by (3.7), we can approximate the behavior of the 
discrete process by a continuous-time Markov process {(A I(t), A,(t)), t > 0; 
A,(O) = i, A,(O) =j} whose infinitesimal generator {q(i,j; I,, I,)} is deter- 
mined by 

q(i,j; 1,) 12) = -i(i - 1)/2, 1, = i, 

1, =.A 

= (i(i - 1) - j(j - 1))/2, i,=i- 1, 

1, =.i, 

=j(j - 1 j/2, I,=i- 1, 

I, =j- 1, 
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other entries being zero. The joint distribution of (A i(t), A*(t)) is given by 

P@,(t) = I,, A,(t) = 1, I A,(O) = i, A2P) =A = gi,,(t) d(4, 12), 

where g,,,(t) = [P@,(I) = I, 1 A,(O) = i) is given explicitly in (6.1) and (6.2), 
and the conditional probability #(1i, 1J = &4,(t) = I, 1 A i(t) = 1,) A,(O) = i, 
A,(O) =j) is given by 

#(I1 9 12) = 
(i -j)!(i - l,)!j!(j - l)! I, !(ll - l)!(i + 1, - l)! 

(j - 1,)!(1, - I,)! i!(i - l)! 
Z,!(l, - 1)!(1, +j- l)!(i + I, - I, -j)! I’ 

If we let i-+ co in the above expression, we obtain the conditional probability 
that a sample of size j has I, distinct ancestors time t ago, given that the 
whole population then has I, distinct ancestors. Denoting this probability by 
P[,(I, lj), which is independent of t, we have 

P11(12 lj),= (:I ) (:I:: )/(“ljr l ), 1, = L..., min(j, 4). V-12) 
2 

This conditional distribution admits a simple explanation. The denominator 
is the number of ways in which j objects (individuals) can be dropped into 1, 
cells (ancestors). The first term in the numerator is the number of ways the I, 
ancestors can be chosen from the I,, and the second factor is the number of 
ways the j individuals can be assigned to 1, ancestors, each ancestor being 
assigned at least one of the i indviduals. Equation (7.12) was also found by 
Griffiths (1980a) by a combinatorial argument. 

Another useful consequence of (7.12) is that the transition functions gij(t) 
and g,(t) of Section 6 are related by 

gijtt) = 5 gntt) 
n=j 

(J)jJIi )/(nzTyl ), j= L...,i, (7.13) 

obtained by conditioning first on the number of distinct ancestors of the 
whole population. 

An analogous series of results also applies to subsampling in the lines-of- 
descent process (Saunders et al., 1984). We record only those results for the 
approximating continuous-time process. If we take, as earlier, a sample of 
size i, and from the i a further subsample of size j and record the number of 
lines of descent B,(t) in the sample and B,(t) in the subsample time t ago, 
then {(B,(t), B*(t)), t > 0; B,(O) = i, B2(0) = j} is a continuous-time Markov 
process on 9 = {I1 = 0, l,..., i; 1, = 0, l,..., min(l,, j)} with infinitesimal 
generator given by 
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q(i,j; 1,) l*) = -i(i + e - 1)/2, 1, = i, 

4 =j, 

= (i -j)(i + j + 8 - 1)/2, I, =i- 1, (7.14) 

4 =I, 

=j(j+e- 1)/T 

other entries being zero. 

1, = i - 1, 
I, =j- 1, 

The conditional distribution analogous to (7.12) giving the probability 
that a sample of j individuals at time t has 1, lines of descent at time 0, given 
that the whole population at time t has I, is 

Pi,(121j)= (~:)iif”,‘)/( j+zljspl)t 
I, = 0, l,..., min(j, Zr). 

Again we link h,(t) and h,,(t) of Section 5 by 

hij(t)=g h,(t)( J)( i+“~‘)/(“+i:“-l), 
n=j 

j = 0, l,..., i. (7.15) 

Further applications of the subsampling results of this section will be given 
in respect of ages of alleles in Section 8. 

7.4. Transition Densities for Two-Allele Dl@kion Model with No Mutation 

The simplest genetic process is the so-called random drift model with two 
possible alleles A and a, say. Let X(t) be the fraction of allele A at time t. 
Questions about the time to loss or fixation of A are covered by the results of 
Section 7.1. The remaining questions revolve around the properties of the 
density of X(t), so let 

f(t,P; Y) dy = p [X(t) E dv I X(O) = PI. 
The density f is well known, being derived by Kimura (1955a, b). In this 
section, we give the density in a form which makes the role of genealogy 
explicit. First, we need to relate the moments of X(f) to those of the 
genealogical process. This is an elementary sampling problem, and we have 

lE(X”(t) 1 X(0) =p) = P(sample of n alleles taken at time t 
are all A’s) 
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the last being obtained by conditioning on the number of distinct ancestors 
the 12 individuals have at time 0. Thus 

E(X”(t) 1 X(0) =p) = E(pAt 1 A, = n). (7.16) 

The expectation on the left is given in Crow and Kimura (1970, 
Eq. (7.4.37)), and it agrees with the form of the probability generating 
function of A, given in Appendix I, (A7), with s =p, i = n. Notice that 
because of (7.13), we have 

~(x^(t)lx(o)=P)=~~g.(f) myy) (;j(“n-))Py( n+;- l j. (7.17) 

It now follows (see Appendix II) that the density f is given by 

f(l,P;Y)=rg*&(l)g; (;)Pv -PY 

x (r - l)! v’-‘(1 -y)‘-‘-’ 
(j- l)!(r-j- I)! . 

(7.18) 

This form of the density is due to Grifftths (1979c). Equation (7.18) shows 
how the genealogy comes into play: Given that there are r distinct ancestors 
at time 0 of the population at time t, the number of those that are type A is a 
binomial (r,p) random variable. Given further that j of the ancestors were 
type A, the frequency of A in the j lines of descent has a Beta distribution. 

It is perhaps worth saying that although (7.18) follows from (7.17) 
directly, it could also be derived as a limit from the transition function of the 
Moran model by looking at the discrete coalescent process, and grouping the 
lines according to the type of ancestor. 

Of course, densities of the process X(t) conditional on either loss or 
fixation of the A allele follow immediately. For example, if T, denotes the 
time to fixation of A, then 

P[T, < t 1 X(0) =p, T, < co] = 2 g,(t)pfl-l. 
n=l 

Using (A7) in Appendix I shows that this agrees with Kimura’s (1970) 
expression. See also Ewens (1979, Eq. (5.30)). Finally, 

a, 2(1 -p”-‘) 
E(T, IX(O)=p; r, < co) = nT2 + _ 1) = 2P-‘(1 -P) w -P), 

(7.19) 

this last being attributed to Kimura and’ohta (1969). 
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1.5. One- Way Mutation Models 

We now examine the two-allele model in which there is mutation from the 
A-allele to the a-allele, and no mutation in the reverse direction. The fraction 
Y(t) of the a type at time t is a diffusion process on [0, l] with generator L, 
given by 

L =41-x) dZ f?(l -x) d 
a 2 z+ 2 -z-’ 

(7.20) 

This process arises as the continuous-time approximation to the 
corresponding discrete models specified by (2.4) or (2.5), 19 being the 
(appropriately scaled) mutation rate; 19 = lim,,, 4Nm (Wright-Fisher 
model), 0 = lim,,, 2Nm (Moran model). 

The lines-of-descent process B, was derived under the assumption of equal 
mutation rates away from each allelic type. One might then expect that B, 
will play a crucial role in the analysis of the Y(t) process, since mutation 
occurs to the a-type. Notice that E(Y”(t) 1 Y(0) =p) is the probability that a 
sample of size n contains only a-type genes. This can be computed by 
conditioning on the number of lines of descent B, going back to time 0. All 
such lines must originate with an a-type ancestor (probability pBr), and any 
line which originates after that time does so following a mutation, i.e., with 
an a-type gene. Hence 

E(Y”(t) 1 Y(0) =p) = E(pB1 1 B, = n). (7.21) 

An expression for the left-hand side of (7.21) is given by Crow and 
Kimura (1970, (8.5.12)), and is in agreement with the expression on the right 
given in Appendix I, (A5) for the pgf of B,. 

If T, denotes the time taken until the a-allele fixes in the population, then 
(by conditioning on the number of lines of descent at time t), we have 

P(T, > t 1 Y(0) =p) = -f h,(t){ 1 -p”} 
n=l 

= z, p,(t)(-l)“-’ (2n + en11)8(- 
xF(--n;f3+n-l;e;p), (7.22) 

this following from Appendix I, (A5), and (5.5). See also Crow and Kimura 
(1956, 1970, p. 394). The transition density f, of Y(t), given Y(0) =p, 
follows from (7.21) and the crucial sampling equation (7.15) as 

ut,P;Y) = 2 n,(t);$; (;) d(l -P)‘-’ 
r=1 

T(r + e) 
’ r(j + 0) r(r -j) 

Y ‘+‘-‘(1 -y)‘-‘-‘. (7.23) 
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A simple derivation of this is given in Appendix II; this formulation can be 
found in Griffiths (1979c), who derived it by a limiting argument. See also 
Crow and Kimura (1956, 1970, p. 394). Equation (7.23) admits a similar 
interpretation to (7.18) in terms of sampling from lines of descent. 

While the process Y(t) can be analyzed in terms of the lines-of-descent 
process B,, the fraction X(t) = 1 - Y(t) of A-alleles is more intimately 
related to the ancestral process A,. Here X(t) is a diffusion process on [0, 11, 
with generator L, given by 

L =X(1-X) d2 8 d 
A 2 T-zxdx* dx 

(7.24) 

Choosing the functions f,(x) = x” leads to 

LAfn(X) = 
-“‘;-l) (xLx~-l)-n;x~, 

n> 1, 

showing that 

E[X”(t) (X(0) =p] = IE (PA! exp (- +jiAU du) 1 A, = n) (7.25) 

which shows the Poisson nature of the mutation mechanism in the ancestral 
process A,. The probability that n alleles chosen at time t from the 
population are all type A is computed by conditioning on the number of 
distinct ancestors A, at time 0, and multiplying by the probability that no 
mutations occur in the interval (0, t). Given the process A,, 0 < u ( t, this 
last probablity is precisely the exponential term on the right of (7.25); 
mutations occur in each line of ancestors independently according to a 
Poisson process of rate 19/2. The total length of the ancestral lines going back 
to time 0 is ih A, du, and so the probability of no mutations is 
exp{-f?/2 ]i A, du 1. 

In particular, 

E(X(t) 1 X(0) =p) =peCer’*. 

Of course, the density of X(t) follows immediately from (7.23) by transfor- 
mation, and the distribution of 7’,, the time to loss of allele A, from (7.22). 
In particular, we have 

P(P) = W’o I X(O) = P) = jam 2 h&)(1 - (1 -p)“) dt 
n=l 

(7.26) 
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this last following from (5.6). Equation (7.26) was given by Littler and Good 
(1978) as a computationally efftcient way to calculate by term by term 
integration the mean time to loss in its usual form 

given by Ewens (1964). See also Li and Nei (1977) and Griffiths (1980a). 

1.6. Survival of Allele Types under Mutation 

Consider a K-allele model in which the mutation rate away from any 
allele is m. Whenever a mutation occurs, the resultant type will be denoted 
by A, ; eventually, all the types A, ,..., A, will disappear, the population then 
comprising only A, alleles. The K-dimensional diffusion approximation of 
this process is X(t) = (Xl(t),..., X,Jt)), where Xj(t) is the fraction of allele 
type j, j = l,..., K. The generator is 

where 0 is, as earlier, the (suitably scaled) mutation rate and the state space 
is ((x1 ,..., x,):xi>o, x, + ..a +x,< 1). 

Several authors have studied this process, since it can be used to describe 
disappearance of allelic types in the infinite alleles model, where new 
mutations are lumped together as allele A,. The interest here will be in the 
properties of samples taken from the population at time t, say. We will 
assume that the initial frequencies are Xj(0) =pj, where pi > 0, 
PI + ... +pK= 1. 

The assumption of equal mutation rates away from each allelic type j, 
j = l,..., K, is that used to derive the line-of-descent process {B,} of Section 5, 
and so the results there will apply to give quantities analogous to those of 
Section 7.1. 

For example, the probability that none of types A, ,..., A, survive at time t 

is h,(t), given by (5.5), while for j = l,..., K the probability Pj(t) that exactly 
j of the K types survive is 

Pj(t> = 2 h,(t) p/j(o>, (7.27) 
I=j 

where Plj(0) is given by (7.4). Analogous results hold for a sample of size i, 
h,(t) being replaced by h,,(t). 

If we define 

T, = inf{t: no more than k - 1 of A, ,..., A, remain at time t) 
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then 
k-l 

p(Tk < l) = 2 Pj(t>9 
j=O 

which reduces to Littler and Good’s (1978) result: 

lP(T, < t) = (-l)‘+-’ (;I ;) Crf(Pi,+ *** +Pi,ith 
r=K-ktl 

where 

f(Pi 0 = f h”(Ul -PI” (7.28) 
n=o 

is the distribution function of the time to loss of an allele A described by the 
one-way mutation model with generator L, defined by (7.24), starting from 
initial frequency p; (7.28) follows from (7.22). The mean of T, follows as 

[ET,= ,=gk+, (-l)'-K+k-' (;I',) CrcI(Pi,+ **. +Pi,), (7.29) 

where p(p) is defined by (7.26). Numerical values of p(p) may be obtained 
from Littler and Good’s Table I, multiplying each entry by 2 to allow for 
different scalings. 

The final question of interest we study in this section concerns the 
frequency of alleles in the lines of descent at time t. Since allele type A, is 
described by a diffusion process (X,(t), t > 0: X,(O) = 0) with generator 
(7.20), we have immediately from (7.23) with p = 0 that the density of X0(t) 
is 

cc T(r + 0) 
s k(f) (r _ l)! qj) Jwl -YY’, O<y<l. 
r=1 

Hence, given that r lines of descent survive to time t (r > l), the conditional 
distribution of the total frequency X,(t) + .a. + XK(f) of alleles in these lines 
of descent is 

,1”;;;;, (1 -YY-‘Yr-l~ o<y< 1. 

This is due to Grifftths (1980a, (18)). He shows further that given that r 
lines of descent survive to time t, the joint density of U,,..., U,, the gene 
frequencies in the lines, is given by 

“r-,‘Bp’ (1 -g ujyl, O<Uj< 1, O&lj< 1. 
1 
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8. THE INFINITE ALLELES MODEL, AND RECURRENT MUTATION 

We consider now the case in which all mutations result in novel allelic 
types. This corresponds to the infinite alleles model, that has been studied in 
great detail by many authors. Detailed accounts of the structure of the 
infinite alleles model may be found in the books of Ewens (1979), Kelly 
(1979), and Kingman (1980). We will focus on just two aspects of this 
extensive theory: sampling properties, and the ages of alleles. Once more, we 
concentrate on diffusion time-scale results. 

To this end, let m be the probability that an allele mutates (to a novel 
type), and assume that, as in (4.5), 2Nm + 19 as N+ co in the case of the 
Moran reproduction scheme (or, as in (4.9), 4Nm + 8 for the Wright-Fisher 
model) and that the process is now on its continuous time scale. 

8.1. Sampling in the InJinite Alleles Model 

Suppose that a sample of size i is taken from a stationary infinite alleles 
population. The sample can be represented in the following way. Let 
m E 4 = {(m, ,..., m,): mj > 0, Cj=r jmj = i}. We say that the sample has 
configuration m if there are mj allele types represented j times for j = l,..., i. 
Ewens (1972) established that the distribution of m, p(m), say, is given by 

p(m)= i”+:-‘,-‘lfi, [f,“‘+y rnEq. (8.1) 

The Ewens sampling formula (8.1) has been drived many times. Karlin and 
McGregor (1972) used the ancestral probabilities g, of (2.10) for the 
Wright-Fisher model and then applied a limiting argument as 4Nm + 0 as 
N + co. Watterson (1976b) found (8.1) by using the stationary distribution 
of the infinite alleles diffusion model. More recently, Kingman (1982a) 
showed that (8.1) is a consequence of mutation in the coalescent process. 
Specifically, suppose that mutations occur according to a Poisson process of 
rate 8/2, independently of 4 (cf. 7.25)) Now group the individuals in the 
sample as follows. We say that two individuals are in,the same equivalence 
class if they are descended from a single individual, and no mutations occur 
in the lines down to this common ancestor. Kingman gives the distribution of 
the resulting equivalence relation 0 E ~3’~ as 

where ,u, ,..., pk are the sizes of the k equivalence classes in a. If we multiply 
this by the number of (x which have the given sizes p, ,...,,u~, i.e., by 

i!/,u,! ..+,ulk! m,! ... m,!, 
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where mj is the number of ,B, ,..., pclk equal to j,j = l,..., i, we obtain (8.1). The 
sampling formula (8.1) also arises in other systems. See, e.g., Karlin and 
McGregor (1967), Kendall (1975), Kelly (1977), and Kingman (1980, 
1982c). Arguments analogous to Karlin and McGregor’s have recently been 
used by Lewis and Pollak (1982, Sect. 4) to assess the accuracy of some 
diffusion approximations of Nagylaki (1980) for a geographically structured 
population. 

It follows in particular from (8.1) that the number Hi, say, of allele types 
observed in a sample of size i has probability generating function (pgf) given 
by 

IEtSHi) = (es)(i)/e(i) 3 (8.2) 

the mean number of types being 

i-l 1 
EHi = e ,To e+j’ (8.3) 

Griffiths (197917, Eqs. (2.2), (2.10)) h as found the sampling distribution 
analogous to that in (8.1) at any time t, and also the mean number of allele 
types in that sample. Rather than recording these results, we will discuss 
others which give a rather detailed picture of the way in which new 
mutations arise and are lost in the infinite alleles model. 

Consider a stationary infinite alleles population, and let Ni(t) be the 
number of allele types in common between a sample of size i taken at time t 
later, and the original stationary population. The number of lines of descent 
B, of the i individuals going back to time 0 has distribution {h,(t), 
j = 0, l,..., i} given explicitly by (5.2) and (5.3), and the individuals at the 
roots of these lines form a random sample from a stationary population. 
Hence from (8.2) we obtain 

E(sNi"')= i h,(t) +, i> 1. 
j=O 0) 

and, from (8.3), 

E(Ni(t)) = e ,$, hij(t) (lz: &) ’ 

(8.4) 

(8.5) 

Corresponding results for the number of allele types in common between two 
populations at time t apart may be found by letting i-, co in (8.4) and (8.5), 
replacing h,(t) by h,(t) in (5.5). See also Griffiths (1979b, Eq. (3.1 I), 
1980a). Note that from (5.2), 

'tNiCt)) = 
i(l + 0) e-et,z 

i + 0 + O(e-“+e)r), t-+ co, 
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as found by Griffiths (1979b); a similar approximation applies to the 
distribution of N,(t) determined by (8.4). Further details covering the cases 
of (finite) samples taken from the two populations, and application to genetic 
distance between populations separated time t ago may be found in the latter 
paper of Griffnhs. 

8.2. The Age of Alleles in an InJinite Alleles Model 

The previous analysis of these genetic models has been concerned with 
prospective behavior. However, to understand the nature of extant variations, 
we need to study the retrospective behavior of such processes. Problems 
concerning the ages of alleles seem to have been studied first by Kimura and 
Ohta (1973). Ewens (1979, Chaps. 3,9) reviews some of the later 
approaches to this problem. The focus here will be on properties of the ages 
of the oldest alleles in a sample, or the population, that can be derived from 
the line of descent processes of Sections 5 and 7.3. We will restrict attention 
to “diffusion time scale” results once more, and we refer the reader to Kelly 
(1977, 1979) and Watterson (1976a) for some exact results for the (finite 
population size) Moran model. 

Recall from Section 5 that a line of descent is all descendents of the same 
type as the ancestor, and that B, = 0 means that all the individuals in the 
sample (or population) consist of types that first arose by mutation at most t 
time units ago. It follows that we can reinterpret the quantities h,(t) in (5.3) 
and h,(t) in (5.5) as age distributions. Specifically, let Xi (respectively, X) 
denote the age of the oldest allele in a sample of size i (respectively, 
population) from a stationary infinite alleles model. Then 

‘(xi < t) = hi,(t), t> 0, 

Wf < 0 = h,,(t), t > 0. 
(8.6) 

The bounds derived in (5.10) can also be reinterpreted in terms of ages, and 
it follows that 

+<EXi<+ l--In 
t ii(:‘,??))i’ 

i = 1, 2,... . 

The age of the oldest allele in a (stationary) infinite alleles model also 
satisfies, from (5.9), 

eCst” < P(X > t) Q (1 + 0) e-et’2. 

It is perhaps surprising to note that the age of the oldest allele is independent 
of the frequency of that allele (Kelly, 1977). However, the probability that 
an allele is the oldest is not independent of its frequency, but equal to it 
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(Watterson and Guess, 1977) For other approaches to this problem see 
Sawyer (1977) and Littler and Good (1978). 

Suppose now that we choose a sample of size i from the (stationary) 
population, and from this sample, we extract a further subsample of size j. 
What is the probability that the oldest allele in the sample of i is included in 
the subsample? This question can be answered by a more detailed analysis of 
the bivariate line of descent process (B,(t), B2(f)) considered in Section 7.3. 
The probability we require is the probability that at the time B2(.) reaches 0, 
B,(.) reaches 0 for the first time. This is found by Saunders et al. (1984) 
and we have 

P(oldest in a sample of i is included in a subsample 
of size j) = j(i + t9)/i(j t 8). (8.7) 

In the special case i = co, we obtain 

P(oldest allele in the population is included in a sample 
of size j) = j/(j t @). (8.8) 

Equation (8.7) is due to Kelly (1977), and (8.8) to Watterson and Guess 
(1977), where further related results may be found. It is interesting to note, 
however, that these results are a simple consequence of the analysis of the 
bivariate line of descent process. A further consequence of (8.7) is the 
distribution of a number of representatives Fi of the oldest allele in a sample 
of size i drawn from a stationary infinite alleles model. By considering the 
probability of not choosing the oldest when a random subsample of size j is 
taken, we obtain 

P(Fi=n,=8rfI: j/(itzyl), n=l,2 ,..., i. (8.9) 

The mean and variance of Fi are 

ittl 
EF,=------, 

(i+tY)O(i- 1) 
1te 

var(Fi) = (1 + f42(2 + 0) 3 

respectively. Equation (8.9) is due to Kelly (1977). 
As i+ co in such a way that n/i + x, 0 < x < 1, we obtain the density J(x) 

of the relative frequency of the oldest allele in a stationary population: 

f(x) = e(1 - x)B-1, o<x< 1. 

This is also the density of the relative frequency at equilibrium of the allelic 
type of randomly selected individual. Compare Sawyer (1977). 
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We conclude this section by finding the distribution of the number of 
allelic types, Nj say, in the population that are older than the oldest allelic 
type in a sample of size j. This was obtained by Saunders et al. (1984) by 
first finding the distribution of the number of lines of descent in the 
population at the time the subsample of size j first reaches 0, and then 
averaging over the distribution of the number of types remaining. They 
obtained a geometric distribution: 

P(Nj=n)=--J_ e n 
j+e j+e ’ i 1 

n = 0, 1) 2 )... . (8.10) 

Notice that when n = 0, “(Nj = 0) = j/(j + 8), as in (8.8). 

8.3. K-Allele Models with Recurrent Mutation 

We now concentrate on the transition densities of the diffusion approx- 
imations to the K-allele mutation models described in Section 2. The tran- 
sition densities have only been found for a special class of mutation 
parameters, namely, those for which the mutation probabilities mij of (2.2) 
satisfy 

mij= mj; i,j= 1, 2 ,..., K. (8.11) 

If we make the usual order of magnitude assumptions about the mutation 
rates mj that 

4Nmj --t &j (Wright-Fisher model (2.4)), 

2Nmj + ej (Moran model (2.5)), 
(8.12) 

and we scale time in units of 2N generations for the Wright-Fisher process, 
and in units of 2N2 birth-death events for the Moran model, then the discrete 
process (KY),..., XkK-“) of (2.1) is approximated by a diffusion process 
X(t) = (xl(t),..., x,-l(t)>, w h ere X,(t) is the relative frequency of the jth 
allelic type at time t, and X,(t) + ... + XK(t) = 1. The X(t) has a density p, 
say, that satisfies the forward diffusion equation 

(8.13) 

where 

iy. = ci - eyi, vij = Yitsij - Yj> (8.14) 

and where (in this subsection only) 

e=.5,+ . . . ++ 

653/26/2-3 

(8.15) 
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A general description of the form of (8.13) may be found, e.g., in Ewens 
(1979, Sec. 5.10). Several authors have found eigenfunction expansions for 
the density p of (8.13). Kimura (1956) studied the case K = 3 with no 
mutation effects, and Littler and Fackerell (1975) extended Kimura’s 
analysis. Results for the two-allele mutation model are well known (cf. Crow 
and Kimura, 1956, 1970), and these were extended by Karlin and McGregor 
(1964). The results of this section are due to Griffiths (1979c) who used a 
different approach. 

Suppose, then, that Xj(0) = xj, j = l,..., K, and that cj > 0, j = I,..., K. 
Then Grifftths shows that the density p(t, x; y) is given by 

p(t, x; y) = 2 h,(t) 2, [ ; ) 41 *‘* x:: 
m=o 

X 
r(e + m) /,+&,-I ... 

w, + El) * * * r(l, + EJJ Yl 
I.qtEh-1 

YK , (8.16) 

for 0 < yi < 1, y, + -9. + yK = 1, and where h,(t), the probability that there 
are m lines of descent surviving to time t, is given explicitly in (5.5), and J&, 
is taken over all integers I, ,..., R, , , 1 >O 1 +...+l,=m. 

The expression in (8.16) is particularly useful for simulation purposes, as 
has been pointed out by Grifftths and Li (1983), since it shows that 
(X,(t),...,X,(t)) may be viewed probabilistically as the result of first 
sampling from the line-of-descent process B,, then, given the value of B,, m 
say, sampling from a multinomial distribution to find the numbers of the 
different alleles at the roots of the lines of descent, and finally generating an 
observation from a Dirichlet distribution. 

Letting t + co in (8.16), we obtain the well-known limiting (and 
stationary) distribution of X(f): 

P(ab x; Y> = 
r(e) 61-l . . . 

I-@,) . . . I-&) y1 
efi - 1 

yfc ’ 

O<yi< I, eyi= 1. 

Of more importance perhaps is the fact that (8.16) applies in other 
interesting cases too. For example, the symmetric mutation model in which 

,a=u/(K- l), ~=KE (8.17) 

has been used by a variety of authors as the starting point for their analysis 
of the infinite alleles model, formally obtained by letting K + 03. Some of the 
details may be found in e.g., Griffrths (1979a-c), Kingman (1980), Stewart 
(1976), Griffiths and Li (1983), and Watterson (1976b). Furthermore, (8.16) 
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continues to hold in the limit as any Ej + 0. Thus (8.16) includes the 
previously mentioned results for the case of no mutation. In particular, it 
also applies to the model of Littler and Good (1978) which was studied in 
some detail in Section 7.6. 

9. INFINITE SITES MODELS 

The final process we consider is an infinite sites model due to Watterson 
(1975). We will assume that our idealized cistrons have infinitely many sites, 
and that there is complete linkage between the sites. Each site is subject to 
mutation during meiosis, and the number of new mutant sites per cistron per 
generation is a Poisson random variable with mean u. We assume that the 
number of mutations occurring in different gametes are independent, and, 
because there are infinitely many sites, we assume that no two mutations 
ever occur at the same site. The reproduction mechanisms of the population, 
which is of fixed size 2N as before, is specified by prescribing an ancestral 
process {A,, n 2 0) as described in Section 2. 

Several authors have considered variants of this problem. Ewens (1974, 
1979, Chap. 9) describes the model with independent sites. Of particular 
interest has been the distribution of the random variable Ki(t) defined by 

K,(t) = number of segregating sites in a random sample 

of size i taken at time t. (9.1) 

As in the earlier sections, we will concentrate on “diffusion time-scale” 
results inherited by approximating the ancestral processes {A,, n > 0) by 
their death-process analogs {A,, t > 0). Li (1977) finds the time-dependent 
behavior of K*(f) for the present model, and Golding and Strobeck (1982) 
Griftiths (1980a) study the distribution of K,(t) in a finite sites model. The 
stationary (and limiting) behavior of the infinite sites model is due to 
Watterson (1975), where explicit results for discrete models with Moran-type 
reproduction (and others) are detailed. Chakraborty (1977) studies the 
distribution of K,(t) for variable population size models. The distribution of 
K,(t) for any i and t was found by Griftiths (1981); the connection between 
the number of alleles and the number of segregating sites is amplified in 
Griftiths (1982). 

9.1. Stationary Properties 

Let Ki be the number of segregating sites in a sample of size i from a 
stationary population. To find the distribution of Ki, we look back at the 
times Tj during which the i individuals in the sample had exactly j distinct 
ancestors, j = i,..., 2, and compute the distribution of the number of 
segregating sites picked up and passed on to the sample during these times. 
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Once again we assume 8 = lim,,, 2Nv (for Moran-type reproduction; 
8 = lim,, 4Nv in Wright-Fisher case). Suppose that Tj = t. Then, 
conditional on t, the number of new segregating sites, MI, contributed to the 
sample has a Poisson distribution with mean j&/2, the sum ofj independent 
Poisson random variables with mean h/2 (cf. Watterson, 1975, Sec. 4). Thus 

[E(?‘j 1 Tj = t) = exp(-(Bjt/2)(1 - s)}. (9.2) 

From (3.8), Tj has an exponential distribution with parameter j(j - 1)/2, and 
hence averaging (9.2) over the distribution of Tj gives 

j-l 
=j- 1 +e(l -s)’ (9.3 > 

Thus Mj has a geometric distribution with mean EMj = 6/(j - 1). Hence 
(Watterson, 1975), Ki can be represented as the sum of independent 
geometric random variables: 

Ki=Mi+Mi-,+~~~fM,. (9.4) 

The distribution of K, can readily be found from (9.3) and (9.4) by a partial 
fraction expansion, giving 

P(Ki=n,=vx (-l)‘-’ (;I;,(&)“+‘, n=O, l,.... (9.5) 

The probability of no segregating sites in the sample is 

Ip(K 
i 
= 0) = ci - ‘I! ‘(’ + ‘1 

qi+ e) ’ 

which agrees, as it must, with (8.2), the probability that the sample has only 
one allele type. 

The mean of Ki is 

This result leads to an unbiased estimator &, say, of the parameter 13 given 
the observed number of segregating sites: 
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Compare Ewens (1974). By writing (9.5) in the form 

rp(K, = n) = JoW ‘exy”” (i - 1) eeX( 1 - e-“)‘-* dx, 

it can be checked by a total positivity argument (cf. Karlin, 1968b) that for 
fixed it, P(K, = n) is a unimodal function of 19. Computer computation of the 
(now unique) maximum likelihood estimator d of 19 shows that f? > 8. 
However the simple asymptotic theory for 0 suggests that the moment 
estimator is easier to use in practice. 

The following interesting problem that further relates the infinite alleles 
and infinite sites models has been studied by Griffrths. A gene in the infinite 
alleles model of Section 8 may be viewed as an infinite sequence of 
completely linked sites which reproduce together. Mutations occur at sites 
not previously segregating in the population, and different sequences can 
then be identified as different alleles. Griffrths find the joint probability 
generating function of the number of segregating sites and alleles in a 
sample; the method he uses is again based on tracing back the ancestry of 
the sample. One question that Griffrths’ analysis poses is to assess the extra 
information contained in the sample with regard to estimating 19 by using this 
joint distribution (recall that based on the number of segregating sites, we 
could use & discussed above, whereas the moment estimator based on the 
number of different alleles is obtained from (8.3); see, e.g., Ewens (1979)). 
While further investigation seems required, Griffrths’ results show that if B is 
small, then the number of segregating sites is approximately the number of 
distinct alleles minus one, so that there seems to be little extra information in 
using this joint distribution. 

9.2. Loss of Segregating Sites 

We move on now to an analysis of the transient behavior of Ki(t). The 
number of segregating sites in a sample of size i can be decomposed into two 
parts; the sites introduced by mutation in (0, t), and the segregatig sites in 
common between times 0 and t. We focus first on the latter. 

Let Oi(t) be the number of segregating sites in a sample of size i taken at 
time t that are in common with the segregating sites at time 0, and let&(s) be 
the pgf of the number of segregating sites in a sample of size j taken at time 
0. By tracing back the ancestry of the sample to time 0, we obtain 

qs”q = i g,(t)fj(s), (9.7) 
j=l 

where the ancestral probabilities gij(t) are given in Eqs. (6.1) and (6.2), and 
f,(s) = 1 (since a sample of size one has no segregating sites). The same 
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conditioning argument applies to the whole population, and, denoting 
lim,, Oi(t) by O(t), we have 

E(so'f') = 2 gj(t)fi(s), 
j=l 

gj(t) being defined by (6.3) and (6.4). It is clear that the original segregating 
sites must eventually be lost, and the rate of their loss can be computed from 
the explicit form of gj(t) and gij(t). Compare GrifBths (1981, Eqs. (9), (14), 
and (20)). 

9.3. The Distribution of the Number of New Segregating Sites 

Let N,(t) be the number of segregating sites that have arisen in the interval 
(0, t]. As in the stationary case, we count the number of new segregating 
sites passed on via births occurring to ancestors of the sample during those 
generations in which the sample has exactly j distinct ancestors. This leads 
to 

where T is the time taken to trace the sample of size i back to a single 
common ancestor. An expression for the pgf on the left of (9.8) can be found 
by finding a differential equation for &(s; t) = [E(s~~(~‘). By conditioning on 
the value of A, in (9.8), rearranging, dividing by h and letting h 1 0, we get 

% i(i - 1) 
at --j-+-, -&(l -s)& (9.9) 

subject to fi(s; 0) = 1, i > 1, f,(s, t) = 1, t > 0. Equation (9.9) is due to 
Grifftths (1981); (9.9) is elementary to solve, since when written in matrix 
form, the generator is lower triangular. Notice that by letting t+ co in (9.8), 
we obtain the limiting (and stationary) pgf of the number of segregating sites 
given by 

fi(s; co) = E exp ( i-(0/2)(1 -s)lO’A,du[ / A,=ij. (9.10) 

The expression on the right of (9.10) can readily be evaluated to give 

(9.11) 
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in agreement with (9.3) and (9.4). The solution of (9.9) is then given by 
(Gritliths, 1981, (8)): 

&(s; t) =fi(s; co) + i! i: r,(t) ( f 1; ) $;; ; i; 
r=2 

x J$2 (-l)‘-j (1) rt’ TjT1;,- ‘) [ 1 -f;(s; a)], (9.12) 

where r,(t) = exp(-4 r(l+ a - 1) t}, a = 8( 1 - s). The pgf of K,(t) = 
N,(t) + O,(t) is found by replacing the term 1 -&(s; co) on the right of 
(9.12) by 6(s) 3.x s; co), where&(s) is the pgf of O,(O) in Section 9.2. 

Notice that from (9.8), we have 

EN$) = (e/2) IE (Jmin(13T) A” dz4 1 A, = i) ) 
0 

and, using (9.10), we find that 
i-l i&l 

IENiCr) = I!9 1 gi,jCc> C (l/O (9.13) 
.j= 1 I =.i 

which is equivalent to Griffiths (198 1, Eq. (12)), with the role of the 
ancestral process {A,} highlighted. Letting t + co in (9.13) recovers the 
stationary mean given in (9.6). 

10. RELATED PROBLEMS 

It seems appropriate to give at this stage a brief overview of some other 
applications of genealogical processes that have not been covered in any 
detail in this article, and to suggest problems for further research. 

It will be clear that the preceeding results apply to essentially haploid 
genealogies, in which “random mating” obtains, and the effects of selection 
are ignored. Karlin (1968a) and Engels (1980) explore ancestral processes 
with particular emphasis on nonrandom mating systems, while Karlin 
(1968a) and Cockerham and Weir (1977) develop analogous ideas for 
multiple-locus systems. Some aspects of the theory for diploid models may 
be found in Karlin (1968a), and the recent book by Cannings and Thompson 
(1981). The latter book summarizes a variety of other “genealogical” 
methods; e.g., coefficients of kinship and identity by descent. A detailed 
analysis of a truly diploid genealogy would be interesting. 

The question of selection seems harder to resolve, since the inherent asym- 
metry of the selection process destroys the simplicity of the genealogy. One 
possible method of attack might be via branching process models, where the 
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role of genealogy is clear. Several authors have considered such questions. 
See in particular Biihler (1967), O’N. Waugh (198 l), Joffe and O’N. Waugh 
(1982), Jagers (1982), which deal with some aspects of the family structure 
of branching processes. Some problems related to the most recent ancestor of 
a branching population are discussed in Fleischmann and Prehn (1974), and 
Fleischmann and Siegmund-Schultze (1977). See also Karlin and McGregor 
(1967), Kendall (1975), and Jagers and Nerman (1983). 

I have restricted attention to some of the simpler population genetics 
models. Explicit recognition of the genealogical process has played an 
important role in the analysis of the Ohta-Kimura (1973) ladder model. 
Some of this is contained in Kesten (1980), Kingman (1980), and Notohara 
(1981, 1982). 

The “dual” approach to diffusion equations, typified by arguments like 
that leading to (7.25), has been exploited to great effect by Shiga (1982a, b). 
Dual methods have also been used by Donnelly (1984). He obtains a variety 
of explicit results for the two-allele Moran model by this approach. An 
independent derivation of the density of the K-allele mutation models 
described in Section 8.3 would be of interest. In particular it would be useful 
to make more explicit the contributions of the relative frequencies of alleles 
in new lines of descent and the relative frequencies of alleles in original lines 
of descent to these densities. 

I have left aside most mention of the statistical problems related to these 
genetic models. Much of this, with particular reference to estimating the 
mutation parameter t? in the infinite alleles model, and an assessment of the 
effects of selection is discussed by Ewens (1979, Chap. 9). 

Grifliths (1980a) has also studied the distribution of the total number of 
lines of descent in a sample, rather than the distribution of original lines of 
descent. These expressions are somewhat unmanageable, and, insofar as the 
problem relates to identity by descent, a futher look seems promising. A 
closer look at mutation in the coalescent process of Section 3 seems 
important. 

Finally, Watterson (1982a, b) has used results about genealogical 
structure to describe the process of fixation of determining mutations (Kelly, 
1979). This has led to further developments in the study of subsampled 
genealogies which are described in Saunders et al. (1984). 

APPENDIX I 

Here we record some of the details that lead to explicit results for the 
process B, of Section 5. For our purposes, the easiest way to obtain the tran- 
sition probabilities h,(t) of (5.2) and (5.3) is via the spectral expansion of 
the generator Q = (qij) defined at (4.7): 
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qjj = -j(,,i + 0 - 1)/2Y j = O,..., i, 

q+I=j(j+e- 1)/z, j = l,..., i, (AlI 

qjk = 0, otherwise. 

So we seek to identify the right eigenvectors rck), and left eigenvectors lck), 
corresponding to the eigenvalue Ak = qkk, k = 0, l,..., i. This is 
straightforward, giving for k > 1, 

p = 0 
J 3 j > k, 

(k 1) 
j< k, 

while Z,l”) = aoj, j = 0, l,..., i. Similarly, t-10’ = 1, b’j and 

r!k) = 0 .I 3 j < k 

j > k. 
(A3) 

The transition functions are then given by 

hi,j(t) = i pk(t) ryy, O<j,<i, 
k =.j 

with pk(t) = exp{L,t}, which reduces to the results of (5.2) and (5.3). 

Bounds on P [B, > m 1 B, = i] 
For B, = i, t > 0, 1 < m < i, define the process 

P, ‘WW,,, zmw = (B, + 8)(,) * 
An elementary martingale argument based on the eigenvectors in (A3) (cf. 
Karlin and Taylor, 1975, Chap. 6, p. 241) shows that {Z,,,(t), t > 0) is a 
martingale relative to (B,, t > 0). In particular 

kz,(t) = Z,(O) = (i ;;; . 
(rn) 

But for m < 1< i, 

mtm1 1, h 
Cm + a,, G (d19),,) G (i + eh, ’ 
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pm(t) iIml = p,(t) EZ,(t) = ,im (l :;; G + Q,,, h&h cm) 
we get 

mld P[B,>mIB,=i]< p,(t) iIml 
(m + 4,, (i + 4,, 

44 
’ (i + Q,, 

P[B,>m)B,=i]. (A4) 

Rearranging (A4) then gives (5.8). 

Moments of B, 

We define, via (5.1), 

Using (5.2), we get 

g1 h,(t) sj = ,$, p,(t)(-1)’ (21 + I9 - I) it/1 t% ‘) 
(i + Q, I! 

x {F(-/,8-k/-l;&s)-l}, /sI < 1. 

It follows that 

Pi(s) = E(sBf / B, = i) 

= 1 $ i p Q) (-1w + t9 - 1) ill1 Lu 
I 

Differentiation of (AS) n times with respect to s, and letting s T 1 gives, in 
conjunction with formulas for the hypergeometric function (Abramowitz and 
Stegun, 556, (15.1.20), and 255 (6.1.7)), the factorial moments of B, given in 
Section 5.4. 

The Ancestral Chain A, 

Most of the results of the appendix apply to the process A, by limiting 
arguments, letting B 1 0. The analogous eigenvectors for the Q-matrix (3.8) 
become 
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(-l)k-j :k-1) , j = 1, 2 ,..., k, 
(k-1) 

j = k + l,..., i, 

j = k, k + 1 ,..., i, 

= 0, j = I,..., k - 1, 

and I, = -k(k - 1)/2 are the corresponding eigenvalues. Compare Gladstien 
(1978). The same type of martingale argument that leads to (A4) then gives 
the bounds described in (6.5). 

A limiting relationship for the hypergeometric function (Abramowitz and 
Stegun, 1972, p. 556, (15.1.2)) applied to (A5) as 0 10 gives 

FF'p(s) = [E(dt I A, = i) 

i-l 

ES + x (21+ 1)(-l)’ itr+it -py+ ,(t) sF(-I, 1 + k 2; s) 

/=I II/t I) 

i-l 

=s+ x (21+1)(-l)‘& 
I-I 

I,,+ ,) d+ I(t)s(l -s) 

x F(I + 2, 1 - I; 2; s) 

for i> 1, IsI < 1. 

APPENDIX II. DERIVATION OF A TRANSITION DENSITY 

The aim of this appendix is to give a simple derivation of the transition 
density (7.23) using the sampling relationship (7.15) and (7.21). 

From (7.21), we have for n > 0, 

m, = qY”(t) I Y(0) =p) = i h,(t)& 
j=O 

Using (7.15), and rearranging gives 

ti 

Pl) 

(B2) 

= f’ h,(t) 
T(r + B) T(n + 0) 

F(-r, -n; 8; p) 

r=0 r(O) T(r + n + 0) 
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= F. h,(t) I-(r + e) r(n + 8) 
I-(B) T(r + n + 8) (1 -P)‘F(--r, 8 + t2; e;p/(p - 1)) 

= jfo h,(t) T(r + 8 r(n + 4 r 
20 

r ti(l -p)r-j (0 + +, 

T(B)r(r+n+e)jzo j %i, 

= Fl h,(t)p’ + fl h,.(t);g [; j d’(l -P)‘-’ 

x p+e)qn+e) v++, 
(r(e) T(r + IZ + 8) (e),, I * 

(B3) 

Now for y > 0 form the Laplace transform 

From (B3), this is 

e-‘zo h,(t)p’+ :I h.(t);; (1) d’(l -P)‘-’ 

) Y (-7)" T(r + 0) r(n + e) (0 + foci, 

x I h, - d z-(e) T(U + it + e) (e),, I * 

But it is elementary to verify that the term in { } above is just 

1 
1 

(yYY T(r + e) 

r(j + 8) T(r -j) 
Y 

'+O-'(1 -y)r-j-l &. 
0 

Hence IP[Y(t) = l] = CyEo h,(t)p’, and the density f,(t,p; y) of Y(t), for 
O<y< l,is 

This is precisely (7.23), as was to be shown. 
The density (7.18) for the pure random drift case follows immediately by 

letting 8 1 0, or by computations analogous to the above using (7.17). 
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