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ABSTRACT 

Species X: A T T C . . . . . G A A 
Species Y: G T T C . . . . . G A T. 

Some models for the estimation of 
substitution rates from pairs of 
functionally homologous DNA sequences 
are compared. A novel feature here, 
motivated by the observed asymmetry in 
the data, is that the substituion 
processes in each arm of the tree are 
allowed to differ. The statistical 
method involves maximum likelihood 
estimation for multinomial trials, 
whose underlying cell probabilities are 
determined by cont-inuous-time Markov 
chains. 

I. INTRODUCTION 

Consider two functionally homologous nucleotide 
sequences of length n, taken one from each of two species. 
The sequences are aligned, to give data of the form: 

We form a contingency table, with entries {N } given JY 
ij 

N = number of times an aligned site has a base 
of type i in species X, and of type j in 
species Y; 

ij 

the bases A, T, C, G are labelled 1, 2, 3, 4 respectively. 
Now assume that the two species in question diverged from 
a common ancestor T years ago, and that after divergence 
the two species behaved independently, the bases in each 
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sequence being changed through time by the substitution of 
one base for another. 

Under these assumptions, the probability f that a 
site has a base of type i in species X, and j in species Y 
is 

ij 

where sc is the probability that the ancestral base is e ,  

and pei (resp., pci) is the probability that in species X 

(resp., Y) , a base C at divergence is of type i a time T 
later. Most authors have used a Markov model to specify 
the probabilities {pei}, so that 

X Y 

X 

where Qx is the generator of the (irreducible) X-process. 
. In addition, it is assumed that 

pY (a) Qx = Q ,  -: Q ,  implying that Px = 
(b) E'Q = & I ,  implying that = =  ( S ~ , S ~ , S ~ ~ S ~ ) ~  (1.3) 

is the stationary distribution of Q. 

See Lanave et al. (1984), Tajima and Nei (1984) for 
some recent work in this area. The assumption (1.3a) 
above means that the cell probability matrix F = {fij} is 
symmetric; the data matrix N should be consistent with 
such symmetry. There is ample evidence that this is not 
the case for many pairs of sequences, particularly for 
those arising from the third codon positions; Tavarg 
(1985). This paper therefore focuses on methods of 
estimation for models like (1.2) in which 

(a) Q x  and Q, may be different. ( 1 . 4 )  
(b) s is not necessarily the stationary 

distribution of either Q ,  or Q,. 

11. MODELS AND STATISTICAL METHODS 

The cell probability matrix F is 15-dimensional, and 
a general Q-matrix in (1.2) is 12-dimensional. Thus the 
most general model will have dimension 12 + 12 + 3 = 27. 

. 
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Thus we need to restrict the form of the Q-matrices to be 
used. 
There are several candidates that might be useful; this 
paper focusses on just two possibilities. 

Model (K) (Kimura (198l), Gojobori et al. (1982)) 

Here, the Q-matrices are of the form 

A T C G 

where the dlagonal elements are determined by Ql-= 0. 

Model (TK) (Takahata and Kimura (1981)) 

A T C G 

where once more Ql-= &determines the diagonal elements. 

In both of these examples, all the parameters 
indicated must be positive. The statistical problem is to 
estlmate the parameters of Q and Q, (and possibly the X 
inltial dlstrlbutlon % i f  thls 1s assumed unknown) using 
the data matrix N, and cell probabilities determined by 
(1.11, (1.2) and (1.4). 

Assuming that sites evolve independently of one 
another, the data matrix N has the structure of a 16-cell 
multinomlal trlals experiment, and we wlsh to estimate the 
parameters x = (x ..., x ) of the cell probabilities F = 

{fij(cl)g If %must be estimated, then p = 15 for model 
(K), and p = 11 for model (TK). We chose to estimate the 
parameters by maximum likelihood (or, equivalently, 
minimum Y l methods. The theory of maximum likelihood 
estimation in multinomial trials is, of course, well 
docdmented; a good review is given by Cox (1984). We also 
estimated the asymptotic variance-covariance matrix of the 
estimates for large sample size (= sequence length), n. 

1' P 

2 

. 
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The parameter of particular interest here is the mean 
number Kx (resp., 5) of substitutions in the X (resp., Y) 
species in the interval [0, TI. Recall that if a Markov 
chain has generator Q = {qij} with qi := -qii, and initial 
distribution then the mean number of changes of state 
in [ O ,  TI is 

Notice that if =is a stationary distribution for Q, then 
(2.1) reduces to 

Ke = T I siqi, 
i 

the 'el denoting equilibrium value. Notice also that if a 
Markov chain has generator QT, then the mean number of 
jumps it makes in [ O ,  11 is given by (2.1), with T = 1, 
Q = QT. The parameter T is confounded in this estimation 
problem; from now on, we absorb T into Q, and so take T = 
1 in (2.1) and (2.2). In the present context, then, we 
want to use our estimates of the parameters in Q,, Q, and 
- s to estimate KX and K y ,  and their joint asymptotic 
distribution. 

111. COMPUTATIONAL ASPECTS 

The maximum likelihood estimates of the parameters 
of the model may be found using a constrained optimisation 
package. The constraints involve positivity of the 
parameters in the two Q-matrices, and, if the initial 

3 probabilities =are to be estimated, then 0 s s1 + s2 + s 
1; sl, S 2' s 2 0 must hold. Our approach was to 

transform out the constraints, converting the problem into 
an unconstrained one, and then use one of the IMSL 
optimlsation algorithms, ZXMIN or ZXSSQ. 

From the point of view of asymptotic theory needed 
here, it seems to be very hard to prove that a unique 
solution of the likelihood equations exists. Further, the 
computational work often found solutions in which some 
elements of the Q-matrices were (algorithmically) zero. 
The approach adopted here was an exploratory one: We 
started the algorithm from several initial positions, and 
compared the results. Any parameters in the Q-matrices 
that were computationally zero (say, I were set to 
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zero, and not used as parameters. This reduces the 
dimension p of the problem, and thus increases the degrees 
of freedom for the goodness of fit test of. the fitted 
model 
to the data. All derivatives were calculated using 
multipoint forward difference formulae (to avoid negative 
parameter values), as no expliclt formulae for such 
derivatives seem to be useful. The values of the cell 
probabilities involve calculation of matrix exponentials, 
exp{Qx} and exp{Qy); recall (1.1) and (1.2). For the 
model (K), we used the exact results of Gojobori et al. 
(1982). For model (TK), we used a diagonalisation method, 
falling back on an efficient series algorithm if this 
faflee. 

IV. AN EXAMPLE 

The data here are taken from the EMBL sequence 
library. The sequences are from bovine (X) and mouse ( Y )  
mitochondrial genomes [Anderson et al. (1982), Bibb et al. 
(198l)], and come from the sequence of third base 
positions of the genes cytochrome B, cytochrome oxidase I, 
I1 and 111, and Atpase 6. The base length is n =l601, and 
the data matrix N is given by 

A T C G 

463 91 96 28 

6 

86 140 100 

C 120 164 227 

G 49 14 8 4 

We ran five repetitions of the program, obtaining the 
same solutions for each run. For the model (K), the 
estimated Q-matrlces were 

.209  ,097 .OS6 .056 
.O -.192 .096 . O  -.I12 .056 ,056 

.376 .376 -.752 .O 

.376 .376 .O -.752 

-.262 .070 ,096 

.301 .301 -.602 .O 

.301 -301 .O -.602 

Qx=( 

while for model (TK), the estimated Q-matrices were 

I ,  ! 
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Qx( 
.212 .015 .087 .110) ( -.111 .o  ,041 
.O15 -.212 .110 ,087 Qy= . O  -.111 .070 :::') 
.322 .406 -.743 .015 ,324 .577 -.881 .O 
.406 .322 .015 -.743 . 557  .324 .O -.881 

The estimated base composition of the ancestral sequence 
was (in order A ,  T, C, G) for model (K): (.406, .070, 
,520, .004), while for model (TK): (.351, .039, .604, 
.006). The estimated average number of substitutions 
since divergence is given via (2.1) by: 

Kx f std. error Ky f std. error 
Model (K) .463 f .032 .441 f .027 
Model (TK) .401 f .047 .406 f .051 

The average number of substitutions per site, KX + Ky, was 
estimated as: 

(KX + Y y )  f std. error 
Model (K) 904 f .042 
Model (TK) .807 f .043 

For model (K), the goodness-of-fit statistic was y 2  = 18.3 
(6 df.) for model (K), and y 2  = 11.5 (5 df.), both of 
which are reasonable. The mean number of substitutions 
per site as estimated by either method is similar to 
estimates obtained for models in which assumptions (1.3) 
hold. For example, the reversible model of Tavare (1985) 
or Lanave et al. (1984) gave 1.09 f .13. In this last 
case, the estimate of the ancestral composition was (.436, 
.231, .296, .037), which should be contrasted with the 
estimates from the asymmetric models. Finally, despite 
the asymmetric shape of N, the estimated Q-matrices are 
qualitatively similar, and no significant difference can 
be found between KX and Ky. However, the asymptotic 

substitution rate Ke in (2.3) does differ significantly 
between the species: 

e KX f std. error $ f std error 
Model (K) .311 f .042 .217 f .133 
Model (TK) .326 f ,043 .197 f .034 

A more extensive study of the substitution process 
- among a variety of mitochondrial sequences is being 

prepared; this will also discuss problems of heterogeneity 
(due to almalgamating different coding regions, or due to 



heterogeneity within a single coding region), the 
estimation of transition and transversion rates, and the 
independence of bases assumption used here. 

IV CONCLUSIONS 

Thls note has focused on statistical methods for the 
estimation of substitution rates from pairs of DNA 
sequences. The analysis has allowed for the observed 
asymmetry in the data. The estimation methods are 
computational in nature, rather than the analytic 
"method-of-moments" approaches usually used. It should be 
pointed out the the restriction to a small class of models 
was necessary because in the two-sequence case only 15 
degrees of freedom are available. The methods developed 
here are also useful for analysing multiple-sequence data 
sets, in which general models of the type (1.2) may be 
fitted. 
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