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Abstract. This paper studies a version of the birth and immigration process 
in which families are followed in the order of their appearance. This age 
structure is related to a number of results from population genetics, in 
particular the genealogical structure of the infinitely-many neutral alleles 
model. The asymptotic behavior of this genealogy is an easy consequence of 
the structure of the age-ordered family size process. 
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1. Introduction 

This paper studies several aspects of behavior of the sizes of families that arise 
in the linear birth process with immigration. We focus on a stochastic process 
{ A ( t ) ,  t k 0 )  on R" that records the sizes of the families in the order of their 
appearance in the population. The marginal distribution of A( t )  is given explicitly 
in Sect. 2. 

In Sect. 3 the structure of the process is decomposed into its jump chain 
{J,,, n 5 0) and a time-scale {I( t ) ,  t k O}. I( t)  is the number of individuals in the 
population at time t, and J,, records the decomposition of the extant individuals 
into (age-ordered) family sizes. {J,,, n 3 0) has the structure of a P6lya-like urn 
model, and it is intimately related to the genealogical behavior of the infinitely- 
many neutral alleles model in population genetics theory. 

In Sect. 4, the asymptotic behavior of e-'A(t) as t+co is found, and the 
limiting vector is analyzed by elementary point process methods. The asymptotic 
proportions of individuals in the population that are from the oldest, second 
oldest,. . . families have a joint distribution that is the same as a size-biased 
permutation of a Poisson-Dirichlet distribution. Thus the process {A( t ) ,  t 5 0) 
and its associated limit theory provides an elementary way to study the behavior 
of age-ordered samples taken from infinitely-many neutral allele models. 
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2. The age-ordered FS process 

2.1. Preliminary properties 

We record here some standard results that will be needed in the sequel. The 
linear birth process is a time-homogeneous Markov process taking values in the 
set N = { 1 , 2,3, . . .}, and whose behavior is specified by the non-negative parameter 
A, the birth-rate per head per unit time. The (conservative) Q-matrix of the 
process has elements determined by 

qi,i+l = ih, i = 1,2,. . . , 
the other off-diagonal elements of Q being zero. If we let N (  t )  denote the number 
of individuals in the population at time t, then it is well known that 

n = 1 ~ 2 , .  . . P ( N ( t )  = nlN(O)  = 1) = e-"'(l -e-")"-', (2.1) 
cf. Kendall (1949). Now imagine that at the points O <  TI < Tz < * of a 
homogeneous Poisson process of rate 6, we initiate families of individuals, each 
starting from a single individual and evolving (independently of each other) as 
a linear birth process. Let Z ( t )  be the number of individuals in the population 
at time t, with I ( 0 )  = O .  The process { I ( t ) ,  t 3 O )  is known as the linear birth 
process with immigration (BI). It will be convenient in what follows to scale time 
so that A = 1. The distribution of I( t )  is then given by 

The BI process Z( e )  described above does not provide any detailed informa- 
tion about the growth of the families themselves. Here we introduce a process 
which follows the sizes of the families in the BI in the order oftheir appearance 
in the population. To this end, define 

the size at time t of the family initiated at time 
& ( t ) =  Ti,  if t 3  T i ;  

0, i f t<T, .  

The age-ordered family-size (FS) process of interest is 

A ( t )  = ( l , ( t ) ,  5* ( f ) ,  * J, t > 0 (2.3a) 

r 
and 

A(0) = 0s (0, 0, . . .) (2.3b) 

The state-space of A( - )  is the subset Y of non-negative integer valued sequences 
with all but finitely many zeros given by 

Y = {(vl ,  7 2 ,  . . . , vr, 0, 0, . . .): vi E N, 1 4 i =s l , 1  = 1,2, . . .} u {o) 
{A(  t ) ,  t 3 0) is a Markov process on 9, and its transition rates {qzw} are determined 
as follows. Suppose z = ( vl, vz, . . . , vl, 0, 0, . . .) E 9. Then a transition can occur 
to a state 

(2.44 = ( ~ 1 7 . .  . , vi-', vi + 1, v i + l , . .  . , ~ ~ , O , O , .  . .) at rate qzw = vi ,  
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i = 1, 2 , .  . . , l .  Alternatively, a new family can be founded, in which case a 
transition can occur to the state 

(2.4b) w = ( r ) l ,  7 7 2 , .  . . , ~ 1 , 1 , 0 , 0 , .  . .) at rate e. 
Finally, the diagonal elements are determined from (2.4a) and (2.4b) as 

9 z z = - ( ~ + 7 7 1 + 7 7 2 + ’  “ + r ] l ) .  

The distribution of A( t)  is provided by the following result. 

Theorem 1. With time scaled so that A = 1, 

P(A( t )  = 0) = e-“, 
(2.5) 

Remarks. Analogous results in the context of the birth and death process with 
immigration may be found in Theorem 2 of Tavar6 (1987); Theorem 1 may either 
be viewed as the special case in which the death-rate is p = 0, or it can be 
established by direct methods by the usual idea of conditioning on the number 
of immigrations in time t ;  cf. Karlin and Taylor (1981), Chap. 16. 

In this paper we exploit the simpler structure of the birth and immigration 
process to derive (primarily) asymptotic results about the family sizes. Some of 
these results (in particular (3.2) and Theorem 6) are quoted without any details 
in Sect. 5 of TavarC (loc. cit.). 

3. The jump-chain of the age-ordered FS process 

The result of Theorem 1 provides a direct construction of the distribution of the 
age-ordered FS process A( -). In this section we study in more detail the jump- 
chain of this process. Define T~ = 0, and let T,, be the time of the nth change of 
state of A( e ) .  The jump-chain is the non-homogeneous Markov chain {J,,, n = 
0,1 ,2 , .  . .} on Y defined by 

Jo = 0, 

J,,=A(T,,+),  n = l , 2  ,.... 
The state space of J,, is the set 

for n = 0, 1, 2, . . . . From the standard theory of jump-chains, it follows that the 
non-zero transition probabilities of this chain are given by 

P ( J n  = (71, . . . 7  Ti-1, vi + 1, Ti+l,  . - * 77r,O, 0, e )  

IJ,,-1=(7)1,772 ,..., r ] l , O , O  ,... ) )= .r i / (n- l+8) ,  i = l ,  ..., I ;  (3.1) 

P(Jfl = (71, 7 2 7  * * .  9 7 7 1 ,  l ,  O, * * * )  

IJn-1 = ( T I ,  772, * * 3 r ) I , O , O , .  . J) = O / ( n  - 1 + 01, 

for n = 1, 2 , .  . . , and ( vl, v 2 , .  . . , q, 0, 0, . . .) E Yn-l. 
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Theorem 2. Let {J,,, n 3 0 )  be the jump-chain of A( - ), and let { I (  t ) ,  t 3 0) be the 
corresponding BI process, with I ( 0 )  = 0. Then I ( ) and J are independent processes, 
and A( t )  = J,(*) , t zs 0. 

Furthermore, 

(3.2) 

if (771,. . . , 7 7 1 ,  090, - .)E 9". 

Proof: That I( ) and J are independent follows by an argument analogous to 
that of Kingman (1982, p. 237). Standard jump-chain theory shows that A ( t )  = 
J 1 ( , ) .  The independence result gives immediately 

P ( A ( t )  = z )  = 

If z E 9,,, then P(J, = z) = 0 unless r = n, in which case 

P(J, = z)P(I( t )  = n ) .  
n s O  

P(A(t)=z)=P(J,,=z)P(Z(t)=n); 

the result of (3.2) then follows directly from (2.2) and (2.5). 

Remark The distribution in (3.2) was derived (in a different context) by Donnelly 
and TavarC (1986). They showed that it arises as the distribution of allelic types 
in an age-ordered sample from a stationary infinitely-many neutral alleles Moran 
model of constant size, and also in the limit of large population size in a wide 
variety of other genetic models. 

Hoppe (1984) and Watterson (1984) describe a P6lya-like urn with a transition 
mechanism similar to that of {J,,, n 2 0). They focus on the fact that their models 
give rise to the Ewens Sampling Formula (Ewens 1972). Connections between 
their process and results on age-ordering (in the population genetic setting) are 
developed and exploited further by Donnelly (1986). See also TavarC (1987). 

Embedding the Markov chain {Jn, n 2 0) in a continuous-time Markov process 
{A( t ) ,  t 2 0) which has a simple structure provides an elementary way to uncover 
its asymptotic properties. We pursue this further in the next section. 

4. The asymptotic size of families in the age-ordered FS process 

We will be interested in the asymptotic size of (suitably normalized) families in 
the process A( t )  as t + 00. We recall first a result about the asymptotic behavior 
of linear birth processes. Let { N ( t ) ,  t 2  0; N ( 0 )  = 1) be a linear birth process of 
rate A = 1, as described in Sect. 2.1; we may assume that it has right-continuous 
sample paths. Then there exists a random variable E, having an exponential 
distribution with mean 1, such that 

e-'N( t )  + E almost surely, as t + 00. (4.1) 

(This is a special case of a standard result about the Markov branching process; 
cf. Athreya and Ney (1972), p. 111.) 
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Now let Nl(. ), N2( e ) ,  . . . be independent copies of the linear birth process 
N (  e ) ,  let El, E2,  . . . be independent exponential random variables satisfying 
e- 'Ni( t )  + Ei, as .  as t +00. Let T,,  T 2 , .  . . be the times at which families are 
initiated in the age-ordered FS process; {Ni( ), i 3 1) and { '7;., i 3 1) are indepen- 
dent. Finally, let 1{ - }  denote the indicator function of the event in { }. 

Consider first the size C1(t) of the oldest family alive at time t. Then 

e ~ ' ~ l ( t ) = e ~ ' N l ( t - T l ) ~ { T l s t )  
= e - ~ l  e - ( t - ~ )  1 N , ( t  - T,)l{Tl s t }  

+ e-TIEl, almost surely as t -* 00, 

this last following from the result of (4.1). 

Theorem 3. The age-ordered family sizes {&( t ) }  have asymptotic structure provided 
bY 

(4.2) -T e - ' ( l l ( t ) ,  12( t ) ,  . . . ) - + ( e - T ~ E l ,  e 2E2,.  . .) 
almost surely as t -+ W. 

Pro05 Choose and fix r E N. Then 

e-'(Cl(€), * 9 Cr(t)) 
r-I 

= e - ' ( N l ( t -  TI),. .., w ( t - T , ) , O , O , . .  . , O ) l { T , s t <  q+l} 
j = 1  

+ e-'( Nl( t - TI), . . . , Nr( t - T,))1{ T, s t }  

-+ (e-TIEl,  . . . , e-'rEr), as .  as t + 00, (4.3) 

by an argument analogous to that described above. Intersecting the sets on which 
the as .  convergence occurs for each r provides a set of probability one on which 
the convergence in (4.3) holds for each r E N, and the theorem is proved. 

The next task is to establish a useful representation for the limit random 
vector in (4.3). Notice first that the collection 

n = { ( T , E i ) , i = 1 , 2  ,... } 
is a marked Poisson process (cf. Taylor and Karlin (1984), p. 205). That is, 17 is 
a two-dimensional Poisson point process on [0, 00) x ( 0 , ~ )  such that for any 
Bore1 set Sc [O,~)x(0 ,00) ,  the number of points of L' that fall in S has a 
Poisson distribution with mean 

I, I 8 e P y d t  dy (4.4) 

and the numbers of points falling in disjoint intervals are independent. If we 
take S = {( t, y ) :  e-'y > u }  for any u > 0, then it follows from (4.4) that the number 
of points (Ti, Ei) E L' which satisfy exp( - Ti)& > u has a Poisson distribution 
with mean 
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Thus if 0 < a < b, the number of points ( T,, Ei)  E n for which a < exp( - %)Ei d b 
has a Poisson distribution with mean 

jab 5' dv 

and the numbers of such points that fall in disjoint intervals in (0,~) are 
independent random variables. We have therefore proved the following result. 

Theorem 4. Let a, = e-riEi, i = 1,2, . . . be the limiting random variables in Theorem 
3. Then {ai} may be viewed as the points (in some order) of a non-homogeneous 
Poisson process on (0, co) with mean measure density 8 e-"/x, x > 0. 

We record one immediate consequence of the previous theorem. 

Corollary 1. The r.v. a = C i a l  ai is a.s. Jinite and has a gamma densityf(x) given 
bY 

f ( x ) = x e - '  e - " / r ( e ) ,  X > O .  (4.6) 

ProoJ: 

E( a) = C E( e-'1Ei) = E( e-T)E( E,) 
i s 1  

= is 1 (&-$i=e, 

so a is almost surely finite. And by standard manipulations with the Poisson 
process 

= (1 + s)-O, 

which establishes the last claim; cf. Kingman (1977). 
We will be interested in the asymptotic behavior of the fraction of the 

population that belong to the oldest, next oldest,. . . families in the process. We 
need 

Theorem 5. Let I (  t )  Cja l  &( t )  be the total population size at time t. Then 

e - ' I ( t )  = C e-'&(?) + q = a, a.s. as t + co. 
j S l  j S l  

ProoJ: First, the process {e-'I( t ) ,  t 3 0) is a (non-negative) submartingale with 
respect to its natural history, and it has uniformly bounded means (d 8 in this 
case, because I ( O ) = O ) .  Hence there is a random variable I, say, such that 
e-'I( t)  + I as .  as t + 00. From (2.2), and a simple Laplace transform argument, 
it follows that I has a gamma distribution with density (4.6); it has mean 8. By 
Fatou's Lemma, I S  a. But by Corollary 1, a also has a gamma distribution with 
density (4.6). Hence O s  E ( I  - a) = E I  - E a  = 0, and so I = a as.  
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Corollary 2. 

I ( t ) - l ( l l ( t ) ,  l 2 ( t ) ,  . . .)+(Pl, p2,.  . .) a. 

where 
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as t+a, 

f i  = ai/a = . s E i / (  C e - q E j ) ,  i = 1,2 , .  . . 
j 2 1  

(4.7) 

Proof: Immediate from Theorems 4 and 5. 

The random variable P, is the asymptotic fraction of the population that 
belongs to the ith oldest family. The structute of {e} is given by 

Theorem 6. Let {Z , ,  i = 1 , 2 , .  . .} be an i.i.d. sequence of random variables with 
common density g(x) given by 

g ( x )  = e(1 - x)e-l, 

P, = d  (1  - z,)( 1 - z,) 9 - * (1  -z,-~)z,, 

x E (0 , l ) .  

Then 

i = I ,  2, . . . . (4.8) 
Proof: For any r E N, the joint distribution of (a,, . . . , a,, E,,, a,) is that of 

= (ePrIE,,  . . . , e-TE,,  e-'v*),  (4.9) 

where a* has the same distribution as a, and is independent of E,,. . . , E,, 
TI, .  . . , T,. A calculation shows that the joint density of the random variables in 
(4.9) is given by 

Hence the joint density of (a,/a, . . . , ar/a, a) is 

(1  - x, - - - x , ) ~  e' x;;; exp(-x,+,) 
(1  -x,) * * * (1 - X I  -. - * -x,) g(x1, * 9 x r + 1 )  = 

Thus a is independent of (ol /a , .  . . , o,/a), and a simple calculation shows that 
the left-hand term above is precisely the joint density of ( P , ,  . . . , P,) defined in 
(4.8). 

Remarks. There are many interconnections between the random variables Pi in 
(4.8), and the Poisson-Dirichlet distribution which plays so important a role in 
the theory of neutral mutation in population genetics; see Kingman (1977) for 
example. Kingman (1975) established that if a(,, 5 ac2, 3 * * 2 0 are the ordered 
points of a Poisson process of the type described in Theorem 4, then 
(a(,)/a, a(,,/a,. . .) has the Poisson-Dirichlet distribution with parameter 8. Patil 
and Taillie (1977) showed that the size-biased permutation of a Poisson-Dirichlet 
distribution has the representation (PI, Pz, . . .) given in (4.8). The interconnec- 
tions between size-biasing, and the age-ordered frequencies in the infinitely-many 
neutral alleles model are described in Donnelly (1986). 
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The stochastic structure of the urn model {J, ,  n 3 0) arises directly from a 
consideration of the genealogy of age-ordered samples taken from a stationary 
infinitely-many neutral alleles model; see Donnelly and TavarC (1986). We may 
therefore use the results of this section to analyze the asymptotic behavior of this 
genealogy. Here is an example. 

Corollary 3. n-'J, + (Pl, P2,  . . .) a s .  as n + 00, rhe random variables {P,} being 
given in (4.8). 

Proof: This follows immediately from Corollary 2, since if 7, is the time of the 
nth change of state of A( ), then J, = A(7, +), I(T, +) = n, and T, + 00 as .  as 
n+m. 

Donnelly and TavarC (1986) established that the asymptotic (as n + 00) frac- 
tions of a sample of size n from a stationary infinitely-many neutral alleles model 
that may be assigned to the oldest allelic type, the next oldest allelic type, and 
so on has the representation (4.8). The representation developed here may be 
viewed as a simple alternative method to study such distributions. 
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