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The Genealogy of the Birth, 

Death, and Immigration Process 

Simon Tavare 

3.1. Introduction 

It is indeed a pleasure for me to contribute to this dedicatory volume 
for Professor Samuel Karlin. Among Karlin's many contributions that 
address mathematical or statistical issues in the broad area of biology is 
a collection devoted to the analysis of a variety of stochastic processes 
that arise in the mathematical theory of population genetics. This theory 
is the most developed (and the most elegant) in the setting of the infinitely 
many neutral alleles models, and it is to such problems that this paper 
is addressed. 

In a seminal paper, Karlin and McGregor (1967) describe the following 
model. Imagine families of individuals each initiated by a single individual 
at the time points of a renewal process. The size of each family fluctuates 
in time according to the probabilistic laws of a given stochastic process, 
different families evolving independently of each other. If we also interpret 
the families as novel mutant alleles, the model then describes the evolution 
of the genetic composition of a population of varying size. If all families 
are given distinct allelic labels, the process may be viewed as a version of 
the infinitely many neutral alleles model, neutrality here corresponding 
to the fact that each family is assumed to evolve with identical probabilistic 
structure. 

A detailed description of such a process might include a study of the 
joint distribution of the numbers of families of different sizes at a given 
time t, and its asymptotic behavior as t increases. Not surprisingly, the 
most explicit results are available when the renewal process is Poisson, 
and the families fluctuate according to a linear birth-and-death process. 
The model just described is then a detailed version of the classical birth-
and-death process with immigration. This particular model is one of the 
generating mechanisms for the well-known Ewens Sampling Formula. 
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42 Simon Tavare 

This distribution, which has been the object of detailed study, was derived 

originally by Ewens (1972) in the context of a population model of fixed 

but large size; see also Karlin and McGregor (1972). In our variable popu
lation size setting, it arises as the joint distribution of the family size sta
tistics, conditional on the total population size; see Watterson (1974) and 
Kendall (1975). 

In fact, I will describe a richer class of processes which keep track of 
the sizes of families (or number of representatives of each distinct allele, 
in the population genetics setting) in the order of their appearance in the 
population. For studying many aspects of the age structure of the families, 
this approach seems to have some advantages over the unlabeled process 
described earlier. One consequence of this representation is an age-ordered 
version of the Ewens Sampling Formula that is a variable population-size 
analogue of an earlier result of Donnelly and Tavare (1986). 

In Section 3.2 are recorded the basic properties of the birth, death, and 
immigration process. Section 3.3 provides the probabilistic structure of 
the age-ordered family size process, and details the connection with size-
biasing. Section 3.4 studies distributions of this process that are condi
tional on the total population size, and describes some connections with 
reversibility. The final section specializes to the case of the birth process 
with immigration. Its jump chain is intimately connected to the genealog
ical structure of the infinitely many neutral alleles model; see Watterson 
(1984), Hoppe (1984), Donnelly (1986). Its representation via the birth 
process with immigration provides a simple way to study its asymptotic 
properties. 

3.2. The BDI Process 

We begin with a brief discussion of the simple (linear) birth-and-death 
(BD) process. This is a time-homogeneous Markov process whose states 
are labeled by 0, 1, 2,..., and whose behavior is specified by two non-
negative parameters: 

λ, the birth rate per head per unit time 

μ, the death rate per head per unit time. 

The (stable, conservative, regular) g-matrix of the process has elements 

determined by 

<Z;,i+1 = i/1, ! = 0,1, 2 , . . .  

=  1 X  / = 1 , 2 , 3 , . . . ,  
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Genealogy of the BDI Process 43 

the other off-diagonal elements being zero. The number of individuals 
N(t) alive in the population at time t has a well-known distribution (cf. 
Kendall 1949), and we recall here that 

(3.1a) 

where 

(3.1b) 
and 

(3.1c) 

We will be interested in the birth-and-death process with immigra-
tion (BDI), which can be constructed from a sequence of independent BD 
processes as follows. Initially, we suppose there are no individuals in the 
population. At the time points T u T2, • • • of a homogeneous Poisson pro-
cess of rate we initiate immigrant families, each starting from a single 
individual, and evolving independently as a BD process. As the BDI pro-
cess evolves, families appear, fluctuate in size, and possibly become extinct. 
Often, we will not distinguish among families of the same size, and so 
most useful information is contained in the process 

in which is thenumber of families which have n members at time t; 
n = 1, 2 , . . . , and is the number of extinct families at time t if 
and 0 if Much of the stochastic structure of £(t) is contained in 
Theorem 1 below. 
THEOREM 1 (Karlin and McGregor 1967): 

That is, the are independent Poisson-
distributed random variables with means 
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44 Simon Tavar6 

It is convenient in the following to scale time so that A = 1. Then the 
immigration rate 6 and the death rate n are the only free parameters, and 
it follows from (3.1) that 

Hence from THEOREM 1 we obtain 

(3.2) 

There are a number of other statistics of interest in a BDI process. We 
mention 

the total number of immigrations up to time t; 

the total number of families alive at time t; 

the total number of individuals alive at time t. 
It follows directly from THEOREM 1 that 

so that I(t) has a negative binomial distribution with 

(3.3) 

while F(t) has a Poisson distribution with mean —6 ln(l — bt). 
Further properties of the random variables may be found in 

the papers of Karlin and McGregor (1967), Watterson (1974), and 
Kendall (1975).Kendall's work focuses on the reversibility of the process 

in the case see Section 3.4 for fur-
ther details. We turn first, though, to a study of a related process that 
studies some aspects of the age structure of the families. 

3.3. An Age-Ordered BDI Process 
In this section we extend the analysis of the process of Section 3.2 by 
keeping track of the size of extant families in the orderof their appearance. 
Recalling that new families arise at the points of a Poisson 
process of rate , we say that a family that originated at time Tr with at 
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Genealogy of the BDI Process 45 

least one member alive at time t is older than a family extant at time t 
that originated at time _ We will also keep track of the number 
F(t) of families that survive at time t. 

The states z of our new time-homogeneous Markov process 
will be either of the form 

z = (0), if no families survive at time t 
if Z families survive at time t, and the oldest family 

has members, the second oldest n 2 members , . . . , the youngest 
\ix members. It is implicit that 1 for such a z. 

It is a simple matter to compute the transition r a t e s f r o m state z to 
state w: 

lmmiarations 

Births 

Deaths 

In this treatment we are not interested in keeping track of families that 
have existed but are now extinct, although this may be of interest elsewhere. 
We also note that off-diagonal elements of the Q-matrix not specified 
above are zero, and the diagonal elements are determined by the require-
ment that the process be conservative. It also follows by an obvious modi-
fication of Kendall's argument (1975, p. 336) that this Q-matrix is also 
regular; it is clearly irreducible. 

What is interesting is that the distribution of A(t) can be found explicitly. THEOREM 2 With time standardized so that and 4 ( 0 ) — (0), 
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46 Simon Tavar6 

(3.4) 

Proof: The Q-matrix of A(.) is conservative, stable, and regular, so that 
the forward equations have a unique solution that specifies a probability 
distribution. We will therefore verify the equations 

(3.5) 

where . Suppose first that 
The left-hand side of (3.5) is 

(3.6) 
where Now consider all the paths that lead from z to 
w in a single change of state. There are two cases to consider. 

The possible transitions are 

and 
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Genealogy of the BDI Process 47 

A little algebra reduces this to 

Since the right-hand side of (3.5) becomes 

In this case the possible states and their transition rates are given by (a) 
and (b) above, but (c) must be replaced by 

and for which But notice that  EBSCOhost - printed on 10/25/2020 3:20 PM via COLUMBIA UNIVERSITY - MAIN. All use subject to https://www.ebsco.com/terms-of-use



48 Simon Tavare 

The remainder of the verification of (3.5) now proceeds just as in Case 1. 
The proof may be completed by checking the remaining case, which 
occurs when I = 0. This is easy, and the details are omitted. 

It is worthwhile at this stage to comment on the relationship between 
the distribution of A(t) specified by (3.4) and that of given by (3.2). 
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Genealogy of the BDI Process 49 

Assume then that for a given t > 0, the extant family sizes ^ t], cor-
respond to family size statistics m1,m2,... given by 

(3.7a) 
satisfying 

(3.7b) 
and 

(3.7c) 
The distribution of §(t) follows from that of A(t) by a collapsibility argu-
ment. For m u m 2 , . . . satisfying the conditions of (3.7), we see that 

the sum ranging over all j / l 9 . . . , r^ satisfying (3.7a). But this last is 

where % denotes a permutation of {1, 2 , . . . , / } , and the combinatorial 
quantity arises because the sum over all permutations n counts the re-
quired terms times. Observing that 

we obtain 

this last following because and the relationships in 
(3.7) hold. 

Conversely, there is a simple operational description of how the age-
ordering arises from the process This relies on size-biasing in the 
following way. Imagine that that I(t) = n, and that (3.7) 
holds. Randomly select an individual, and remove him and all members 
of his family. These are assigned the label 1. Next, randomly choose one 
of the remaining individuals, and remove him and all his family. This 
group is given the label 2. Continue in this way until the remaining family 
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is labeled I. This assignment produces individuals with label with 
label 2 , . . . , with label I with conditional probability (given the family 
sizes mt) of 

Hence the unconditional probability of getting rj 1 individuals with label 
1 , . . . ,rji with label I is 

which reduces to the distribution in (3.4) after simplification. Thus we 
see that the joint distribution of the number of individuals in the oldest 
fami ly , . . . , the youngest family is the same as that of the number of in-
dividuals labeled 1 , 2 , . . . in the size-biased permutation. 

3.4. Conditional Distributions and Reversibility 
This section is divided into two parts, the first devoted to the structure of 
the processes A(.) and §(.) conditional on the total population size /(.), 
and the second to reversibility. 

3 . 4 . 1 C O N D I T I O N A L D I S T R I B U T I O N S 
In the sequel, we will let Pn{.) denote conditional probabilities given that 
I(t) = n. It follows from (3.2) and (3.3) that 

Notice that this distribution is independent of t (and ), so that supression 
of the t in is justified. The distribution (3.8) is known in the population 
genetics literature as the Ewens Sampling Formula (Ewens 1972). It was 
derived in the present context by Watterson (1974), and Kendall (1975). 
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Genealogy of the BDI Process 51 

The age-ordered version follows from (3.3) and (3.4): 

(3.9) 

Donnelly and Tavare (1986) showed that (3.9) arises as the distribution 
of an age-ordered sample of size n from a stationary Moran model of 
constant size, and also in the limit of large population size in a wide 
variety of other models. 

Of course, (3.8) and (3.9) may be related by the same size-biasing argu-
ment described in the last section. This same idea can be applied in several 
other ways also. For example, conditional on I(t) = n, the probability that 
a given family of size i is the oldest is i/n, since this is the probability that 
this family of size i is the first chosen in the size-biased sample. Here is 
another example. 

Let 0 denote the number of individuals in the oldest family. Then from 
(3.9) we obtain 

w i t h T h i s last sum is 
easily effected, revealing that 

(3.10) 

where S ® is a Stirling number of the first kind. For given values of j and 
n, F(t) may take any value between 1 and n—j+ 1. Hence summing (3.10) 
over I = 1, 2 , . . . , n — j + 1 gives the marginal distribution of 0: 

(3.11) 

See Kelly (1977). By size-biasing, it is clear that 

whence from (3.11), we obtain 
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52 Simon Tavarfe 

3.4.2 LIMIT DISTRIBUTIONS AND REVERSIBILITY 

In this section I will describe some of the connections between the age-

ordered BDI process and reversibility. Let's assume that the death rate μ 

is greater than the birth rate λ ( ξ 1 in the following). Any family that arises 

in the BDI must, with probability one, become extinct in finite time. It 
follows immediately from (3.4) that for any state ζ = (/; ^1,..., ̂ i), 

1 ~ 1Tf1Tv 
Hm rM<) - ζμ(ο). ρ]=«Μ . 

(3.12) 

Since the state space is irreducible, it also follows that 

Iim P\_A(t) = ζ I /1(0) = w] = π(ζ) 
t-* oo 

for any w. The distribution {π(ζ)} is also the invariant measure of the 
process /1(.), and we can if we wish arrange to extend the definition of 

the process to the whole time axis (—00,00) in such a way that the homo
geneity is preserved, and such that P[/l(t) = z] = π(ζ) for all times t and 

states z. Assume this has been done. The process /1(.) provides a rather 

detailed description of the appearance and disappearance of families 

through time. Keeping track of the numbers of families of different sizes 

(rather than their age order) can be achieved by grouping collections of 
states ζ = (/; f/i,..., η{) of the /1(.) process which have the same family-

size statistics (Ht1, m2, • • ·) [cf. (3.7)]. This lumped process is precisely the 
stationary "FS-process" ξ(.) discussed so eloquently by Kendall (1975). 

Recall that an irreducible process with (regular, stable, and conservative) 

β-matrix {q z wj is symmetrically reversible with respect to the measure π(.) 

if and only if 

n(z)q z w  = n(w)qw z  for all z, w. (3.13) 

Kendall showed inter alia that the process ξ(.) is symmetrically reversible 

with respect to the measure π determined by letting t -> 00 in (3.2). It is 

tempting to address questions about the ages of families (rather than just 
their age ordering) by exploiting this reversibility; the past history of a 

family should be stochastically similar to its future. However, from a real
ization of the family-size process alone this is not possible, since from it 
one cannot follow the progress of a given family from birth to extinction. 
What is needed is a more sophisticated, labeled process that allows families 
to be distinguished; cf. Watterson (1976) and Kelly (1979, p. 152) in the 
context of the Moran model. While the process /1(.) does give some in
formation about age-ordering, there seems to be no direct way to use it 
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to study the ages themselves. This process is clearly not reversible with 
respect to the measure π in (3.12) [take, for example, ζ = (2; 2, 2) and 
w = (2; 1, 2); the ratio of the two sides of (3.13) is 3/4] and its time reversal 
has a very complicated structure. 

One special case of the BDI model is the linear birth process with immi
gration. The simplicity of the structure of this process allows the develop
ment of a much richer asymptotic theory than is presently known for the 
case allowing death. Details and further ramifications may be found else
where (Tavare 1987). We will content ourselves here with an overview of 
the results. 

Formally, the birth process with immigration is the special case of the 
BDI in which the death rate μ = 0. Notice that since death is impossible, 
a family grows without limit as time increases and, in particular, can never 
go extinct. Since a Poisson process in reversed time is still a Poisson pro
cess (with the same rate, θ in this case), all questions about the ages them
selves of families in the BDI process can be answered immediately. Here 
interest focuses on the asymptotic behavior of the sizes of these families 
as time increases. 

Again, we will use the notation A ( t )  to denote the value ol the (age-
ordered) process at time t, and we assume /1(0) = (0). We will assume in 
the sequel that time has been scaled so that the birth rate is λ = 1. From 
(3.4) with μ = 0 it follows that 

Notice that the first term in (3.14) is just the probability that no events 
have occurred in the Poisson process in time t. We will also require the 
distribution of I(t), the total number of individuals in the population at 
time t [and /(O) = 0], This follows in the same way from (3.3) as 

We will now decompose the structure of the process {.4(t), t  >  0} into 
its jump chain {J„, η > 0} and its time-scale process. To this end, define 
τ0 = 0, and let τ„ be the time of the nth change of state of the process. It 
will be convenient to let 

3.5. The Birth Process with Immigration 

P [ A ( t )  =  0 ]  =  e ~ " ,  

P[/l(t) = (/; JJ JJ1)] = 
e ~ e , ( l  - e"'p'g' (3.14) 

t I i i r I i  +  r I i - 1 ) '  "  ( r I i  +  "  '  +  r I i Y  

p e w = » ] = C + ;  ' )  e ~ e ' ( l  —  n  =  0,1,.... (3.15) 

S n  =  { ( / ;  / X 1 , . . . ,  μ ι ) ' μ ι  +  •  •  •  +  μ ι  =  η ]  
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54 Simon Tavar6 

be the subset of the state space of A(.) with a total of n individuals, for 
n — 0, 1, 2 , . . . . The jump chain . . . has 
one-step transition probabilities determined by 

(3.16) 

It can be shown that are independent 
stochastic processes, and since it follows that 

Hence, 

if (/;»?!,. . . , //,) e Sn. 
The jump chain { J n , n > 0} is a Markov chain that arises in the study 

of the genealogy of the stationary infinitely many neutral alleles model. 
Hoppe (1984) and Watterson (1984) describe a Polya-like urn with a tran-
sition mechanism similar to that of { J „ , n = 0, 1, . . .} . They focus on the 
fact that the urn model gives rise to the Ewens sampling formula. Con-
nections between their process and results on age ordering are developed 
and exploited in Donnelly (1986) and Donnelly and Tavare (1986). See 
also Aldous (1985) for a related model. 

Our attention is now directed to the asymptotic behavior of the family 
sizes in A{t) as t -> oo. To study this question recall that the new families 
arise at the points T l , T 2 , . . . of a homogeneous Poisson process of rate 
9. We will change notation slightly, and define 

Now recall for a moment how a typical family evolves. A family initiated 
at time 0, say, with a single individual grows according to a linear birth 
process of rate 1. It is a well-known fact about such a process 
that converges almost surely as to a random variable hav-
ing an exponential distribution with mean 1. It follows from this structure 
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that if Eu E2, •.. are independent and identically distributed random 
variables having the exponential distribution with mean 1, then 

almost surely as 
There are several interesting consequences that flow from this result 

once the structure of the limit vector is uncovered. As an example, notice 
that since T u T2,.. • are the points of a Poisson process of rate 9, and 
the {Ei} are i.i.d., the collection may be identified 
as the points of a marked Poisson process. From this it can be shown 
that the points may be viewed as the points 
(in some order) of a Poisson process on (0, oo) with mean measure 
density Hence it follows that, almost surely as t -* oo, 

say, and a calculation establishes 
that the random variables {PJ have the representation 

where the {Z ;} are independent and identically distributed random vari-
ables with density is the (asymptotic) fraction of 
the population that belongs to the ith oldest family. 

The decreasing-order statistics of the random variables have the 
Poisson-Dirichlet distribution with parameter 6; see Kingman (1975). Such 
random vectors arise not only in the population genetics setting (see 
Kingman 1980), but also in the context of species abundance models 
(McCloskey 1965 and Engen 1978, for example), and (when 1) in the 
theory of random permutations (Vershik and Shmidt 1977). 
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