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Since the pioneering work of Erdos, Goncharov, RCnyi and Turfin, the application of 
probabilistic methods to combinatorial enumeration has grown into an independent branch of 
mathematics. There has been a remarkable resurgence of interest in classical combinatorial 
objects, among them random mappings, partitions and permutations. These structures are 
proving to be an inexhaustible source of challenging problems, of both theoretical and 
practical importance. The conference was intended to bring together leading researchers to 
discuss and synthesize a variety of disparate approaches and techniques. 

The organizing committee was comprised of R. Arratia, S. W. Golomb, and S. TavarC 
from USC, G.-C. Rota from MIT, and B. Hams from Madison. There were 18 invited 
lectures, each of 40 minutes duration. In addition, there were 15 contributed lectures, each 
lasting 20 minutes. Professor V. F. Kolchin of the Steklov Mathematical Institute gave the 
keynote address. We were also delighted to have a special lecture from Professor P. Erdos. 
The speakers’ names and abstracts are listed alphabetically. 
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There were over 80 participants at the conference, including faculty and students from the 
University of Southern California. Five mathematicians from Russia spoke at the meeting, as 
well as two from England, and one each from Australia, Germany, Hungary, Poland, 
Sweden, and Switzerland. Up-to-date accounts were given of many major trends in research 
into the asymptotics of probabilistic enumeration. 

The conference was supported by Army Research Office grant DAAL 03-91-G-0322, 
National Security Agency grant MSP-003-91, National Science Foundation grant DMS 
91-16083, Office of Naval Research Grant N00014-92-5-1473, and the University of Southern 
California. 

- University of Southern California 
Los Angeles 

INVITED PAPERS 

S. TAVARE 

D. J. ALDOUS, University of California, Berkeley 

Brownian bridge asymptotics for random mappings 
. , n } .  A function f :n+n may be regarded as a directed graph with 

edges i+f(i); note this allows an edge i+ i .  By a random mapping F, we mean a uniform 
random choice off from all n” functions n+n. There is a large literature on combinatorial 
analysis of random mappings, much due to the Soviet school. Their results up to the early 
1980s can be found summarized in Kolchin (1986). Three distinct methods have classically 
been used for proving n --* m asymptotics for random mappings: 

Write n = {1,2, 

Take limits in exact formulas. 
Generating function methods: see for example Flajolet and Odlyzko (1990). 
Representing certain quantities as i.i.d. random variables conditioned on their sum: see 

More recently Stein’s method has been used to bound the errors in certain asymptotic 
approximations. 

The purpose of this talk is to present a new method. We show how a mapping can be 
coded as a walk (with steps f l )  of length 2n. Our main result is that the random walk coded 
from the random mapping can be rescaled to converge as n+w to reflecting Brownian 
bridge. This one result encompasses many asymptotic results for particular statistics which 
have previously been treated separately-loosely, it gives limit distributions for all ‘global’ 
functionals of random mappings. Of course, the limit distribution is given in terms of a 
corresponding functional of reflecting Brownian bridge, which requires some calculation to 
evaluate explicitly. Fortunately most distributions of interest have already been discussed in 
the theoretical stochastic processes literature, or can be derived by known methods. This 
program parallels that of Aldous (1991) in which distributions associated with random trees 
are derived by coding trees as walks converging to Brownian excursion. 

The exact way in which reflecting Brownian bridge approximates a random mapping is best 
described in pictures, but here is one aspect. Let [G,,  Dl] be the excursion of Brownian 
bridge containing a uniform random time. Then we can decompose the Brownian bridge into 
three processes defined on [0, GI], [GI, D,] and [D,, 11, and these three processes are rescaled 
versions of Brownian bridge, Brownian excursion and Brownian bridge respectively. If we 
take a random mapping and see where vertex 1 is, we can split the graph into three parts: (a) 
the tree-component containing 1, (b) the rest of the graph-component containing 1, and (c) 
the rest of the graph. 

In our coded walk these parts appear in order (b, a, c), and approximate the tripartite 
decomposition of reflecting Brownian bridge described above. This is joint work with Jim 
Pitman. 

Kolchin (1986). 

- 
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ALDOUS, D. J. (1991) The continuum random tree I1 an overview. In Proc. Durham Symp. Stochastic 

FLAJOLET, P. AND ODLYZKO, A. (1990) Random mapping statistics. In Proc. Eurocrypt '89, ed. J.-J. 

KOLCHIN, V. F. (1986) Random Mappings. Optimization Software, New York. (Translation of 

Analysis 1990, ed. M. T. Barlow and N. H. Bingham, Pp. 23-70, Cambridge University Press. 

Quisquater, pp. 329-354, Lecture Notes in Computing Science 434, Springer-Verlag, Berlin. 

Russian original.) 

R. A. ARRATIA, University of Southern California 
Independent process approximations for combmatorid structures 

Many random combinatorial objects have a structure whose joint distribution is exactly 
equal to that of a process of mutually independent random variables, conditioned on the 
value of a weighted sum of these variables. It is interesting to compare the combinatorial 
structure directly to the independent discrete process, without renormalizing. The quality of 
approximation can often be conveniently quantified in terms of total variation distance. 

In detail, consider the component structure C(n)  = (C, (n) ,  C2(n), . . . , C,,(n)), where C, 
represents the number of parts of size i .  The random variables C , ,  C,, , C, are mutually 
dependent, since the weighted sum C ,  + 2C2 + . + nC, has the constant value n. For a 
given family of combinatorial objects, indexed by n = 1, 2, ' - , and for each value of a real 
parameter x > 0, there are mutually independent random variables Z, , Z2, + , with the 
following property. Let T, be the weighted sum T, = 2, + 2Z2 + e  . + nz,,.  For each n, the 
joint distribution of the combinatorial process C(n)  is equal to the joint distribution of 
( Z , ,  . . , Z,,), conditioned on the event { T, = n}. The simple independent process 
( Z , ,  . . - , Z,) ,  without conditioning on the value of T,,  may directly provide useful 
approximations to the distribution of C(n). 

To describe the independent random variables Z , ,  let rn, be the number of possible 
structures available for each part of size i. For the class of combinatorial assemblies, which 
includes permutations, with rn, = (i - l)!, mapping functions, with rn, = ( i  - 1)!(1 + i + i2/2 + 
. + i '- ' /( i  - l)!), and partitions of a set, with rn, = 1, we have that 2, is Poisson with 

parameter A, = rn,x'/i!, x > 0. For the class of multisets, which includes partitions of an 
integer, with rn, = 1, polynomials of degree n,  with rn, = the number of monk irreducible 
polynomials of degree i, and random mapping patterns, Z, is  negative binomial, correspond- 
ing to the sum of rn, independent geometric random variables Y with P(Y = k) = (1 -x ' ) (x ' ) *  
for k L 0, 0 < x  < 1. For the class of selections, which includes partitions of an integer into 
distinct parts, and square free polynomials, Z,  is binomial with parameters rn, and 

An appropriate choice of the parameter x corresponds roughly to maximizing P(T, = n). In 
some cases, a constant gives an appropriate choice of x ;  examples include x = 1 for random 
permutations, x = e-' for random mapping functions, x = p = 0.3383 . . for random mapping 
patterns, and x = q-' for random polynomials over a field with q elements. In such cases, 
C(n), viewed as an element of R", converges in distribution to (Zl, Z,, .. -). In other 
examples an appropriate choice of x must vary with n ;  examples include x = the solution of 
xex = n for random partitions of the set 1,2,  . . . , n}, x = exp (-n/&) for random 
partitions of the integer n and x = exp (-n/ f i  12n) for partitions with no repeated parts. 

For most examples, with an appropriate choice of x ,  for large n and individually for each 
i = 1 to n, Z,  is a good approximation for C,(n). More generally, for B c (1, . , n}, the 
joint distribution of the independent process ( Z , ) , E B  is a good approximation for the joint 
distribution of the process (C,),EB, provided that B is small in the sense that the contributions 
to the mean and variance of T, from terms indexed by B are small compared to the mean and 
variance of T,. This approximation can be quantified conveniently by the total variation 
metric, and allows effective approximation of the distribution of some functionals of the 
entire process C(n) by the distribution of the same functional applied to the independent 
process ( Z , ,  * , 2"). Clearly, not all functionals are approximated well in distribution, the 
extreme example being the indicator functional h ( a , ,  * , a,) = l{a, + 2a2 + . . . + nu, = n}, 
since in all non-trivial examples E h ( Z , ,  . . . , Z,,) = P(T, = n)+  0. 

x'/(l + x l ) ,  x > 0. 
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We consider issues common to all the above examples, including equalities and upper 
bounds for total variation distances, heuristics for good approximations, the relation to 
standard generating functions, formulas for moments, refinement to the process which counts 
the number of parts of each possible type, the effect of conditioning on further restrictions, 
large deviation theory and non-uniform measures on combinatorial objects, and the 
possibility of getting useful upper bounds for the probability of unlikely events by simply 
giving a lower bound on P(T, = n ) .  Detailed examples, which show the utility and tractability 
of these approximations of combinatorial processes by independent processes, will be 
published elsewhere. This is joint work with Simon TavarC. 

A. D. BARBOUR, University of Zurich 

Refined approximations for the Ewens sampling formula 

The Ewens sampling formula is a family of probability distributions over the space of cycle 
types of permutations of n objects, indexed by a real parameter 8. In the case 8 = 1 ,  where 
the distribution reduces to that induced by the uniform distribution on all permutations, the 
joint distribution of the number of cycles of lengths less than b = o(n) is extremely well 
approximated by a product of Poisson distributions, having mean llj for cycle length j :  the 
error is super-exponentially small with nb-I. For 8 # 1, the analogous approximation, with 
means adjusted to 8/ j ,  is good, but with error only linear in n-lb. In this paper, it is shown 
that, by choosing the means of the Poisson distributions more carefully, an error quadratic in 
n- '6 can be achieved, and that essentially nothing better is possible. 

B. BOLLOBAS, University of Cambridge 

Random partial orders: concentration of the height 
The systematic study of random d-dimensional partial orders was started by Winkler in 

1985, although random permutations corresponding to random two-dimensional partial orders 
were first investigated by Ulam in 1961. To get a random d-dimensional partial order < on 
[n] = { 1 , 2 ,  . , n}, take d random linear orders (permutations) on [n] ,  say i,, < 2 ,  . . . , <d 

and set x < y  iff x < , y  for every i. Equivalently, pick n points at random from the 
d-dimensional cube [O , l ld ,  and take the coordinatewise partial order on these points. 

Denote by Ln,d the height of a random d-dimensional partial order. In 1988 it was proved 
by Winkler and the author that for every fixed d => 2, there is a constant c,, > 0 such that 
n-LtdLn,d tends to cd in probability. In fact, for d = 2 much stronger results had been known; 
in 1977 Logan and Shepp proved that c2 2 2 and, independently, Vershik and Kerov showed 
that c2 = 2. 

Recently Frieze investigated the concentration of Ln.2 about its mean, showing that, for 
E > O  there is some constant @ > O  such that P(lLn,2 -EL,,,I Z n f + ' )  S e x p  ( -up).  We present 
some similar concentration results for Ln,d, for all d Z 2 ,  proved jointly with Graham 
Brightwell. In the case d = 2,  our theorem shows that ni+' above can be replaced by na+E, 
which we believe to be essentially best possible. 

The proof is based on the Hoeffding-Azuma martingale inequality, applied to a variant of 
the height of a random partial order obtained from a Poisson process in the cube [0,1]". 

BOLLOBAS, B. AND WINKLER, P. M. (1988).The longest chain among random points in Euclidean 

FRIEZE, A. M. (1991) On the length of the longest monotone subsequence in random permutation. 

LOGAN, B. F. AND SHEPP, L. A. (1977) A variational problem for Young tableaux. Adv. Math. 26, 

VERSHIK, A. M. AND KEROV, S. V. (1977) Asymptotics of the Plancherel measure of the symmetric 

WINKLER, P. M. (1985) Random orders. Order 1, 317-325. 

space. Proc. Amer. Math. SOC. 103, 347-353. 

Ann. Appl. Prob. 1, 301-305. 

206-222. 

group and the limiting form of Young tableaux. Dokl. Akad Nauk. SSSR 233, 1024-1028. 
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P. DIACONIS, Harvard University 

Comparison techniques for card shuflsing 
In joint work with Laurent Saloff-Coste a new set of techniques has emerged for bounding 

the rate of convergence of a reversible Markov chain to its stationary distribution. The 
techniques are here illustrated for a variety of ‘shuffles’: random walks on the permutation 
group. Given a symmetric set of permutations, create a random walk by repeatedly picking 
from this set (with replacement) and multiplying. Under mild restrictions, this process 
converges to the uniform distribution. The present techniques give sharp bounds on the rate 
of convergence in total variation in terms of ‘geometric’ properties of the set. For example, if 
the set is {id, (1,2), (n, n - 1, . . , l), (1, 2, . . - , n)} and k = 36n3 (log n + c )  then there are 
universal constants a; 0 > 0 such that 

As a second example, let a connected graph on n vertices have edge set E. Form a random 
walk on permutations by replacing a card at each vertex of the graph and at successive times 
choosing an edge at random, and switching the cards on that edge. The methods show that 
the bound displayed above holds, provided k = n-’ IEl y*b,(log n + c ) .  Here y* is the length 
of the longest path in the graph, b ,  = max, C,,, 1 where paths yXy have been chosen as in 
Diaconis and Stroock (1991). Examples show these bounds are sharp. 

The techniques involve a new set of comparison inequalities which bound the eigenvalues 
of the chain of interest via comparison with eigenvalues of a known chain. 

- Ul lS  (Ye-@, for c > 0. 

DIACONIS, P. AND STROOCK, D. (1991) Geometric bounds for eigenvalues of Markov chains. Ann. 

DIACONIS, P. AND SALOFF-COSTE, L. (1991) Comparison theorems for random walks on groups. 
Appl. Prob. 1, 36-61. 

Technical report, Department of Mathematics, Harvard University. 

P. J. DONNELLY, Queen Mary and Westfield College, London 

Labellings, size-biased permutations and the GEM distribution 
In proving limit theorems for the ‘sizes’ of ‘components’ of combinatorial objects there are 

usually several ways of labelling the components. One labelling is by decreasing size order, 
another is a particular random labelling called a size-biased permutation. Continuity results 
usually guarantee that convergence with one labelling is equivalent to convergence with the 
other. In many cases (random permutations, random mappings, population genetics, prime 
divisors) normalised sizes converge to the Poisson-Dirichlet distribution with the ordered 
labelling and to the GEM distribution with the size-biased labelling. Apart from its inherent 
interest and natural interpretation in some settings, use of the size-biased permutation often 
greatly facilitates the proof of convergence results. Furthermore, in stark contrast to the 
Poisson-Dirichlet, the GEM distribution which arises in the limit is extremely tractable. 
Amongst residual allocation models the GEM distribution is characterized by invariance under 
size-biased permutation. This characterization is equivalent to a characterization of the Ewens 
sampling formula (which describes a sample from GEM or Poisson-Dirichlet populations) as 
the only partition structure enjoying a certain ‘non-interference’ property. More generally, 
invariance under size-biased permutation is equivalent to invariance under the so-called heaps 
mechanism. We conjecture various optimality properties of sue-biased permutations. 

P. ERDbS, Hungarian Academy of Sciences 

Recent problems in probabilistic number theory and combinatorics 
The following problems and results were discussed. 
Tetali and I (1990) proved that there exists a sequence a, < a ,  < e  . . such that if f ( n )  

denotes the number of solutions of 

n = eiai, ei = 0 or 1, 2 ei 5 k 
, 
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, 

then 

f ( n )  f ( n )  lim sup - = c ,  < 00, lim inf - = cz > 0. 
log n log n 

I proved this for k = 2 long ago, and Wirsing also proved it for k = 3. The general case 
presents difficulties. 

Let us now restrict ourselves to k = 2. TurAn and I conjectured 50 years ago that i f f  (n) > 0 
for every n > no then lim sup f (n) = m, and perhaps even lim sup f @)/log n > 0. I offer $500 
for a proof or disproof. I also conjectured that 

is impossible. I offer $500 for a proof or disproof of this also. 
Nathanson constructed for every k a minimal asymptotic basis of order k. The proof in 

Erd6s and Tetali (1990) gives a thin minimal asymptotic basis. Several other problems were 
discussed. 

ERDBS, P. AND TETALI, P. (1990) Representations of integers as the sum of k terms. 
Random Struct. Alg. 1, 245-262. 

L. H. HARPER, University of California, Riverside 

In search of maximum antichahis of partitions 

An antichain in a poset P is a subset of P having no comparable members. In 1928 Sperner 
showed that the largest antichain in the set of all subsets of an n-set ordered by containment, 
is its largest rank. 

Around 1967 Rota asked if the partitions of an n-set, ordered by refinement, have the 
Sperner property, i.e. is the largest antichain the largest rank? Erd6s has asked the same 
question about the partitions of n. 

In 1978 Canfield showed that the answer to Rota’s question is no; that for n sufficiently 
large (n > 6 x lV4) antichains larger than any rank exist. Subsequent gapers by Shearer and 
Kleitman lowered the upper bound on the Canfield number to 6 x 10 , but did not give any 
lower bounds on it nor ascertain whether there were antichains significantly larger than the 
largest rank. 

In 1985 the present author: 

(i) Showed how to approximate the poset of partitions of an n-set by a Gaussian process 
ordered by a cone. 

(ii) Solved the finite-dimensional analog of the Sperner problem in (i); 
(iii) Carried out calculations, based on the assumption that the solution of the Sperner 

problem is preserved by the limiting process of (i), which show that the Canfield number 
is about 6 X lo6 and that the ratio of the largest antichain to the largest rank converges to 

Recently J. Chavez and I have been investigating whether the same technique can answer 
Erd6s’s question. Our latest results were presented, indicating that the poset of partitions of n 
is asymptotically Sperner. 

1.69. 

CANFIELD, E. R. (1978) On a problem of Rota. Adu. Math. 29, 1-10. 
HARPER, L. H. (1985) On a continuous analog of Sperner’s problem. Pacific J .  Math. 118,411-425. 
ROTA, G.-C. (1%7) Research problem: A generalization of Sperner’s theorem. 1. Combinatorial 

SHEARER, J. B. (1979) A simple counterexample to a conjecture of Rota. Discrete Math. 28, 327-330. 
SPERNER, E. (1928) Ein Satz uber Untermengen einer endlichen Menge. Marh Z .  27,544-548. 

Theory 2, 104. 
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B. HARRIS, University of Wisconsin-Madison 

The early history of the theory of random mappings 
Much of the early work in the theory of random mappings was reviewed. This includes the 

contributions of Ulam, Katz, Riordan and the author. In particular, work by Golomb, Rubin 
and Sitgreaves, Folkert and Lenard was discussed. These works are of particular interest, 
because they have not been published. 

RUBIN, H. AND SITGREAVES, R. (1954) Probability distributions related to random transformation of a 

HARRIS, B. (1960) Probability distributions related t o  random mappings. Ann. Math. Statist. 31, 
finite set. Stanford University Technical Report, 19 A.  

1045- 1062. 

V. F. KOLCHIN, Steklov Mathematical Institute, Moscow 

Cycles in random graphs and hypergraphs 
For a T x n matrix A = llai,ll in GF(2) we define a hypergraph GA with n vertices and T 

hyperedges e, = { j : a i ,  = l}, t = 1 ,  . . . , T. Denote a, = (a,,, . . , a,,,}, t = 1, . . . , T. A set of 
row numbers { f l ,  . . , t,,} is called a critical set if the sum of vectors a,, + . . . + a,m is the zero 
vector. We can naturally define the concept of independence for critical sets and determine 
the maximal number s ( A )  of independent critical sets in A. The total number of critical sets 
S(A) is equal to T(A) - 1. It is not difficult to see that s(A) and the rank r ( A )  of the matrix A 
are connected by the equality r(A) +s(A) = T. Therefore we can use the more tractable 
characteristic s(A) for the investigations of rank of the matrix A. 

We consider a matrix A of a special form which corresponds to the following system of T 
random equations in GF(2): 

x , , ( , ) + . . . + x , , ( , ) = ~ , ,  t = l ; * .  , T, 

where i l ( t ) ,  . , i,(t), t = 1, . . , T, are independent identically distributed random variables 
which take values 1, - , n with equal probabilities. We denote by the matrix of this 
system. 

In the case r = 2 a critical set of the matrix AZ,n,T corresponds to an ordinary cycle in the 
ordinary graph GA2,0,T. In the case r > 2 we introduce a concept of a hypercycle as a set of 
hyperedges which corresponds to a critical set of A,,n,T. We prove a threshold property for 
the mean number of hypercycles in the hypergraph GA,,n,T. 

Let r h 3 be fixed, T, n + 00 in such a way that Tln + a. Then there exists a constant a, 
such that the mathematical expectations MS(A,,,.,)-+O if a < a,, and MS(A,.,,.,)-+~O if 
a> a,. 

The constant a, is the first component of the vector which is the only solution of the 
following system of equations in three unknowns a ,  x, I: 

ar a x ar - x I" 
cash A(-) ar - x  = 1, ;I (y) = 1, I tanh I = x.  

A. M. ODLYZKO, AT& T Bell Laboratories 

Search for the maximum of a random walk 
- be independent and identically distributed with P(Xj = 1) = P(Xj = -1) = 

$, and let s k  =XI + X2 + - + xk. Thus s k  is the position of a symmetric random walk on the 
line after k steps. Any algorithm that determines max {S,,, - , S,,} with certainty must 
examine at least c,nf of the S k  on average for a certain constant c I  > o ,  if all random walks 
with n steps are considered equally likely. There is also an algorithm that on average 
examines only c2ni of the s k  to determine their maximum for another constant c2. These 
results can be used to model some search problems on functions that are difficult to compute. 

Let X,, X1, 
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Cydes and descents of m d o m  permutations 
Formulae for the joint distribution of the cycle structure and number of descents of a 

random permutation can be derived from simpler formulae for the distribution of the cycle 
structure for a model of random riffle shiffles with at most a - 1 descents. Following Bayer 
and Diaconis (1992), for positive integer a ,  define an a-shuffle to be the probability 
distribution on the permutation group S,, that assigns n E Sn the probability 

)a- 
a + n - d - 1  

where d = d(n)  is the number of descents in n. For non-negative n, with z j n i  = n, the P, 
probability that a permutation has n, cycles of length j ,  1 5 j 5 n ,  is 

where &a is the number of aperiodic circular words of length j for an alphabet of a letters. 
This formula is a consequence of a bijection discovered by Gessel and Reutenauer (1991) 
between { 1, . , a}” and the collection of multisets of aperiodic necklaces with total length n. 
As an application of the formulae, the asymptotic behaviour of the distribution of the cycle 
structure induced by an a-shuffle can be described as n + w ,  for fixed a. The behavior of the 
large cycles is governed by Poisson-Dirichlet asymptotics, exactly as in the uniform case. But 
the limiting joint distribution of the numbers of j-cycles for a random a-shuffle, as n + 00, is 
the distribution of independent negative binomial variables with parameters (A, a-f). Only as 
a-+w does this approach the well-known limiting distribution for the uniform case defined by 
independent Poisson ( j - ’ )  variables. This is joint work with Persi Diaconis and Michael 
McGrath. 

BAYER, D. AND DIACONIS, P. (1992) Trailing the dovetail shuffle to its lair. Ann. Appl. Prob. To 

GESSEL, I. M. AND REUTENAWER, c. (1991) Counting permutations with given cycle structure and 
appear. 

descent set. Preprint. 

B. G. PIITEL, Ohio State University 
Random permutations and stable matchings 

A matching on a set of an even number of members is stable-with regard to a given 
system of members’ preferences for a partner-if no two unmatched members prefer each 
other to their partners under the matching. We study the set of stable matchings for a random 
instance of the ranking system, under an assumption that each member rank orders potential 
partners uniformly at random, independently of other members. For the bipartite version 
(‘stable marriages’) with n men and n women, we rove that almost surely the total number 
of stable matchings (marriages) is at least (n/logn)2. We show an almost sure (a.s.) existence 
of an ‘egalitarian’ marriage, for which the total rank of all spouses is about 2n4, as opposed to 
n2/log n for the extreme-female optimal and male optimal-marriages. Almost surely this 
particular matching is also (asymptotically) a ‘minimum regret’ stable marriage, with the 
largest rank of a spouse in it being close to ni  log n. Quite unexpectedly, the stable matchings 
obey-statistically-a law of hyperbola. It states that almost surely the product of the sum of 
husbands’ ranks and the sum of wives’ ranks in a stable marriage is asymptotic to n3, 
uniformly over all stable marriages. 

We also study a non-bipartite version of the stable matching problem, which is colloquially 
known as a ‘stable roommates’ problem. Here, in a set of even cardinality n,  each member 
ranks all others in order of preference. It is well known that unlike the bipartite version 
(marriages), a stable matching may not exist. We prove that, for the random instance of the 

P 
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ranking system, the mean and variance of the number of stable matchings are asymptotic to 
ed and (nn/4e)d, respectively. (For the mamages, the mean is about n lognle.) Thus P(n),  
the probability that a solution exists, is at least constlnf. What is limP(n)? Rob Irving (1985) 
has performed extensive computer runs using his two-stage proposal algorithm. (The 
algorithm delivers a stable matching whenever there is one.) The empirical data gathered so 
far indicate that the possibility of a positive limit cannot be ruled out (Irving, personal 
communication 1991). We present some preliminary results concerning the likely behavior of 
Irving's algorithm, and a hyperbola law which holds for stable tables, Irving's extensiowto 
the non-bipartite cas-f the notion of stable marriages. We also discuss likely structure of 
closely related stable (cyclic) partitions, which have been discovered recently by Tan (1991). 

Finally, we look at the probabilistic aspects of a conceptually (and mathematically) related 
trade model introduced and investigated by Shapley and Scarf (1974). 

Detailed exposition of the above results is presented in the author's papers Pittel (1989), 
(1992a, b, c). 

IRVING, R. W. (1985) An efficient algorithm for the stable roommates problem. J.  Algorithms 6, 

PIITEL, B. (1989) The average number of stable matchings. SIAM J .  Discrete Math. 2, 530-549. 
PIITEL, B. (1992a) On likely solutions of a stable marriage problem. Ann. Appl. Prob. 2, 358-406. 
P ~ L ,  B. (1992b) The 'stable roommates' problem with random preferences. Ann. Prob. 

PITIEL, B. (1992c) On a random instance of a 'stable roommates' problem. Likely behaviour of the 

SHAPLEY, L. S. AND SCARF, H. (1974) On cores and indivisibility. J.  Math. Econ. 1, 23-28. 
TAN, J. J. M. (1991) A necessary and sufficient condition for the existence of a complete stable 

577-595. 

To appear. 

proposal algorithm. Submitted. 

matching. J.  Algorithms 12, 154-178. 

L. A. SHEPP, AT& T Bell Laboratories 

Linear and non-linear codes for a s p e d  Channel 

Gargano et al. (1992) want to construct a subset, S, of the group G,, = (0, 1, -l}" with 
componentwise addition modulo 3, with as many elements as possible and with the property 
that any two codewords (elements of S) x ,  y are far apart in the sense that some component 
of the difference is 1, Le. x ( i )  - y ( i )  = 1 for some i .  (It follows that some other component of 
x - y  is -1, by interchanging the roles of x and y.) Let A(n) be the cardinality of any set S 
attaining maximum cardinality with the property. It is easy to see that A(m + n )  LA(m)A(n) 
and so A(n) =an for n + 00 for some a ,  where 2 S a  S 3. The lower bound comes from the 
example, due to the proposers, of the set 

S = { x  : x  has n/2 1s' and the rest 0's).  

If S is also required to be a subgroup of G,, then the maximum cardinality will be a 
for some b, where lh -= = b 5 - a. The lower bound number, B(n) ,  and again B ( n )  = b" as n + 

comes from the example 

S = {c,(l, -1, 0, 0, * *) +c,(O, 0, 1, -1, 0, 0, - .  0 )  + c3(0, 0, 0, 0, 1, - L O ,  0, * * e)  + * .} 

of n/2 generators of the subgroup S with n / 2  independent coefficients c,, c2, in 

We prove that these lower bounds are asymptotically best possible (for A(n), only in the 
weak sense of e), so that b = lh, and a = 2. Thus there are considerably fewer codewords 
possible if S is required to be a linear, or group code, which seems to contradict, to some 
extent, the naive belief that the more efficient (in the sense of decodability) group codes give 
up little in the sense of capacity. This is joint work with Rob Calderbank, Peter Frankl, Ron 
Graham and Wen-Ch'ing Winnie Li. 

(091, -11. 



University of Southern California, Los Angeles, 3-6 January 1992 771 

GARGANO, L., KORNER, J. AND VACCARO, U. (1992) Sperner theorems on directed graphs and 
qualitative independence. J.  Combinatorial Theory A. To appear. 

J. SPENCER, Courant Institute, New York 
The Poisson paradigm and random graphs 

When a random variable X is the sum of many indicator random variables, each rare and 
mostly independent, the Poisson paradigm is that X has close to the Poisson distribution. In 
particular, if E[X] = p then P[X = 01 should be close to e-". This is a natural situation in 
random graphs. For example, in the original papers of Erd6s and R h y i  on random graphs it 
was shown that in G(n, p) if p = p ( n )  is such that the expected number of triangles is a 
constant p then indeed the probability that there is no triangle approaches e-". 

A few years ago Svante Janson, employing a variant of the Stein-Chen method, found 
a pair of inequalities now known as the Janson inequalities. With these, results such as the 
above come out with a fairly elementary calculation on random graphs, involving no more, 
basically, than evaluation of the second moment. Applications include the following: 

Bounds on the probability that G - G(n, p) contains no subgraph H, for a fixed H and 

Fine threshold behavior for every vertex to lie in a triangle, and similar extension 

The existence of sets S of positive integers so that the number of representations 

various p = p(n) .  

statements. 

n = x  + y  + z  with x, y, z ES is @(Inn). 

ALON, N., ERDOS, P., AND SPENCER, J .  (1991) The Probabilistic Method. Wiley, New York. 

L. TAKACS, Case Western Reserve University 
On the heights and widths of random rooted trees 

Denote by S, the set of all distinct rooted trees with vertices 1 , 2 ,  . . . , n in which the root is 
labeled 1. Each tree is represented by an ordered sequence of n non-negative integers 
( i , ,  iz, + i, 2 r for 
15 r < n. In a tree, represented by ( i , ,  i z ,  . . , i n ) ,  two vertices r and s ( 1  d r < s 5 n) are 
joined by an edge if and only if io + i ,  + + i,-, < s 5 io + i, + * * + i, where i o  = 1. The 

, in) satisfying the conditions i l  + i2 + * * + in = n - 1, and i l  + i2 + 

number of trees in S, is IS,l = en-, =- , where C o = C l = l ,  Cz=2,  C3=5, 

C., = 14, 
Let {pi} be a probability distribution on the set of non-negative integers with expectation 1 

and standard deviation u (0 < u < m). Let us choose a tree at random in S,, assuming that the 
probability of a tree represented by ( i l ,  i z ,  - p i n  where 
A, is determined by the requirement & p ( i , ,  iz,  . . . , in) = 1 .  

For a tree chosen at random in S,, define the random variable t , ( rn)  as the number of 
vertices at distance m from the root. Furthermore, define p,, = max {m : t , (rn) >0} as the 
height of the tree, 6, = max { tn( rn)  : m 2 0) as the width of the tree and t, = Cmeo rnt,(rn) as 
the total height of the tree. 

Explicit formulas are given for the asymptotic distributions of t,, p,, 6, and t , ( rn)  if 
rn = [ 2 a h / u ]  where 0 < CY < m and n + m. 

V. A. VATUTIN, Steklov Mathematical Institute, Moscow 
Limit theorems for the height of a random planted plane tree 

Let tN = t N ( T )  be the height of a planted tree T chosen at random from the set SN of all 
planted plane trees having N vertices. Using a natural correspondence between the set SN and 
the set of all realizations of a simple random walk S,: &, = 0, S, > 0, 1 5 n < 2N, SN = 0, we 
find the asymptotics of P { t N > n }  as N+m,  n2N-'+m, nN-l-+O, and of P { t N = n }  as 
n2N-'+x E (0, m).  

- are the Catalan numbers. 

, in)  is p ( i l ,  i z ,  * . . , in)  = A,pi,piz 
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A. M. VERSHIK, St. Petersburg University 
Random permutations, limit shapes and asymptotic problems of partition theory 

Asymptotic properties of the limit measures which appear in additive problems in partition 
theory and number theory can be considered in a geometric manner. There are different types 
of asymptotic behaviour: ‘ergodic’, including problems like the LLN and CLT, and 
‘non-ergodic’, in which one can calculate the limit distribution and the boundary. All these 
kinds of examples appear in the context of random permutations and statistics on the 
partitions of integers or reals. It turns out that completely different problems can give us the 
same limit measures. 

0. V. VISKOV, Steklov Mathematical Institute, Moscow 
Tbe Rota umbral calculus and the Heisenberg-Weyl algebra 

and Viskov (1981), (1991)). 

subject to the identities 

The talk was based on some of the author’s papers (Viskov (1986) and references therein, 

The Heisenberg-Weyl algebra is the algebra freely generated by three variables A, B and C 

(1) C =  [A, B ] = A B  - BA, [A,  C ]  = [B,  C ]  =O. 

The main purpose of the talk was to emphasize the role played by a suitable representation of 
this algebra in contemporary umbral or operator calculus originated in a seminal paper of 
Rota (1964). 

Let p = {pn(x),  n = 0, 1, 2, . e }  be an arbitrary basis in the commutative algebra 8 of all 
polynomials of a single variable x with coefficients in a field of characteristic zero and let 2 be 
the set of linear maps from 8 into 9. Since every operator in 2 is uniquely determined by its 
actions on an arbitrary basis p of 9, the relations 

A[po(x)l = 0, A[pfl(x)I = np,- , (x) ,  n = 1,2 ,  * * ; 

B[p.(x)l =Pn+l (x ) ,  n = O ,  1,2,  . . . (2) 

give us the desirable representation of the Heisenberg-Weyl algebra if we take the identity 
map as C. The simplest particular case of this situation is p , ( x )  = x”,  n = 0, 1, 2, . . . , and 
then A = d / d r  and the operator B is multiplication by x .  

Representation (2) and the systematic use of relations (1) allow us to obtain easily many 
important formulae in the finite operator calculus (Rota (1975), Roman (1984)) including the 
recurrence and transfer formulae, umbral operators and effective tool for the composition and 
inversion of power series. Moreover, the proofs become essentially simpler. 

This approach admits a simple generalization to the multivariate case. It is also useful for 
analysis of many other situations, for instance, in the Stanley (1988) theory of differential 
posets. 

ROMAN, S. M. (1984) The Umbral Calculus. ,Academic Press, Orlando, FL. 
ROTA, G.-C. (1964) The number of partitions of a set. Amer. Math. Monrhly 71, 498-504. 
ROTA, G.-C. (1975) Finite Operator Calculus Academic Press, New York. 
STANLEY, R. P. (1988) Differential posets. J. Amer. Math. SOC. 1,919-961. 
VISKOV, 0. V. (1981) A class of linear operators. In Generalized Functions and their Applications, 

VISKOV, 0. V. (1986) A noncommutative approach to classical problems of analysis. Trudy Mar. Inst. 

VISKOV, 0. V. (1991) On the ordered form of noncommutative binomial. Uspechi Mat. Nauk 46, 

Proc. Inter. Conference, Moscow, pp. 110-120 (in Russian). 

Steklov 177, 21-32. (in Russian). English translation in Proc. Sreklou Inst. Marh. 1988 (4). 21-32. 

209-210. (in Russian). 

H. S. WILF, University of Pennsylvania 

Ascending subsequences of permutations and Young tableaux 
It is well known, from Shensted’s algorithm, that there is a relationship between the longest 
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increasing subsequence in a permutation and the length of the first row of a Young tableau. 
This talk presented a quantitative version, Le. an explicit relationship between the numbers 
of permutations of n letters whose longest increasing subsequence is of length k and of 
Young tableaux of n cells whose first row has length k. The relationship is surprisingly simple. 
A number of unsolved problems were raised. 

CONTRIBUTED PAPERS 

W. J. EWENS, University of Pennsylvania 
Sampling properties of random mappings 

A random mapping of {1,2, . . . , m }  to {1,2, . . , m }  leads to a (random) component 
structure. We consider the induced structure on a sample of n integers, which can be taken to 
be { 1 , 2 , - .  , n } ,  n S m .  Aldous (1985) has shown that, as m+m, with n fixed, the 
probability structure of the induced partition of {1,2, . , n} into components converges 
weakly to the Ewens sampling formula with parameter f . However, in this formula, as n + m, 
various interesting quantities do not converge to the corresponding limiting (m + 00) 

properties of the original component partition. For example, if Ul(n,  m )  is the number of 
induced components of size 1 in the sample, then 

lirn EUl(n, rn) = e-', 
m-m 

and 

lim lim EUl(n, m )  = t .  

The possibility for the inequality arises because Ul(n, m )  cannot be expressed as a bounded 
continuous function of the component sizes. Corresponding problems do not arise for random 
permutations. 

n- m-m 

ALDOUS, D. J. (1985) Exchangeability and related topics. Lecture Notes in Mathematics 
1117, 1-198, Springer-Verlag, Berlin. 

B. FRISTEDT, University of Minnesota 

Random partitions of large integers 
Random partitions of integers are treated for the case where all partitions of an integer n 

are equally likely. The focus is on limit theorems as n + w  In particular, as n + m , ,  the 
decreasing sequence of large parts, beginning with the largest part, then the next largest part, 
etc. approaches, when appropriately normalized, a certain Markov chain which can be 
explicitly identified. The major tool is a simple construction of random partitions that treats 
the number being partitioned as a random variable in such a way that the numbers of parts of 
various sizes are independent random variables. The Markov result and other results using 
this construction are in Fristedt (1992). 

FRISTEDT, B. (1992) The structure of random partitions of large integers. Trans. Amer. Math. SOC. To 
appear. 

D. R. GAVELEK, XonTech Znc. 
The heigbt of elements in random mappings 

Interest in the properties of random mappings was stimulated almost forty years ago by 
Metropolis and Ulam. Over the intervening years random mapping models have been used in 
applications ranging from random number generation and cryptology to the simulation of 
epidemic processes and tests of the intrinsic randomness of quantum mechanics. In this 
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paper approximately twenty characteristics related to the height distributions of elements in 
the functional graphs or de  Bruijn diagrams representing a random map were discussed. 
Some of these distributions are well known. Other results, such as the expected number of 
ancestors of an element of height H, and the average height of an orphan point, appear to be 
new. As an additional unifying factor it was shown that all of these parameters are naturally 
expressed in terms of the incomplete gamma function. 

A. P. GODBOLE, Michigan Technological University 

Some results on Poisson and compoond Poisson approximation 

Let N = N(n ,  k) denote the number of non-overlapping Occurrences of a fixed k-letter word 
obtained while generating n letters from a &letter alphabet; the generation is performed 
either in an i.i.d. fashion or according to a positive transition matrix r. We obtain improved 
Poisson approximations for 2 ( N )  using the Stein-Chen method and eigenvalue bounds on 
convergence to stationarity for non-reversible chains. A Poisson approximation is also derived 
for the distribution of X(n ,  k), which denotes the number of matches obtained, while 
sampling n times (with replacement) from an urn with m balls, and when only the k 
previously drawn balls are remembered. Finally, process versions of the Stein-Chen 
technique are employed to obtain a compound Poisson approximation in a non-i.i.d. urn 
problem related to the determination of the number X of winners of a lottery jackpot. 

J. C. HANSEN, Northeastern University 

Order statistics for random combinatorial structures 
We consider labeled and unlabeled ‘decomposable’ combinatorial structures which are 

characterized by >he following generating function equations. In the labeled case, P ( z )  = 
exp C ( z )  wbere P ( z )  is the exponential generating function for the number of structures of 
size n and C ( z )  is the exponential generating function for the number of connected structures 
of size n. In the unlabeled case, P ( z )  = exp (C(z )  + C(z2)/2 + . . 0 )  where P ( z )  is the ordinary 
generating function for the number of structures of size n and C ( z )  is the ordinary generating 
function for the number of ‘connected’ structures of sue  n. In both cases, we are interested in 
the measure induced V = { { x i }  : x ,  B x 2  B . . . Z  0, xi 5 1) by the (decreasing) sequence of 
order statistics for the component sizes ,Of a random structure of size n (normalized by n) .  We 
show that if the generating functions C(z ) ,  in the labeled case, and C(z ) ,  in the unlabeled 
case, are logarithmic functions then the induced measures on V converge in distribution to a 
Poisson-Dirichlet distribution on V. In the labeled case, this result unifies results known for 
particular examples such as random permutations and random mappings. In the unlabeled 
case, this gives new distributional results for examples such as factorization of polynomials 
over GF(q). 

L. HOIST, Royal Institute of Technology, Stockholm 

On mhage problems 
Consider n couples seated at a circular table with men and women taking alternating seats 

but otherwise completely random seating. Let W be the number of couples sitting next to 
each other. To determine the distribution of W is sometimes called the menage problem; it is 
considered to be a tricky combinatorial problem. When n is large the distribution is 
approximately Po(2); the variation distance between the exact and the approximation is 
xn- ’ .  Much better approximation is obtained by Bi (h, l /n) giving the variation distance 
=n-*. The menage problem can be generalized in various ways, e.g. letting there be many 
tables. The corresponding random variables are of the form W = cij&j with (cii) a given 
binary matrix and (hi) a random permutation matrix. Good explicit upper bounds between 
the variation distance of such distributions and Poisson with the same mean can be given. 
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HOLST, L. (1991) On the ‘problbme des mtnages’ from a probabilistic viewpoint. Statist. Prob. Lett. 

BARBOUR, A. D., HOLST, L. AND JANSON, S. (1992) Poisson Approximation. Oxford University 
11, 225-231. 

Press. 

Z.-X. HU, University of Illinois, Urbana 
On ( [ n ] ,  P)-partitions 

We introduce the concept of ( [ n ] ,  P)-partitions which are generalizations of partitions of 
[n] .  (It was inspired by R. P. Stanley’s (P, o)-partitions)) where P is a poset and 
[n] = {1,2, . , n } .  Many mathematical models can be considered as special cases of 
(In], P)-partitions. One interesting application of ([n], P)-partitions is the special way of 
realizing a finite poset P by the complete graph K,, on [n] .  A new parameter n(P)  (called the 
norm of P) is naturally derived. n(P) gives an indication of the complexity of P by reflecting 
both IP( and order relations in P. We also introduce some new results about ( [ n ] ,  P)-  
partitions and n(P).  

Hu, Z.-X. (1990) On generalized partitions of an N-set. Congressus 76, 55-62. 
STANLEY, R. P. (1972) Ordered structures and partitions. Amer. Math. Memoires 119, 1-104. 

J. JAWORSKI, Adam Mickiewicz University, Poznan 
The evolution of a random mapping 

A random mapping (T,,; q )  of a finite set V = (1, - e e ,  n }  into itself assigns independently 
to each i E V its unique image j = T ( i )  E V with probability q for i = j and with probability 
P = (1 - q ) / ( n  - 1) for i # j .  We study the evolution of a random digraph GTm(q), repre- 
senting (T,,; q), as its arc-occurrence probability P = P(n)  increases from 0 to l/(n - 1). The 
structure of functional digraphs enables asymptotic studies of exact discrete distributions of 
many characteristics related to G,. For example, we consider the number of predecessors of 
m given vertices, the quasi-binomially distributed random variable associated with a 
particular epidemic process. Finally, let (T,,; M )  be a random element of a family of all 
loopless digraphs on n vertices with exactly M vertices of outdegree 1 and n - M vertices of 
outdegree 0. Clearly, there is an equivalence between (T,,; q) and (T,,; M). Moreover, (T,,; M) 
can be treated as the Mth stage of the ‘regular’ random digraph process {Gro(M)}$=il) .  We 
study the appearance of the first cycle in such a process and the structure of the digraph near 
the critical point M = n. 

P. J. JOYCE, University of Idaho 
Poisson limit laws for dependent random permutations 

- , C,,, 0, 0, - - e) for a random permutation Il of 
length n distributed according to the Ewens sampling formula converges to a Poisson process 
with independent coordinates. This result is extended to a vector of random permutations 
Il = (H1, * * , n,) in the following way. Let Y = (K,  . , Yd) be an integer-valued random 
vector with EL, yl. = n. Conditional on Y, ni is a permutation of length distributed 
according to a Ewens sampling formula. For i = 1, . . * , d define Ci = (Ci,, * -), 
where Cij is the number of cycles of size j in permutation Hi. It can be shown that for a wide 
class of distributions for Y, the Ci convergence to independent Poisson processes. Total 
variation techniques are used to establish the result. The work is motivated by a problem in 
population genetics. This is joint work with Simon Tavar6. 

V. I. KHOKHLOV, Steklou Mathematical Institute, Moscow 
On the structure of a non-uniformly distributed random graph 

We consider a random graph G,.,r with N labelled vertices and T edges. These T edges are 
obtained by T independent trials. In each trial the edge between vertices i and j occurs with 

The process of cycle counts (Cl, C,, 

, C,, 0, 
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the probability 2pipj, and the loop at the vertex i occurs with the probability p t ;  

Let N + a ,  2TIN+ A, p i  = a, /N,  a, = a j ( N ) ,  i = 1, 2, . . . , N, and suppose there exists a 
i , j = l ; . . , N , p l ; . . , p N g O , p l + . . .  + P N  = 1. 

r N  
limit 

a 2 =  lim 
N - = N , = ,  

and positive constants E and E such that E Said E, i = 1,2 ,  . . . , N. Then, under the 
additional condition ka2< 1, the graph GN,T, with probability approaching 1, does not contain 
components with more than one cycle and tree-components that have more than c l o g N  
vertices, where c is a constant. Moreover, under these conditions the distribution of the 
number of cycles in the graph converges to the Poisson distribution with parameter 
A = - $  In (1 - h2). 

< 

KOLCHIN, V. F. AND KHOKHLOV, V. 1. (1990) On the number of cycles in a non-equiprobable random 

KOLCHIN, V. F. AND KHOKHLOV, V. I .  (1991) On the structure of a random graph with nonuniform 
graph. Diskretnaya Matematika 2, 137-145 (in Russian). 

distribution. In New Trends in Probability and Statistics, Vol. 1 ,  pp. 445-456, VSPfMokslas. 

P. MA?THEWS, University of Maryland Baltimore County, Baltimore 
A lower bound on the probability of conflict under non-uniform access in database systems 

We consider an N item database and t transactions, each of which will independently 
request a subset of the items. For i = 1, * , t transaction i will request ni items according to 

some probability distribution on the sets of ni items. We say there are no conflicts if the t 

chosen sets are all disjoint. In probabilistic language t complexes of balls are being allocated 
independently to N urns, and we are considering the probability that no urn receives two or 
more balls. If each of the complexes is of size 1, the problem is the generalization of the 
birthday problem to birthdays with a non-uniform probability distribution. If the transactions 

choose simple random samples, then the probability of no conflicts is 

(3)-'. We give a class of sampling schemes of practical interest and show that, within this 

class, the probability of no conflicts is no larger than that for simple random sampling. This 
supports a long-standing conjecture in the database community that uniform access minimizes 
the probability of conflicts. This is joint work with K. Humenik, A. B. Stephens, and Y. 
Yesha. 

E. SCHMUTZ, Drexel University 

Part size statistics on general partition families 
Put a uniform probability distribution on the set of partitions of the integer n into parts that 

are elements of a certain set A. If A , ,  A*, * * . , Ad are disjoint sets whose union is A, let e(A) 
denote the number of part sizes that the partition A has in Ai. Under certain conditions, due 
essentially to Meinardus, the random vector P = (P,, P2, , Pd) is asymptotically normally 
distributed. 

(3 

N )(IL 
( n , ,  . . . , n, 

* 

MEINARDUS, G. (1954) Asymptotische Aussagen iiber Partitionen. Mark Z. 59, 225-241. 

W. STADJE, University of Osnabriick, Germany 

On sets of integers with prescribed gaps 

length satisfying p I  - P , - ~  E I for 1 = 2, 
For a fixed set I of positive integers we consider the set of paths ( p o ,  - - , p k )  of arbitrary 

, k and p a  = 1, p k  = n. Equipping it with the 
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. 

uniform distribution, the random path length T, is studied. Asymptotic expansions of the 
moments of T, are derived and its asymptotic normality is proved. The step lengths p ,  - p I - ,  
are seen to follow asymptotically a restricted geometrical distribution. Analogous results are 
given for the free boundary case in which the values of p o  and p k  are not specified. In the 
special case Z = { m  + 1, m + 2, - . -} (for some fixed m E N) we derive the exact distribution of 
a random 'm-gap' subset of (1, - * , n} and exhibit some connections to the theory of 
representations of natural numbers. A simple mechanism for generating a random m-gap 
subset is also presented. This is joint work with Y. Baryshnikov. 

J. M. STEELE, University of Pennsylvania 

Long common subsequence problems 
If Xi and k: are independent random variables with values in the same alphabet, the 

variable L, that we investigate is defined as the maximal m such that there are subsequences 
i I ,  i2 ,  . - , i ,  and j , ,  j 2 ,  - , jm of { 1,2, - . , n} such that X ,  = yk for all 1 S k 5 m.  This talk 
briefly reviews recent progress on the tightness of concentration and other properties of this 
variable. 

P. TETALI*, DZMACS Center, Rutgers University 

Covering with latin transversals 
Given an n X n matrix A = [a,], a transversal of A is a set of elements, one from each row 

and one from each column. A transversal is a latin transversul if no two elements are the 
same. There have been more conjectures than theorems on latin transversals in the literature. 
Recently, Erdiis and Spencer (1990) showed that there always exists a latin transversal in any 
n x n matrix in which no element appears more than s times, for s 5 (n - 1)/16. Here we 
show that, in fact, all the elements of the matrix can be partitioned into latin transversals, 
provided n is a power of 2 and no element appears more than En times for some fixed E > 0. 

Theorem. Let n be 2". Any n X n matrix in which no element appears more than s times 
contains n disjoint latin transversals provided s 5 En (for  E, an absolute constant <<l). 

The assumption that n is a power of 2 can be weakened, but at the moment we are unable 
to prove the theorem for all values of n. On the other hand, our proof can be easily modified 
to prove the existence of many pairwise disjoint transversals in any n X n matrix in which no 
entry appears more than En times, without any restriction on n. Therefore our method implies 
a strengthening of the result of ErdBs and Spencer for any n, (apart from the actual value of 
the constant E) .  The proof of the theorem involves random partitioning and the Lovrfsz local 
lemma. This is joint work with N. Alon and J. Spencer. 

. .  

E R D ~ S ,  P. AND SPENCER, J .  (1990) Lopsided Lovhz local lemma and latin transversals. Disc. Appl. 
Math. 30, 151-154. 

* Now at AT&T Bell Laboratories, Murray Hill. 
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