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DNA sequences record the history of life. Although DNA replication is

remarkably accurate, mutations do occur at a small but non-negligible rate,

with the result that an individual's descendants begin to diverge in DNA

sequence over time. By examining DNA sequences among di�erent species

or among di�erent individuals within a single species, it is possible to recon-

struct aspects of their evolutionary history. Such studies have been pursued

with special interest in the human, where an unusual DNA sequence called

the mitochondrial genome has been used to trace human migrations and hu-

man evolution. The author shows how mathematical tools from the theory

of stochastic processes assist in calibrating the molecular clock inherent in

DNA sequences.
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1 Introduction

DNA sequences record the history of life: While DNA sequences are trans-

mitted from parent to child with remarkable �delity, mutations occur at a

small but non-negligible rate with the result that an individual's descendants

begin to diverge in DNA sequence over time. Some mutations are deleterious

and are eliminated by natural selection, but many are thought to be selec-

tively neutral and thus accumulate at a roughly steady rate { providing a

molecular clock for measuring the time since two species or two individuals

within a species shared a common ancestor. In this manner, it is possi-

ble to reconstruct an evolutionary tree and even estimate the times of key

separation events.

Di�erent biological sequences within an organism may obey di�erent

clocks. The amino acid sequence of a protein encoded by a gene changes

more slowly than the DNA sequence of the underlying gene because many

amino acid changes may be selectively disadvantageous (because they dis-

rupt function). On the other hand, a signi�cant proportion of DNA changes

may be selectively neutral because they create a synonymous codon (that

is, one that speci�es the same amino acid). Similarly, DNA regions within

genes change at a slower rate than the DNA sequences located between genes.

Accordingly, evolutionary studies of distant species are often carried out by

examining amino acids sequences of proteins, while evolutionary compar-

isons among more closely related species are better done by examining DNA

sequences within or between genes.

To study evolution within a single species such as the human, it is often

useful to study DNA sequences that change at especially rapid rates. The

mitochondrial genome provides an ideal substrate for such studies. The mi-

tochondrion is an organelle found in the cytoplasm of eukaryotic cells, whose

primary role is to generate high-energy compounds that the cell uses to drive

chemical reactions. Although the mitochondria use many proteins that are
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encoded by genes in the cell nucleus, it has its own small circular chromosome

that encodes a few dozen genes essential for its function.

In the human, the mitochondrial genome consists of 16,569 base pairs

whose DNA sequence has been completelydetermined (Anderson et al. 1981).

Human mitochondria are inherited only from the mother, so their geneal-

ogy is considerably simpler to follow than for genes encoded in the nucleus

(which are inherited from both parents and are subject to recombination be-

tween the two homologous copies in the cell). Conveniently for evolutionary

studies, mitochondrial DNA has an increased rate of nucleotide substitution

compared to nuclear genes, owing to the presumed absence of certain DNA

repair mechanisms. Moreover, the mitochondrial genome contains certain

regions that are particularly tolerant of mutation (i.e., appear to be subject

to little selective pressure; Avise (1986)) and thus show a great deal of varia-

tion. In all, the mitochondrial genome may be evolving ten times faster than

the nuclear genome.

For these reasons, molecular population geneticists have carried out many

studies of the DNA sequences of mitochondrial variable regions in many hu-

man populations (DiRienzo and Wilson (1991), Horai and Hayasaka (1990),

Vigilant et al. (1989; 1991) and Ward et al. (1991)). Studies of mitochon-

drial sequences of di�erent Native American tribes strongly suggest that there

were multiple waves of colonization of North America by migrant groups from

Asia, and even allow one to estimate the date of these events (Schurr et al.

1990; Ward et al. 1991). Assuming a constant evolutionary rate, the pattern

of mutations between diverse human groups has been used to argue (Cann,

Stoneking and Wilson, 1987) that the mitochondria of all living humans de-

scended from a mother that lived in Africa some 200,000 years ago { the

so-called Eve hypothesis. Although the precise details of the hypothesis are

disputed (Maddison (1991), Nei (1992), Templeton (1992)), the general power

of the methodology is well accepted. (As an aside, the reader should note

that the existence of a common ancestor { Eve, so to speak { is a mathemat-
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ical necessity in any branching process that satis�es very weak conditions.

The biological controversies pertain to when and where Eve lived.)

Each of these applications requires a knowledge of the rate at which muta-

tions occur in a mtDNA sequence. Estimates of this rate have been obtained

by comparing a single DNA sequence from each of several species whose

times of divergence are presumed known. Divergence is calculated from the

number of nucleotide di�erences between species (using methods that cor-

rect for the possibility of multiple mutations at a site) and rate estimates are

obtained by dividing the rate of sequence divergence by the divergence time.

For data taken from multiple individuals in a single population, one requires

a model that takes account of the population genetic aspect of the sampling:

individuals in the sample are correlated by their common ancestry. In this

chapter, we describe the underlying stochastic structure of this ancestry, and

use the results to estimate substitution rates.

We have chosen to focus on rate estimation to give the chapter a single

theme. We will not be interested per se in statistical aspects of tests for

selective neutrality of DNA di�erences; rather we assume neutrality for the

data sets discussed as examples. The techniques described here should be

regarded as illustrative of the theoretical and practical problems that arise in

sequence analysis of samples from closely related individuals. The emphasis

is on exploratory methods that might be used to summarize the structure of

such samples.

1.1 Overview

To illustrate the methods, we use a set of North American Indian mitochon-

drial sequences described in Ward et al. (1991). These authors sequenced

the �rst 360 base pairs of the mitochondrial control region for a sample of

63 Nuu-Chah-Nulth (Nootka) Indians from Vancouver Island. The sample

comprises individuals who were maternally unrelated for four generations,
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chosen from 13 of the 14 tribal bands. As a consequence the sample devi-

ates from a truly random sample, although it will be treated as such for the

purposes of this chapter. An important parameter in the analysis is the ef-

fective population size of the group. This is approximated by the number of

reproducing females, giving a value of about 600 for the long-term e�ective

population size N .

The most common DNA changes seen in mitochondria are transitions

(changes from one pyrimidine base to the other or one purine base to the

other { i.e., C $ T or A $ G) rather than transversions (change from a

pyrimidine to a purine or vice versa) Indeed, the sequenced region shows no

transversions, so that each site in the sequences has one of just two possible

nucleotides. We focus on the pyrimidine (C or T ) sites in the region. There

are 201 such sites, in which 21 variable (or segregating) sites de�ne 24 distinct

sequences (called alleles or lineages). The details of the data, including the

allele frequencies, are given in Table 1.

The parameter of particular interest here is �, the population geneticist's

stock in trade. � is a measure of the mutation rate in the region and it

�gures in many important theoretical formulas in population genetics. For

mitochondrial data, it is de�ned by

� = 2Nu

where N is the e�ective population size referred to earlier, and u is the

mutation rate per gene per generation. Once � is estimated, we can estimate

u if N is known or N if u is known. In what follows, we estimate the

compound parameter � rather than its components.

In Section 2 we begin by outlining the structure of the coalescent, a ro-

bust description of the genealogy of samples taken from large populations.

The e�ects of mutation are superimposed on this genealogy in several ways.

The classical case, which records the allelic partition of the sample, leads to

the sampling theory of the in�nitely-many-alleles model initiated by Ewens
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Table 1: Nucleotide Position in Control Region

1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3

Position 6 8 9 2 4 6 6 9 0 1 3 4 5 6 7 7 0 0 0 1 3 allele

9 8 1 4 9 2 6 4 0 9 3 7 5 7 1 5 1 2 4 9 9 freqs.

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ID ref T C C C T C T T C C C C C C C T T T C T T

1 . . . . . . C . T . . . T . . . . . . . . 3

2&3 . . . . . . . T . . . T . . . . . . . . 3

4 . . . . . . . . T . . . T . . . . . . . C 1

5 . T . . . T . . T . . . . T . . . . . . C 2

6 . T . . . . . . T . . . . . . . . . . . C 2

7 C T . . . . . . T . . T . . . . . . . . C 1

8,10,& 11 . T . . . . . . T . . . . T . . . . . . C 8

9 C T . . . . . . T . . . . T . . . . . . C 2

12 & 13 . T . . . . . . . . . . . T . . . . . . C 10

14 . T . . . . . . T . . . T T . . . . . . C 1

15 . T . . . . . . T . . . T T . . C . . . C 2

16 . . . . . . . . T T . . . . . . . . T . C 1

17 . . . T . . . . T . . . . . . . C . . . C 1

18 . . . T . . . . T . . . . . . . . C . . C 2

19 . . T . . . . . T . . . . . T . . C . . C 1

20 . . . . C . . . T . . . . . . . . C . . C 3

21 . . . . . . . . T . . . . . . . . C . . C 3

22 C . . . . . . . T . . . . . . . . C . . . 3

23 . . . . . . . . T T . . . . . C . C . . . 1

24 . . . . . . . . T . . . . . . C . C T . . 7

25 . . . . . . . . T T . . . . . C . C T C . 3

26 . . . . . . . . . T . . . . . C . C T C . 1

27 . . . . . . C C . . . . . . . . . . . . . 1

28 . . . . . . C C . . T . . . . . . . . . . 1

Mitochondrial data from Ward et al (1991, Figure 1). Variable pyrimidine positions in the control region. Position 69

corresponds to position 16,092 in the human reference sequence published by Anderson et al (1981). The ID numbers

correspond to those given in Ward et al., Figure 1.
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(1972). The Ewens sampling formula is then described, followed by a brief

digression into the simulation structure of mutations in the coalescent, both

in top-down and bottom-up form. Next, the in�nitely-many-sites model is

introduced as a simple description of the detailed structure of the segregating

sites in the sample. Finally, we return to classical population genetics theory,

albeit from a coalescent point of view, to discuss the structure of K-allele

models. This in turn develops into the study of the �nitely-many-sites mod-

els, which play a crucial role in the study of sequence variability when back

substitutions are prevalent.

In Section 3 we digress to present a mathematical vignette in the area of

random combinatorial structures. The Ewens sampling formula was derived

as a means to analyze allozyme frequency data that became prevalent in the

late 1960s. Current population genetic data is more sequence oriented, and

requires more detailed models for its analysis. Nonetheless, the combina-

torial structure of the Ewens sampling formula has recently emerged as a

useful approximation to the component counting process of a wide range of

combinatorial objects, among them random permutations, random mapping

functions, and factorization of polynomials over a �nite �eld. We show how

a result of central importance in the development of statistical inference for

molecular data has a new lease on life in an area of discrete mathematics.

Finally, Section 4 brie
y discusses some of the outstanding problems in

the area, with particular emphasis on likelihood methods for coalescent pro-

cesses. Some aspects of the mathematical theory, for examplemeasure-valued

di�usions, are also mentioned, together with applications to other, more com-

plicated, genetic mechanisms.

2 The coalescent and mutation

The genealogy of a sample of n genes (i.e., stretches of DNA sequence)

drawn at random from a large population of approximately constant size
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may be described in terms of independent exponential random variables

Tn; Tn�1; : : : ; T2 as follows. The time Tn during which the sample has n dis-

tinct ancestors has an exponential distribution with parameter
�
n

2

�
; at which

time two of the lines are chosen at random to coalesce, giving the sample

n � 1 distinct ancestors. The time Tn�1 during which the sample has n � 1

such ancestors is exponentially distributed with parameter
�
n�1

2

�
, at which

point two more ancestors are chosen at random to coalesce. This process of

coalescing continues until the sample has two distinct ancestors. From that

point it takes an exponential amount of time T2, with parameter
�
2

2

�
= 1,

to trace back to the sample's common ancestor. For our purposes, the time

scale is measured in units of N generations, where N is the (e�ective) size

of the population from which the sample was drawn. This structure, made

explicit by Kingman (1982a,b), arises as an approximation for large N to

many models of reproduction, among them the Wright{Fisher and Moran

models. A sample path of a coalescent with n = 5 is shown in Figure 1.

Insert Figure 1 about here

From the description of the genealogy, it is clear that the time �n back to

the common ancestor has mean

E�n =
nX

j=2

ETj =
nX

j=2

2

j(j � 1)
= 2

�
1 �

1

n

�
;

or approximately 2N generations for large sample sizes. Further aspects of

the structure of the ancestral process may be found in Tavar�e (1984). Rather

than focus further on such issues, we describe how the genealogy may be used

to study the genetic composition of the sample.

To this end, assume that in the population from which the sample was

drawn there is a probability u that any gene mutates in a given generation,

8



mutation acting independently for di�erent individuals. In looking back r

generations through the ancestry of a randomly chosen gene, the number of

mutations along that line is a binomial random variable with parameters r

and u. If we measure time in units of N generations, so that r = bNtc,

and assume that 2Nu ! � as N ! 1, then the Poisson approximation to

the binomial distribution shows that the number of mutations in time t has

in the limit a Poisson distribution with mean �t=2. This argument can be

extended to show that the mutations that arise on di�erent branches of the

coalescent tree follow independent Poisson processes, each of rate �=2. For

example, the total number of mutations �n that occur in the history of our

sample back to its common ancestor has a mixed Poisson distribution { given

Tn; : : : ; T2, �n has a Poisson distribution with mean 1
2
�
P

n

j=2 jTj. The mean

and variance of the number of mutations are given by Watterson (1975):

E�n =
�

2

nX
j=2

jETj = �
n�1X
j=1

1

j
; (1)

and

Var�n = �
n�1X
j=1

1

j
+ �2

n�1X
j=1

1

j2
: (2)

We are now in a position to describe the e�ect that mutation has on the

individuals in the sample.

2.1 The Ewens Sampling Formula

Motivated by the realization that mutations in DNA sequences could lead to

an essentially in�nite number of alleles at the given locus, Kimura and Crow

(1964) advocated modeling the e�ects of mutation as an in�nitely-many-

alleles model. In this process, a gene inherits the type of its ancestor if no

mutation occurs, and inherits a type not currently (or previously) existing in

the population if a mutation does occur. In such a process the genes in the

sample are thought of as unlabeled, so that the experimenter knows whether
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two genes are di�erent, but records nothing further about the identity of

alleles. In this case the natural statistic to record about the sample is its

con�guration Cn � (C1; C2 : : : ; Cn), where

Cj = number of alleles represented j times:

Of course, C1+2C2+ � � �+nCn = n, and the number of alleles in the sample

is

Kn � C1 + C2 + � � �+ Cn: (3)

The sampling distribution of Cn was found by Ewens (1972):

P(Cn = a) =
n!

�(n)

nY
j=1

 
�

j

!aj 1

aj!
; (4)

for a = (a1; : : : ; an) satisfying aj � 0 for j = 1; : : : ; n and
P

n

j=1 jaj = n, and

where

�(n) � �(� + 1) � � � (� + n� 1):

From (4) it follows that

P(Kn = k) =
jSk

n
j�k

�(n)
; k = 1; : : : ; n (5)

and

EKn =
n�1X
j=0

�

� + j
; (6)

Sk

n
being the Stirling number of the �rst kind. From (5) and (4) it follows

that Kn is su�cient for �, so that the information in the sample relevant for

estimating � is contained just in Kn. This allows us (Ewens, 1972, 1979)

to calculate the maximum likelihood (and moment) estimator of � as the

solution �̂ of the equation

k =
n�1X
j=0

�̂

�̂ + j
(7)
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where k is the number of alleles observed in the sample. In large samples,

the estimator �̂ has variance given approximately by

Var(�̂) � �

 
nX

k=2

k � 1

(� + k � 1)2

!
�1

(8)

For the pyrimidine sequence data described in Section 1.1, there are k =

24 alleles. Solving equation (7) for �̂ gives �̂ = 10:62, with a variance of

9.89. An approximate 95% con�dence interval for � is therefore 10.62 �

6.29. This example serves to underline the variability inherent in estimating

� from this model. The pyrimidine region comprises 201 sites, so that the

per site substitution rate is estimated to be 0.053 � 0.031.

The goodness of �t of the model to the data may be assessed by using the

su�ciency of Kn for �: given Kn, the conditional distribution of the allele

frequencies is independent of �. Ewens (1972, 1979) gives further details on

this point. To describe alternative goodness-of-�t methods, we return brie
y

to the probabilistic structure of mutation in the colaescent.

2.2 Forwards and backwards in the tree

Hudson (1991) decribes many situations in which simulation of genealogical

trees is useful. In its simplest form, the idea is to construct (a simulation

of) a coalescent tree, with times and branching order, and then superimpose

the e�ects of mutation on this tree using the Poisson nature of the mutation

process. In this section we make use of two equivalent descriptions of the ef-

fects of mutation in the coalescent tree in which the mutations and coalescent

events evolve simultaneously.

2.2.1 Top-down

The �rst of these methods is a very useful `top-down' scheme exploited by

Ethier and Gri�ths (1987) in the context of the in�nitely-many-sites model.
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We start at the common ancestor of sample, and think of the genetic process

running down to the sample. Just after the �rst split, we have a sample of two

individuals, each of identical genetic type. Attach to each individual a pair

of independent exponential alarm clocks, one of rate �=2, the second of rate

1=2, and suppose the clocks are independent for di�erent individuals. The

�-clocks will determine mutations, the other clocks split times. Now watch

the clocks until the �rst one rings: if a �-clock rings, a mutation occurs in

that gene, whereas if one of the other clock rings, a split occurs in which that

gene is copied, now making a sample of three individuals. Using the standard

`competing exponentials' argument, the probability that a mutation occurs

�rst is
�=2 + �=2

�=2 + �=2 + 1=2 + 1=2
=

�

� + 1
;

whereas a split occurs �rst with probability 1=(� + 1). Furthermore, given

that a mutation occurs �rst, the gene in which it occurs is chosen uniformly

and at random, and given that a split occurs �rst, the gene that is copied is

chosen uniformly and at random.

Once an event occurs, the process repeats itself in a similar way. Suppose,

then, that there are currently m genes in the sample. Attach independent

mutation clocks of rate �=2 and independent split clocks of rate (m � 1)=2

to each of the m genes, and wait for one to ring. The probability that a

mutation clock rings �rst is �=(�+m�1), and, given that a mutation occurs

�rst, the gene that mutates is chosen uniformly and at random. Similarly,

the probability that a split occurs �rst is (m � 1)=(� + m � 1), with the

splitting gene being chosen at random from the m possibilities.

The only wrinkle left is to describe the rule that tells us when to stop

generating splits or mutations. In order to have the right distribution for the

numbers of mutations when the sample has n ancestors, we must run until

the �rst split after n, discard the last observation and then stop.

This simple scheme can be used e�ectively to simulate observations from
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extremely complex mutation mechanisms using only Bernoulli random vari-

ables, and a way of generating and storing the e�ects of each of the mutations.

Some examples are given in the following sections.

2.2.2 Bottom up

The second scheme, which proves very useful for deriving recurrence relations

for the distribution of allele con�gurations, is the `bottom-up' method. In

this case, the idea is to use the exponenetial alarm clocks from the bottom

of the tree (that is, beginning at the sample) and run up to the common

ancestor at the top. If we look up from the sample of size n toward the

root, the probability that we will encounter a mutation before a coalescence

is �=(� + n � 1), and the probability that a coalescence occurs �rst is (n �

1)=(� + n� 1). The probability distribution of the con�guration at the tips

may then be related to the distribution of the con�guration at the mutation

or coalescence time.

To illustrate how this works, consider the in�nitely-many-alleles muta-

tion structure. Suppose that the current con�guration consists of counts

a = (a1; : : : ; an) with an = 0, and let Pn(a) denote the probability of this

con�guration. If the �rst event in the past is a coalescence, then the con�g-

uration of n� 1 genes must have been

(a1; : : : ; aj + 1; aj+1 � 1; : : : ; an�1)

for some j = 1; 2; : : : ; n � 2, and a gene in class j must be chosen to have

an o�spring. Since this last event has probability
j(aj+1)

n�1
, the contribution to

Pn(a) from such terms is

n� 1

� + n� 1

2
4n�2X
j=1

j(aj + 1)

n� 1
Pn�1(a1; : : : ; aj + 1; aj+1 � 1; : : : ; an�1)

3
5 : (9)

If on the other hand the �rst event in the past was a mutation, then the
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con�guration must have been either

(a1 � 1; a2; : : : ; aj�1 � 1; aj + 1; : : : ; an�1; 0)

and the mutation occurred to a gene in a j class, j = 3; : : : ; n�1 (probability

j(aj + 1)=n), or

(a1 � 2; a2 + 1; a3; : : : ; an�1; 0)

and the mutation occurred to a gene in the 2 class (probability 2(a2+1)=n),

or

(a1; : : : ; an�1; 0)

and the mutation occurred to a singleton gene (probability a1=n). Finally,

the con�guration could have been

(a1 � 1; a2; : : : ; an�2; an�1 � 1; 1)

and the mutation occurred in the n class (probability 1). Combining all these

possibilities, and adding the term in (9), gives

Pn(a) =
�

� + n � 1

"
Pn(a1 � 1; a2; : : : ; an�2; an�1 � 1; 1)

+
a1

n
Pn(a1; : : : ; an�1; 0)

+
2(a2 + 1)

n
Pn(a1 � 2; a2 + 1; a3; : : : ; an�1; 0) (10)

+
n�1X
j=3

j(aj + 1)

n
Pn(a1 � 1; a2; : : : ; aj�1 � 1; aj + 1; : : : ; an�1; 0)

3
5

+
n� 1

� + n � 1

2
4n�2X
j=1

j(aj + 1)

n� 1
Pn�1(a1; : : : ; aj + 1; aj+1 � 1; : : : ; an�1)

3
5 :

The only case not covered by equation (10) is the one in which a =

(0; : : : ; 0; 1). In this case the previous event had to be a coalescence, and so

Pn(0; : : : ; 0; 1) =
n� 1

� + n� 1
Pn�1(0; : : : ; 0; 1): (11)

The persistent reader will be able to verify that Pn(a) given by the Ewens

sampling formula (4) does indeed satisfy equations (10) and (11).
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2.3 The in�nitely-many-sites model

The in�nitely-many-sites model of Kimura (1969) and Watterson (1975) is

the simplest description of the evolution of a population of DNA sequences.

The sites in the sequences are completely linked, and each mutation that

occurs in the ancestral tree of the sample introduces a new segregating site

into the sample. In this process, each new mutation occurs at a site not

previously segregating { new mutations arise just once. It follows that at

each segregating site, the sample may be classi�ed as type 0 (ancestral) or

type 1 (mutant). Of course, in practice we do not know which is which. The

sequences in the sample may now be described by strings of 0s and 1s. If

distinct sequences are treated as alleles, then the sampling theory is reduced

to that covered by the Ewens sampling formula.

The number Sn of segregating sites is an important summary statistic for

the sample. Since each new mutation produces a segregating site, it follows

that Sn = �n, the number of mutations in the ancestral tree. The mean and

variance of Sn are therefore given by (1) and (2) respectively.

The number of segregating sites has been studied extensively for many

variants of the in�nitely-many-sites process, including the e�ects of selection

and recombination for example. Hudson (1991) gives an accessible summary

of this work. When there is no recombination, the fundamental results have

been established by Watterson (1975), Ethier and Gri�ths (1987) and Grif-

�ths (1989).

Watterson (1975) parlayed the moments of Sn into an unbiased estimator

~� of �, viz.

~� =
SnP
n�1
j=1

1
j

; (12)

with variance

Var ~� =
VarSn�P
n�1
j=1

1
j

�2 :
Note that ~� does not depend on knowing which type at a site is ancestral,
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and does not make full use of the data. For the pyrimidine data, there are

21 segregating sites, giving an approximate 95% con�dence interval for � of

4:46�3:10. This should be compared to the estimate of 10:62�6:29 obtained

from the Ewens sampling formula.

Now think of the data as an n � s matrix of 0s and 1s, s being the

number of segregating sites in the sample. When 0 is known to be ancestral

in each site, Gri�ths (1987) established that the data are consistent with the

in�nitely-many-sites model as long as in any set of three rows of the matrix,

at most 1 of the patterns

0
B@

0

1

1

1
CA ;

0
B@

1

0

1

1
CA ;

0
B@

1

1

0

1
CA

occurs. This is equivalent to the pairwise compatibility condition for bi-

nary characters established by Estabrook, Johnson and McMorris (1976) and

McMorris (1977): two sites are compatible if two or fewer of the patterns

01; 10; 11 occur. When the ancestral state is unknown an analogous result

holds: two sites are compatible if at most three of the patterns 00; 01; 10; 11

occur.

This translates into a simple test of whether a given set of binary site data

is consistent with the in�nitely-many-sites model. If in all pairs of columns

at most three of the patterns 00, 01, 10, 11 occur, then there is at least

one labelling of the sites that is consistent. McMorris (1977) proved that

consistent data remain consistent when the most frequent type is taken as

ancestral.

In practice, back mutations and recombination make most molecular data

inconsistent with this model. However, it is worthwhile to look for maximal

subsets of sites which are consistent, as this provides a way to identify regions

of the sequence with simple structure. For the pyrimidine data described in

Table 1, the maximal consistent set has 14 sites, those in positions 2-8, 11-12,
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14-16, 20-21. The remaining 7 sites have some inconsistencies, attributable

to back substitutions for example.

Of the 214 = 16; 384 possible relabelings of the consistent set, just 16 are

consistent. Each of these labelings is associated with a genealogical tree that

describes the relationships between the mutations in the coalescent. The

precise de�nition of the (equivalence class of) trees is given in Ethier and

Gri�ths (1987), and Gri�ths (1989). The tree is equivalent to those built

using compatibility methods for binary characters; see Felsenstein (1982, pp.

389-393) for a detailed discussion and references. The nodes in the tree

represent the mutations that have generated the segregating sites, and the

tips represent the sequences. A convenient algorithm for �nding these trees

is provided by Gri�ths (1987), who also shows (Gri�ths, 1989) how the

probability of a tree with a given ancestral labeling may be computed under

the in�nitely-many-sites model. Gri�ths' program PTREE can then be used

to construct true maximum likelihood estimators of the parameter �. It can

also be used to compare `likelihoods' of the di�erent ancestral labelings. At

the time of writing, there seem to be no useful computational methods for

computing likelihoods for data sets of the size described here, in the case

where the ancestral labeling is unknown.

Our analysis of the mitochondrial data set has shown that while parts of

the region are consistent with a simple evolutionary model, there are sites

which are behaving in a more complicated way. In the next section, we

describe a �nitely-many-sites model that is useful for modelling regions in

which back mutations have occurred.

2.4 K-allele models

We turn �rst to the `somewhat old-fashioned' K-allele model. In this process,

we assume that there are K possible alleles at the locus in question. When

a mutation occurs to an allele of type i, there is a probability mij that the
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resulting allele is of type j. To allow for di�erent rates of substitution for

di�erent alleles, we can have mii > 0, and we write M = (mij). The e�ects

of mutation along a given line are now modeled by a continuous time Markov

chain whose transition matrix P (t) � (pij(t)) gives the probabilities that a

gene of type i has been replaced by a descendent gene of type j a time t

later. Indeed,

P (t) = exp

 
�t

2
(M � I)

!
;

where I is the K �K identity matrix, so that the generator of the mutation

process is

Q � (qij) =
�

2
(M � I): (13)

It is worth pointing out that a givenQmatrix can be represented in more than

one way in the form (13), so that �, for example, is not identi�able without

further assumptions. However, the rates qij; j 6= i are identi�able. If Q has a

stationary distribution � = (�1; : : : ; �K) satisfying �Q = 0;
P

K

j=1 �j = 1, and

if the common ancestor of the sample has distribution � then the distribution

of a gene at any point in the tree is also �; the process is then stationary.

From the data analyst's perspective, the sample of n genes can be sorted

into a vectorN � (N1; : : : ; NK) of counts, there being Nj alleles of type j in

the sample. Surprisingly, the stationary distribution ofN is known explicitly

only for the special case

qij =
1

2
�j > 0; j 6= i:

This is equivalent to the independent mutations case in which � = �1+� � �+�K,

�i = �i=�, and mij = �j for all i and j. In this case, Wright's Formula (cf.

Wright, 1968) can be used to show that

P(N = n) =

 
� + n� 1

n

!
�1 KY

i=1

 
ni + ��i � 1

ni

!
; (14)

for n = (n1; : : : ; nK); nj � 0 for j = 1; : : : ;K, and n1 + � � �+ nK = n.

18



In the next section, we use this result for the case K = 2. If

Q =
1

2

 
�� �

� ��

!
(15)

then equation (14) specializes to

g(l) � P(N1 = l) =

 
�+ � + n � 1

n

!
�1 

l+ � � 1

l

! 
n� l+ � � 1

n� l

!
; (16)

for l = 0; : : : ; n.

Because the sampling formula for general Q is not known explicitly, it is

useful to have a way to compute it. Perhaps the simplest is an application

of the `bottom-up' method described in Section 2.2.2. De�ne q(n) = P(N =

n), and set ej = (0; : : : ; 0; 1; 0; : : : ; 0), the 1 occurring in position j. Look

up the tree to the �rst event that occurred. This is either a mutation (with

probability �=(�+n�1)) or a coalescence (with probability (n�1)=(�+n�1)).

By considering the con�guration of the sample at this event, we see that q(n)

satis�es the recursion

q(n) =
�

� + n� 1

2
4X

i

ni

n
mii q(n) +

X
i

X
j 6=i

ni + 1

n
mij q(n+ ei � ej)

3
5

+
n� 1

� + n� 1

X
j

nj � 1

n� 1
q(n� ej); (17)

where q(n) � 0 if any ni < 0, and q(ei) = ��
i
. The process is stationary if

��
i
= �i for all i. We exploit this recursion more fully in Section 4.1

2.5 The �nitely-many-sites models

We now have the machinery necessary to describe the �nitely-many-sites

model for molecular sequence data involving n sequences, each of s sites.

The sites are thought of as completely linked, and each site is typically one

of either 2 or 4 possibilities. At its grossest level, the �nitely-many-sites
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model is `just' a K-allele model in which K = 2s or 4s. From an inference

point of view, however, there are far too many parameters in such a model,

and some simpli�cation is required. The simplest null model of sequence

evolution is the case in which mutations still occur at rate �=2 per gene, but

when a mutation occurs, a site is chosen at random to mutate and the base

at that site changes according to a mutation matrix M . A slightly more

general model might allow site j to mutate with probability pj , once more

according to M . For a two-type classi�cation of each site, the �rst model

has 2 parameters to be estimated, and the second s+ 1. These schemes can

be modi�ed to allow for other correlation structures between the sites at the

expense of more complicated methods of analysis.

Motivated by our sequence data, we concentrate on the two-state case,

and discuss methods for estimating the parameters of the simplest null model.

At a single site, the model behaves exactly like a 2-allele process with

Q =
�

2s
(M � I);

because the per site substitution rate is �=s. This has the structure of (15),

with � = m12�=s and � = m21�=s. The distribution of sites is exchangeable

(since, conditional on the coalescent tree, mutations are laid down indepen-

dently at each site; this is a simple example of a marked Poisson process

argument) and in particular have identical distributions. They are not of

course independent because of correlations induced by the common ancestry

in the coalescent. However, some simple properties of the sequences are easy

to calculate. In particular, the number Sn of segregating sites has mean

ESn = sP( site is segregating) = s(1 � g(0) � g(n)); (18)

where g(�) is given by (16).

The equation (18) provides a simple heuristic method for estimating the

parameters of the process. First, the equilibrium base frequencies �1 =
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�=(�+ �), and �2 = �=(� + �) are estimated from the sequence data. This

done, the expected fraction of sites that are not segregating is, from (16) and

(18)

s�1 E(s � Sn) =
�(�s)

�(�s + n)

"
�(�s�1 + n)

�(�s�1)
+
�(�s�2 + n)

�(�s�2)

#
; (19)

where �s = �=s is the per-site substitution rate. For the pyrimidine mtDNA

data, the observed fraction of non-segregating sites is 180/201 = 0.896, and

the observed fractions of C (labeled 1) and T (labeled 2) bases are �1 = 0:604

and �2 = 0:396 respectively. Substituting these into (19) and solving for �s

gives the moment estimator ~�s = 0:050. This translates into an estimate of

� = 2q12 = 0:050 � 0:40 = 0:02, and an estimate of � = 2q21 = 0:03. This

estimate of �s should be contrasted with the per-base rate of 0:053 estimated

from the Ewens sampling formula, and 0:022 from the in�nitely-many-sites

model. The variance of the moment estimator is hard to compute explicitly,

although the top-down simulation method for the coalescent could be used

to simulate the process, and therefore to construct empirical estimates of the

variance.

A more detailed approach to rate estimation in the �nite sites model is

described by Lundstrom, Tavar�e and Ward (1992a). The method is based

once more on the exchangeability of the distribution of base frequencies be-

tween sites with the same mutation structure. Returning to the case in which

there are K possible labellings at each site, de�ne Vn;x � Vn;(x1;x2;:::;xK) to be

the fraction of sites in which xj individuals in the sample have nucleotide j

at that site, for 1 � j � K. The mean of Vn;x is given by

EVn;x = P(N = x) � q(x); (20)

the right-hand side being given by (14) for the independent mutation model,

or by the solution of the recursion (17) in the general case. A least squares

method obtains estimates by minimizing the squared error functionX
x

(Vn;x � q(x))2:
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This moment estimator makes fuller use of the data than the estimate based

on the number of segregating sites. An alternative estimator, also described

in Lundstrom et al. (loc. cit.) is based on the assumption that the sites

are evolving independently. This approximation, which is reasonable for

large substitution rates (where the between{sites correlations are e�ectively

washed out), produces a likelihood function proportional toX
x

Vn;x log q(x);

that can then be maximized to obtain parameter estimates.

For the mtDNA pyrimidine data, the moment method and the (indepen-

dent sites) maximum likelihood method gave estimates of the C to T rate as

� = 2q12 = 0:02, and the T to C rate as � = 2q21 = 0:03. These are in close

agreement with the segregating sites estimator described above. To assess

the variability in the estimates of � and �, we used the top-down simulation

described in Section 2.2.1, arriving at empirical bootstrap con�dence inter-

vals of (0:01; 0:04) for �, and (0:02; 0:06) for �. These rates correspond to

substitution probabilities of between 17 � 10�6 and 33 � 10�6 per site per

generation for transitions from C to T , and between 25�10�6 and 50�10�6

per site per generation for transitions from T to C.

The adequacy of these estimates depends, of course, on how well the

model �ts the data. To assess this, we investigated how well key features of

the data are re
ected in simulations of the coalescent process with the given

estimated rates. As might be expected, the overall base frequencies and the

number of segregating sites observed in the data are accurately re
ected in

the simulations. One poor aspect of the �t concerned the number of distinct

sequences observed in the simulations (9 to 17 per sample) compared to the

24 observed in the data. There are several reasons why such a poor �t might

be observed, among them: (i) Site-speci�c variability in mutation rates; (ii)

Admixture between genetically distinct tribes; and (iii) Fluctuations in pop-

ulation size that are not captured in the model. Further discussion of these
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points may be found in Lundstrom, Tavar�e and Ward (1992a), and in Section

4.

At this point, we have come to our mathematical vignette, where popula-

tion genetics theory intersects with an interesting area in combinatorics. The

mathematical level of the vignette is somewhat higher than our discussion of

the coalescent; readers primarily interested in aspects of the coalescent might

feel justi�ed in skipping to Section 4.

3 Mathematical Vignette: Approximating com-

binatorial structures

Our mathematical vignette takes us from the world of population genetics

to that of probabilistic combinatorics. We show how the Ewens sampling

formula (ESF), whose origins in population genetics were described in Section

2.1, plays a central role in approximating the probabilistic structure of a

class of combinatorial models. This brief account follows Arratia and Tavar�e

(1993), to which the interested reader is referred for further results. Our �rst

task is to describe the combinatorial content of the ESF itself.

3.1 Approximations for the Ewens Sampling Formula

First, we recall Cauchy's formula for the number N(a) � N(a1; : : : ; an) of

permutations of n objects that have a1 cycles of length 1, a2 cycles of length

2, . . . , an cycles of length n:

N(a) = 1(
nX
l=1

lal = n)n!
nY

j=1

 
1

j

!aj 1

aj!
; (21)

1(A) denoting the indicator of the event A. If each of the n! permutations is

assumed to be equally likely, then a random permutation has cycle index a
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with probability

P(C1 = a1; : : : ; Cn = an) =
N(a)

n!
= 1(

nX
l=1

lal = n)
nY

j=1

 
1

j

!
aj 1

aj!
; (22)

where Cj � Cj(n) is the number of cycles of size j in the permutation.

Comparison with (4) shows that (C1; : : : ; Cn) has the ESF with parameter

� = 1. To give the permutation representation of the ESF for arbitrary �,

we need only suppose that for some � > 0,

P(�) = c�j�j; � 2 Sn; (23)

where j�j denotes the number of cycles in the permutation � 2 Sn, where

Sn is the set of permutations of n objects. The parameter c is a normalizing

constant, which may be evaluated as follows. The number of permutations

in Sn with k cycles is jSk

n
j, the absolute value of the Stirling number of the

�rst kind. Hence

1 =
X
�2Sn

P(�) =
nX

k=1

X
�:j�j=k

P(�) = c
nX

k=1

jSk

n
j�k = c�(n);

so that c�1 = �(n): It follows that under this model,

P(C1 = a1; : : : ; Cn = an) = 1(
nX
l=1

lal = n)
n!

�(n)

nY
j=1

 
�

j

!aj 1

aj!
: (24)

We can see that �-biasing a random permutation gives the ESF directly.

The next ingredient in our story is the observation that the law in (24)

may be represented as the joint law of independent Poisson random variables

Z1; : : : ; Zn, having EZj = �=j, conditional on T �
P

n

j=1 jZj = n:

L(C1; C2; : : : ; Cn) = L(Z1; Z2; : : : ; ZnjT = n): (25)

This follows because

P(Z1 = a1; : : : ; Zn = anjT = n) =
1(
P

n

l=1 lal = n)

P(T = n)

nY
j=1

e��=j(�=j)aj

aj!
;
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which agrees with (24) apart from a norming constant that does not vary

with a1; : : : ; an; since both formulas are probabilities, the norming constants

must be equal.

Equation (25) suggests that we might usefully approximate the dependent

random variablesC1; : : : ; Cn by the independent random variables Z1; : : : ; Zn.

This turns out to be too ambitious, but we can get away with just a little

less. For any b 2 [n] � f1; 2; : : : ; ng, we can approximate the joint laws of

Cb � Cb(n) � (C1; : : : ; Cb) by those of Zb � (Z1; : : : ; Zb), with an error that

tends to 0 as n!1 as long as b = o(n), that is b=n! 0.

As our measure of how well such an approximation might be expected to

work, we use total variation distance as a metric on the space of (discrete)

probability measures. Three equivalent de�nitions of the total variation dis-

tance db(n) between (the law of) Cb and (the law of) Zb are given below:

db(n) � dTV (L(Cb(n));L(Zb))

= sup
A�Nb

jP(Cb(n) 2 A)�P(Zb 2 A)j

=
1

2

X
a2Nb

jP(Cb(n) = a)�P(Zb = a)j

= inf
couplings

P(Cb(n) 6= Zb): (26)

In (26), the in�mum is taken over all couplings of Cb and Zb on a common

probability space, and N � f0; 1; 2; : : :g. Arratia, Barbour and Tavar�e (1992)

use a particular coupling to show that there is a universal constant c = c(�)

with c(1) = 2 such that

db(n) � c(�)
b

n
; (27)

so that indeed Cb and Zb may be coupled closely if (and, it turns out, only

if) b = o(n).

25



3.2 Combinatorial assemblies

The spirit of the approximations in Section 3.1 { replacing a dependent pro-

cess by an independent one { carries over to other combinatorial structures.

The �rst of these is the class of assemblies. These are labelled structures

built as follows. The set f1; 2; : : : ; ng is partitioned into ak subsets of size

k, for k = 1; 2; : : : ; n, and each subset of size k is marked as one of mk

indecomposable components of size k. For example, in the case of permuta-

tions mk = (k � 1)!, the components of size k being cycles on k elements.

The number of structures N(a) of weight n having ai components of size

i; i = 1; 2; : : : ; n is therefore given by

N(a) = 1(
nX
l=1

lal = n)n!
nY

j=1

 
mj

j!

!aj 1

aj!
; (28)

and the total number p(n) of structures of weight n is given by

p(n) =
X
a

N(a): (29)

A random structure of weight n is obtained by choosing each of the p(n)

possibilities with equal probability. If Cj � Cj(n) denotes the number of

components of size j, then

P(C1 = a1; : : : ; Cn = an) =
N(a)

p(n)
(30)

In the case of permutations, this reduces to (22), because then mj=j! = 1=j.

Note that for any x > 0, the probability above is proportional to

1(
nX

l=1

lal = n)
nY

j=1

 
mjx

j

j!

!
aj 1

aj!
;

so that by comparison with (22) we see that L(C1; : : : ; Cn) = L(Z1; : : : ; ZnjT =

n), where the Zi are independent Poisson random variables with means

EZi =
mix

i

i!
; i = 1; 2; : : : :
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In particular this implies that

db(n) = dTV (L(Cb);L(Zb))

= dTV (L(Rb);L(RbjT = n));

where Rb =
P

1�i�b iZi. This observation reduces the calculation of a total

variation distance between two processes to a total variation distance between

two random variables. We focus our attention on the class of assemblies that

satis�es the logarithmic condition

mi

i!
�

�yi

i
; i!1 (31)

for some �; y > 0. Among these are random permutations (for which (31)

holds identically in i with � = y = 1), and random mappings of [n] to itself,

for which mi = (i � 1)!
P

i�1
j=0 i

j=j!; � = 1=2; y = e. The study of random

mappings has a long and venerable history in the combinatorics literature,

reviewed in Mutafciev (1984), Kolchin (1986), and Flajolet and Odlyzko

(1991) for example.

For the logarithmic class we may choose x = y�1, and then it is known

(under a mild additional rate of convergence in (31)) that

db(n) = O

 
b

n

!
; (32)

just as for the ESF. Indeed, more detailed information is available. For

example, Arratia, Stark, and Tavar�e (1993) show that for �xed b,

db(n) �
1

2n
j�� 1j EjRb � ERb j: (33)

The term j� � 1j re
ects the similarity of the structure to an ESF with

parameter �, whereas the term EjRb � ERb j re
ects the local behavior of the

structure.
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The �-biased structures, those with probability proportional to the num-

ber of components, may also be studied in this way. In particular (30) holds,

the Poisson-distributed Zi now having means

EZi =
�ximi

i!
:

The accuracy of the approximation of Cb by Zb for the logarithmic class is

still measured by (32) and (33), where � is replaced by ��. The ESF is the

case in which x = � = 1, since (31) holds identically in i.

A rather weak consequence of the bounds typi�ed by (32) and (33) is

the fact that for each �xed b, (C1(n); : : : ; Cb(n)) ) (Z1; : : : ; Zb), so that

the component counting process C converges in distribution (in R1) to the

independent process Z. For each n, we are comparing the combinatorial

process to a single limiting process. This recovers the classical result of

Goncharov (1944) showing that the cycle counts of a random permutation

are asymptotically independent Poisson random variables with means 1=i.

The analog for random mappings is due to Kolchin (1976).

There are many uses to which such total variation estimates can be put. In

essence, functionals of the dependent process that depend mainly on the small

component counts (that is, on components of size o(n)) are well approximated

by the corresponding functional of the independent process, which is often

much easier to analyse. A typical example shows that the total number of

components in such a structure has asymptotically a Normal distribution,

with mean and variance �� log n. A corresponding functional central limit

theorem follows by precisely the same methods. In addition, these estimates

lead to bounds on the distance between the laws of such functionals. Some

examples that illustrate the power of this approach may be found in Arratia

and Tavar�e (1992) and Arratia, Barbour and Tavar�e (1993a).

28



3.3 Other combinatorial structures

The strategy employed for assemblies also works for other combinatorial

structures, including multisets and selections. We focus just on the mul-

tiset case. To build such structures, which are now unlabelled, imagine a

supply of mj irreducible components of weight j, and build an object of total

weight n by choosing components with replacement. The number N(a) of

structures of weight n having aj components of size j; j = 1; 2; : : : ; n is

N(a) =
nY

j=1

 
aj +mj � 1

aj

!
1(

nX
l=1

lal = n); (34)

and the total number of structures of weight n is p(n) =
P
aN(a). A random

multiset of size n has aj components of size j with probability

1

p(n)

nY
j=1

 
aj +mj � 1

aj

!
1(

nX
l=1

lal = n): (35)

The ingredient common to assemblies and multisets is the fact that

L(C1; : : : ; Cn) = L(Z1; : : : ; ZnjT = n);

but the approximating independent random variables fZjg are no longer

Poisson, but rather negative binomial with parameters mi and xi:

P(Zi = k) =

 
mi + k � 1

k

!
(1� xi)xik; k = 0; 1; : : : ; (36)

valid for 0 < x < 1. In the �-biased case, the Zi are negative binomial with

parameters mi and �xi, for any � < x�1.

The most studied example in this setting concerns the factorization of a

random monic polynomial over the �nite �eld GF (q). The components of

size i are precisely the irreducible factors of degree i, there being

mi =
1

i

X
jji

�(i=j)qj
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of them. The function �(�) is the M�obius function: �(k) = �1 or 1 according

as k is the product of an odd or even number of distinct prime factors, and

�(k) = 0 if k is divisible by the square of a prime. The logarithmic condition

mi �
�yi

i
; i!1; (37)

is satis�ed by random polynomials with � = 1 and y = q. For this logarith-

mic class the total variation estimates (32) and (33) apply once more (with

appropriate modi�cation for the �-biased case), and the same techniques de-

scribed at the end of the previous section may then be used to study the

behavior of many interesting functionals. In particular, examples describing

the functional central limit theorem, with error estimates, for the random

polynomial case, may be found in Arratia, Barbour and Tavar�e (1993a).

3.4 The large components

Thus far we have described how we might approximate a complicated de-

pendent process (the counts of small components) by a simpler, independent

process, with an estimate of the error involved. It is natural to ask what can

be said about the large component counts. To describe this, we return once

more to the ESF.

Let L1 � L1(n) � L2 � � � � � LK denote the sizes of the largest

cycle, the second largest cycle, . . . , the smallest of the K cycles in a �-

biased random permutation. We will de�ne Lj � Lj(n) = 0; j > K. It

is known from the work of Kingman (1974, 1977) that the random vec-

tor n�1(L1; L2; : : : ; LK; 0; 0 : : :) converges in distribution to a random vector

(X1;X2; : : :) satisfying
P
Xj = 1 almost surely. The vectorX = (X1;X2; : : :)

has the Poisson-Dirichlet distribution with parameter �, which we denote by

PD(�). There are a number of characterizations of PD(�), among them

Kingman's original de�nition: Let �(1) � �(2) � � � � > 0 denote the points of

a Poisson process on (0;1) having meanmeasure with density �e�x=x; x > 0,
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and set � =
P

i�1 �(i). Then

(X1;X2; : : :)
d
=

�
�(1)

�
;
�(2)

�
; : : :

�
:

We now know that the large component sizes, those that are O(n), of a �-

biased random permutation are described asymptotically by the PD(�) law.

What can be said about the large components of the other combinatorial

structures we have seen? We will focus once more on the logarithmic struc-

tures that satisfy either condition (31) or (37), where population genetics has

a crucial role to play once more.

In approximating the behavior of counts of large components (Cr+1; : : : ; Cn)

we should not expect to be able to compare to an independent process be-

cause, for example, there can be at most bn=jc components of size j or

greater, this condition forcing very strong correlations on the counts of large

components. However, we should be able to compare the component count-

ing process Cr
� (Cr+1; : : : ; Cn) of the combinatorial structure to the ESF

process Ĉ
r

� (Ĉr+1; : : : ; Ĉn), say. The approximating process is still discrete

and, although not independent, it has a simpler structure than the original

process. For random polynomials, it is shown in Arratia, Barbour and Tavar�e

(1993a) that

dTV (L(C
r);L(Ĉ

r

)) = O

�
1

r

�
; (38)

so that the counts of factors of large degree can indeed be compared suc-

cessfully to the corresponding counts for the ESF. The estimate in (38) has

as a consequence the fact that the (renormalized) factors of largest degree

have asymptotically the PD(1) law, a result that also follows from work of

Hansen (1991). In addition, a rate of convergence is also available. In fact,

(38) essentially holds for any of the logarithmic class; cf. Arratia, Barbour

and Tavar�e (1993b).

In conclusion, we have seen that a variety of interesting functionals of the

component structure of certain combinatorial processes may be approximated
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in total variation norm by either that functional of an independent process, or

that functional of the ESF itself. The important aspect of this is the focus on

discrete approximating processes, rather than those found by renormalizing

to obtain a continuous limit. In a very real sense, our knowledge of `the

biology of random permutations', as described by the ESF, has provided a

crucial ingredient in one area of probabilistic combinatorics.

4 Where to next?

In the preceding sections, we have illustrated how coalescent techniques may

be used to model the evolution of samples of selectively neutral DNA sequence

data. Some simple techniques for estimating substitution rates, some based

on likelihood methods and some on more ad hoc moment methods, were

reviewed. We also illustrated how the probabilistic structure of the coalescent

might be used to simulate observations in order to assess the variability of

such estimators.

4.1 Likelihood methods

Notwithstanding the lack of recombination and selection, inference about

substitution rates in such regions poses some di�cult statistical and compu-

tational problems. Most of these are due to the apparently heterogeneous

nature of the substitution process in di�erent regions of the sequence. One

of the outstanding open problems in this area is the development of practical

likelihood methods for sequence data. Inference techniques for sequence data

from a �xed (but typically unknown) tree are reviewed in Felsenstein (1988).

The added ingredient in the population genetics setting is the random nature

of the coalescent itself { in principle, we have to average likelihoods on trees

over the underlying coalescent sample paths. The computational problems

involved in this are enormous. The likelihood can be thought of as a sum
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(over tree topologies) of terms, in each of which the probability of the con�g-

uration of alleles given the branching order and coalescence times Tn; : : : ; T2

is averaged over the law of Tn; : : : ; T2. Monte Carlo techniques might be

employed in its evaluation. One approach, using a bootstrap technique, is

described by Felsenstein (1992).

An alternative approach is to compute likelihoods numerically using the

recursion in equation (17). The probabilistic structure of the coalescent takes

care of the integration, and the problem is, in principle at least, simpler.

For small sample sizes and simple mutation schemes this is possible (see

Lundstrom (1990) for example), but it is computationally prohibitive even

for samples of the size discussed earlier. An alternative is the Markov chain

Monte Carlo approach in Gri�ths and Tavar�e (1993), in which equation (17)

is used to construct an absorbing Markov process in such a way that the

probability q(n) in (17) is the expected value of a functional of the process

up to the absorption time. That is, represent q(n) as

q(n) = En

�Y
j=0

f(N(j)); (39)

where fN(j); j = 0; 1; : : :g is a stochastic process determined by (17), and �

is the time it takes this process to reach a particular set of states. Classical

simulation methodology may now be used to simulate independent obser-

vations with mean q(n). The scheme in (39) may be modi�ed to estimate

the entire likelihood surface from a single run, providing a computationally

feasible method for approximating likelihood surfaces.

As an illustration, we return to the mitochondrial data described in Sec-

tion 2.3. We saw that of the 21 segregating sites in the sample, 14 were

consistent with an in�nitely-many-sites model. The remaining 7 sites are

described in Table 2. These data comprise a sample of 63 individuals from a

K = 27 = 128 allele model. The allele frequencies are given in Table 2.

The observed fraction of T nucleotides is �T = 207=441 = 0:469, and so
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Table 2: Incompatible sites and frequencies

Site 1 9 10 13 17 18 19 frequency

Sequence 0 T T C C T T C

1 0 0 0 1 0 0 0 8

2 0 0 0 0 0 0 0 12

3 1 0 0 0 0 0 0 3

4 0 1 0 0 0 0 0 12

5 0 0 0 1 1 0 0 2

6 0 0 1 0 0 0 1 1

7 0 0 0 0 1 1 0 1

8 0 0 0 0 0 1 0 9

9 1 0 0 0 0 1 0 3

10 0 0 1 0 0 1 0 1

11 0 0 0 0 0 1 1 7

12 0 0 1 0 0 1 1 3

13 0 1 1 0 0 1 1 1

Data from Table 1.

The row labelled 0 gives the nucleotide corresponding to 0 at that site.

The last column gives the frequencies of the alleles in the sample.

�C = 0:531. We use these to determine the per-site mutation rate matrix Q

in (15):

Q =
1

2

 
�� �

� ��

!
�

�

2s

  
�C �T
�C �T

!
�

 
1 0

0 1

!!
;

where s = 7. Assuming that �C and �T are given by their observed fre-

quencies, there is just the single parameter � to be estimated. Preliminary

simulation results give the maximum likelihood estimate of � at about �̂ = 17.

This corresponds to a per site C ! T rate of � = 1:14, and a per site T ! C

rate of � = 1:28. These rates are about �fty times higher than those based

on the analysis in Section 2.4 using all 201 sites. Of course, this set of sites

was chosen essentially because of the high mutation rates in the region, and

so should represent an extreme estimate of the rates in the whole molecule.

Nonetheless, the results do point to the lack of homogeneity in substitution

rates in this molecule. For other approaches to the modeling of hypervariable

sites, see Lundstrom, Tavar�e and Ward (1992b).

34



4.2 Discussion

The emphasis in this chapter has been on the development of inference tech-

niques for the coalescent, a natural model for the analysis of samples taken

from large populations.

An interesting development in the mathematical theory has been the

study of measure-valued di�usions initiated by Fleming and Viot (1979).

This is a generalization of the `usual' di�usions so prevalent in the classi-

cal theory of population genetics, described for example in Ewens (1979,

1990) and Tavar�e (1984). A comprehensive discussion of the Fleming-Viot

process appears in Ethier and Kurtz (1993), where the probabilistic struc-

ture of a broad range of examples such as multiple loci with recombination,

in�nitely-many-alleles with selection, multigene families and migration mod-

els are discussed in some detail.

Perhaps the most important aspect of the theory that has seen rather little

theoretical treatment thus far is the area that might loosely be called variable

population size processes, and their inference. These issues are becoming

more important in the analysis and interpretation of human mitochondrial

sequence data. Two recent articles in this area are Slatkin and Hudson

(1991) and Rogers and Harpending (1992). Lundstrom, Tavar�e and Ward

(1992b) note that the e�ects of variable population size on gene frequency

distributions may readily be confounded with the e�ects of hypervariable

regions in the sequences. A careful assessment of the interaction of these two

e�ects seems important, as does a detailed treatment of the e�ects of spatial

structure and population subdivision on the analysis of sequence diversity.

The Monte Carlo likelihood methods developed for sequence data in Gri�ths

and Tavar�e (1993) adapt readily to situations like this. They o�er a practical

approach to inference from very complicated stochastic processes. These

techniques are based on genealogical arguments that provide the cornerstone

of a �rm quantitative basis for the analysis of DNA sequence data, and our
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understanding of genomic diversity.
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Figure 1: Sample path of the coalescent for n=5
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Tj denotes the time during which the sample has j distinct ancestors.

Tj has an exponential distribution with mean 2=j(j � 1).
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