5. ANCESTRAL INFERENCE FROM
DNA SEQUENCE DATA

Simon Tavaré

5.1 INTRODUCTION

After the pioneering paper of Cann et al. (1987), many authors have
discussed methods for inferring ancestral history from samples of DNA se-
guences taken from human populations. Much of this research has focused on
the evolution of mitochondrial DNA. These molecules have been exploited
in evolutionary studies because of their high mutation rate; this means that
DNA sequence differences can be detected between individuals who are quite
closely related. In addition, mitochondria are maternally inherited, so these
molecules are particularly suited to studying the female lineages in which they
arise. One tantalizing problem, usually referred to as “the time to Mitochon-
drial Eve,” is to estimate the time to the most recent common mitochondrial
ancestor of the population from which the sample sequences were drawn. The
papers of Templeton (1993), Ayala (1995), Wallace (1995) and Wills (1995)
provide further background and discussion. More recently, DNA sequence
data from the male-specific part of the Y chromosome have begun to appear,
along with analyses of the time to “Y Adam.” See Dorit et al. (1995), Ham-
mer (1995), Whitfield et al. (1995), and the review of Jobling and Tyler-Smith
(1995).

In this paper we describe one approach to drawing inferences about
the distribution of the time to the most recent common ancestor (TMRCA)
of a population, given data from a sample of DNA sequences taken from that
population. In practice we do not know the ancestral history of the DNA se-
guences in the sample in any detail. Therefore statistical statements about TM-
RCA have to be based on a stochastic model for this ancestry. We use a model
called thecoalescent (Kingman 1982a; Griffiths 1980; Hudson 1983; Tajima
1983), reviewed briefly in Sections 5.2 and 5.3. The effects of deterministic
fluctuations in population size are discussed in Section 5.4.

The sample consists ofindividuals from the population of interest.

The dataD in the sample are DNA sequences from a given molecular region.

For example, many mitochondrial data sets contain sequences from the control
region of the molecule, while Dorit et al. sequenced an intron oZth¥ locus

on the Y chromosome. We assume the sequences in the sample are the same
length. We can then think of the data as a maXix (xi;) with n rows, where

the entryx;; records the DNA base (either A, C, G, or T) in individuait site

j. A site, then, refers to a location in the DNA. It is sometimes convenient to
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ignore any columns oX that have identical bases in every sequence. The re-
maining columns are referred to segregating sites, they comprise locations

in the DNA sequences where not every individual is identical. The differences
observed in the sample sequences arise from the effects of mutation in their an-
cestry. We suppose that these differences are due to the effeabstiutions,

the replacement of one base by another when a mutation occurs. We model the
locations of the mutations in the ancestral tree of the sample in Section 5.5.

In practice it is often either difficult or uninformative to get explicit
mathematical expressions for quantities of interest such as the conditional dis-
tribution of TMRCA given the dat®. Instead we use a computational ap-
proach that simulates observations from the required conditional distribution.
Summary statistics such as histograms and moments can then be found from
these simulated values in the usual way. In this chapter we summarize the data
matrix X in terms of the random quantit, the number of segregating sites in
the sample. Conditional distributions of TMRCA giv&n = k can be found
by a rejection method, discussed briefly in Section 5.6. Applications of these
simulation methods t¥-chromosome data are given in Section 5.7.

5.2 THE COALESCENT

Inferences about the TMRCA of a population are to be made on the ba-
sis of a comparison of the DNA sequences from the molecular region of inter-
est from a sample of people in the population. Differences in these sequences
come from the effects of mutation in the unknown ancestry of the sample. It
follows that to study TMRCA we need a stochastic model for this ancestry. In
the molecular regions of interest here (the intron in ZHeY locus on the Y
chromosome or the D loop of the mitochondrion for example) there appears
to be no recombination. The molecular region is passed on intact, modulo the
effects of substitutions, from parent to offspring. As a result, each molecule
(or “individual”) has a single haploid “parent” in the previous generation (the
molecule from which it was copied), that “parent” itself has a single parent in
the previous generation, and so on back into time. It is this genealogical pro-
cess that we have to model.

Population geneticists have modeled such genealogies in a variety
of circumstances, in particular when the population size is large. Consider
then a particular generation in a large random mating population of constant-

size N haploid individuals, and label them 2, ... , N. Population genetics
models are often defined by specifying the joint distribution of the numbers
v1, V2, ... , vy OF Offspring born to individuals 12, ... , N. For example, the

classical Wright-Fisher model specifies that the offspring numbers have a sym-
metric multinomial distribution:

NIN-N
Pvi=mg, ..., vy =mN)=m (5.1)
wheremy, ..., my € {0,1,..., N} satisfym; + --- + my = N and the off-

spring numbers in different generations are independent and identically dis-
tributed. This prescription shows how to construct the model forwards in time.
However, for our inference problem it is much more convenient to study not
how parents have offspring, but rather how children “choose” their parents.
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The Wright-Fisher model can be described by saying that each individual in a
given generation chooses its parent independently of others in its generation,
uniformly and at random from thl potential parents in the previous genera-
tion. Continuing this process back into the past yields a genealogical tree that
relates the individuals in a given generation to their parents, grandparents, and
so on.

This genealogy is hard to analyze for a given fixed valusl pbut it
may be approximated in a simple way whigns large. Notice that the chance
that two randomly chosen individuals have distinct parents in the previous gen-
eration is 1— N~L. It follows that the chance that these two have distinct an-
cestors in generations 1,2, ,r is (1— N~1)". If we measure time in units of
N generations, so that~ Nt for somet > 0, we see that the timé, during
which the sample of two individuals has no common ancestor satisfies

1 Nt
PW; > t) = <1— N) ~ et (5.2)

This shows that in a large population, the tikve until two individuals have a
common ancestor has (approximately) an exponential distribution with mean
1. What of the genealogy of a sample of size three? Looking back into the past,
there will be a first time at which some members of the sample share a common
ancestor. At this time, either all three will have a common ancestor, or a par-
ticular pair will. In a large population, this last possibility is overwhelmingly
the most likely. Furthermore, the tinvés (measured once more in units if
generations) has approximately an exponential distribution with r@an 3,

S0

P(W; >t) ~ e, (5.3)

At the time the first pair of individuals has found a common ancestor, the sam-
ple of three individuals has two distinct ancestors. The additional time taken
for these two to find their common ancestor has the distribution.ofinde-
pendent of\;.

Thus in a large population we can give a simple description of the ge-
nealogy of a sample ofindividuals. This stochastic process, known astie
alescent, describes the genealogical tree of the sample as time goes back into
the past. With time measured in units Mfgenerations, the tim&/; during
which the sample hagdistinct ancestors has an exponential distribution with
parametef}) = j(j — 1)/2, the timesW,, Wy_1, ... , W, being independent
for differentj. W; should be thought of as the length of each of ileanches
of the genealogical tree when the sample hdsstinct ancestors. This tree is
bifurcating; at the timan,,, two of then ancestors are chosen at random and
their branches are joined, giving— 1 ancestors for the sample. At the time
W, +W,_1, two of thesen—1 ancestors are chosen at random and their branches
are joined, resulting in— 2 distinct ancestors in the sample. This process con-
tinues until the time

Tn=W,+-- + Wy, (5.4)

when all the individuals in the sample have been traced back to their most re-
cent common ancestor (MRCA). A sample path of this process appears in Fig-
ure 5.1.
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Figure5.1. A sample path of the coalescent for a sample of size5.

The previous discussion was based on the Wright-Fisher model. Re-
markably, the same approximation applies to a very wide class of discrete ex-
changeable reproduction models. Kingman (1982a; 1982b) showed how the
coalescent arises as the limiting approximation (as the populatiorNsize
00) to these underlying discrete genealogies. In this approximation, time is
measured in units @f~2N generations, where? € (0, co) is the limiting vari-
ance of the number; of offspring born to a typical individual. For ease of
exposition, we assume® = 1 (as it is for the Wright-Fisher model) in what
follows.

The mean time to the MRCA, and so the mean height of the ancestral
tree, can be found from (5.4) as

ETn == E(Wn + e + W2) (5.5)

EW, + - -+ EW, (5.6)

= 2 _ .42 (5.7)
nin—-1) 22-1)

- 2(1-7) (5.8)

n

in coalescent units. The varianceTafcan be computed easily because\tje
are independent and exponentially distributed. We obtain

4
V Tn = 5 a5
8t ; 2 - 1?2

(5.9)

In large samples this variance is abouitl, most of which comes from the time
W, when the sample has just two ancestors. Times are often converted from
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the coalescent timg, to yearsT, via
T =Tax N x G, (5.10)

whereG is the number of years in a generation.

5.2.1 Theancestral process

In the sequel we make use of the Markov chg#q(t),t > 0} that
counts the number of distinct ancestors of the sample ofrs@tdimest > 0.
In Markov chain parlance, this isdeath process: it starts fromA,(0) = n,
waits an exponential amount of tinw; in statej, and then moves to state
j —1 and so forth. Eventually the process is absorbed in the state 1, at the time
Tn. The probability distributiory; (t) of As(t) was found by Griffiths (1979).

i) = PAM) =1])

- Zn:(_l)k—ie—”k—lﬁ/z @ Dienly (g 7
Py Jl(k— J)!n(k)

where we have used the notation

an = a@+1---(@a+n-1),; ag=1 (5.12)
amg = a@-1)---(@-n+1); ag=1 (5.13)

BecausqT, <t} = {An(t) = 1}, the distribution function off, fol-
lows immediately from (5.11):

P(T, <t)=gu®), t=0. (5.14)

While this provides an explicit formula for the distribution ©f, it is harder
to find explicit results for other quantities of interest such as the distribution of
the total length_, of the tree, defined by

Lo =nWh+ N —DWh_1 + -+ 2Ws. (5.15)

Instead we can resort to a Monte Carlo approach, in which observations hav-
ing the required distribution are simulated. These simulated values can then
be used to estimate the probability density of the underlying random variable,
together with any required statistics such as percentiles, mean and variance.
A convenient introduction to stochastic simulation can be found in Ripley
(1987). To illustrate the ideas, we give an algorithm for simulating the times
Wh, Wh-1, ..., Wo.

Algorithm 1 Algorithmto generate W, ... , W, for constant population size.
U denotes a random variable with the uniform distribution on (0,1), generated
independently at each use.

1. Sett =0,j =n.
2. Generate = —2logU)/j(j — 1).
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3. Setw; =s,t=t+s.

4. Setj=j—1.If j >2,90t0 2. Elseretur, =t, Wy = wp, ... ,Wo =
wo.

Step 2 generates an observation having the exponential distribution with mean
2/j(j — 1), just as needed faw;. The valuet returned in Step 4 has the dis-
tribution of T, = W, + - -- + W». The algorithm can be modified to generate
observations having the distributionlof; simply set =0atStep 1l =1+js
at Step 3, and returh, = | at the end of Step 4. Later in this chapter, we ex-
ploit this simulation approach in cases where exact results are unobtainable.
Genealogical methods based on variations of the coalescent, using
both theoretical and simulation approaches, have proved very powerful for un-
derstanding the structure of complex stochastic models in population genetics
and as a useful guide to intuition in understanding the evolution of many pop-
ulation genetic phenomena. The recent reviews of Hudson (1991); Hudson
(1992) and Donnelly and Tava(1995) describe some of these developments.

5.3 THE BIVARIATE ANCESTRAL PROCESS

In order to study TMRCA for a population given sequence data from a
sample, we need to understandjibiat behavior of the genealogy of both pop-
ulation and sample. We make use of the prodéas (t), An(t)),t > 0} that
counts the number of ancestors in a population of siznd a random sam-
ple of sizen taken from it. (It is convenient to refer to the setoefndividuals
as the population, and the subset of sizs the sample. This avoids ambigu-
ity and terms like “sample” and “subsample” or “supersample” and “sample”.)
This bivariate process is Markovian and it makes transitions from a state of the
form (i, j) whenever two individuals in the current population of sizsbare a
common ancestor. If this coalescence event involves the ancestors of two in-
dividuals in the sample, then the new state becoined, j —1). In any other
case, itigi — 1, j). From(, j) we move to

i—-210 atrate (ii—1 —j(j—1)/2 (5.16)
i-1,j-21 atrate j(j —1)/2. (5.17)
A sample path of the bivariate processifioe= 9, n = 5 is given in Figure 5.2.
The distribution of An(t), An(t)) was found by Saunders et al. (1984)
as
P(Ant) =1, An(t) =K) = gm(H)a(n, kim,1), (5.18)
wheregm (t) is given in (5.11), andi(n, k| m, 1) is given by
gin,kim, 1) = (5.19)
M-m!m-=-bIntin—-DHId —D!'(m+k — 1!
=K' -Kmm-DKIK-D!d+n—-D!IM+k—1 —n)!’

The quantityg(n, k| m, 1) is the probability that the sample of sindaken at
any timet > 0 hask distinct ancestors given that the population of sizbas
| ancestors at that time.
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Figure5.2. A sample path of the bivariate coalescent for a population ofraize 9
and a sample of size= 5. The sample individuals are labeled 1,2,, 5.

The sample path in Figure 5.2 shows that at the fim@hen the sam-
ple reaches its MRCA, the numbay,(T,) of distinct ancestors of the popula-
tion is random. The distribution of the numb&g(T,) is known. In particular,
Watterson (1982) showed that the probability that the population ofhsared
a sample of size share a common ancestor is

(n—DH(m+1)

R Ty

(5.20)

If the sample is at all large, there is an appreciable chance that the sample and
the subsample will share their MRCA, and that the time to the MRCA is thus
the same for both sample and subsample. On the other hand, if they do not
share a common ancestor then gitea time T, required to reach the MRCA
ofthe sample is stochastically larger th& the time taken for two individuals

to be traced back to their common ancestor.

54 VARIABLE POPULATION SIZE

In order to apply coalescent methods to human population data, we
need to account for the effects of variations in population size through time.
Fortunately, this is straightforward in the case of deterministic fluctuations.
To keep the presentation simple, we concentrate on the approximation to the
Wright-Fisher model once more. The effect of variable population size is to
change the joint distribution of the tim&¥; (Kingman 1982b; Griffiths and

ST PNTIUTIT/VED NOVZT @Y NS N YS6S



88 Simon Tavag

Tavagé 1994b; Donnelly and Tavarl995). In particular, these times are no
longer independent. We assume that the population size at the time of sam-
pling is N, and again measure time in unitsiéfgenerations. We writél p(t)

for the population size a (coalescent) titrego and defing(t) = 1/p(t). The
conditional distribution of the tim&V; for which there are exactly ancestors

of the sample, given that the time for which there are more jhamcestors is

s, is

; S+t
P(W; >t|Wn+-~-+Wj+1=S)=eXp<—<])/ k(v)dv).
2) Js (5.21)

We assume thaf;™ (v) dv = oo to ensure that any pair of individuals (and
thus the sample) can be traced back to a common ancestor.

The proces$A(t), t > 0} that counts the number of ancestors at time
t of a sample of siza taken at time 0 is now a time-inhomogeneous Markov
process. Given thadi(t) = j, itjumpstoj — 1 atratej(j — Da(t)/2. A
useful way to think of the process:(-) is to notice that a realization may be
constructed via

ALt = An(AD), t=0, (5.22)
whereA, () is the corresponding ancestral process for the constant-population-
size case, and

t
A(t):/ A(s) ds. (5.23)
0

Thus the variable-population-size model is just a deterministic time change of
the constant-population-size model. Some of the propertiag©ffollow im-
mediately from this representation. For example,

P(ALD) = ]) =0gnj(A), j=1...,n (5.24)
wheregy; (t) is given in (5.11), and so
P(T <t) =PA(t) =1) = gn1(At)), t=>0. (5.25)

Once more, simulation provides a valuable way to study properties of
genealogy when the population size varies. The representation (5.21) gives a
direct way to simulate the time&},, W,_1, ... , W.

Algorithm 2 AlgorithmtogenerateW,, ... , Wowith variable population size.
U denotes a random variable with a uniform distribution on (0,1), generated
independently at each use.

1. Sett =0,j =n.

2. Generate
« _ —2logl)

SR
3. Solve fors the equation

At +9) — A = wl, (5.26)
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4. Setw; =s,t=t+s.

5. Setj = j—1.If j > 2,goto 2. Else returi, = t, W, = wp, ... ,Wo =
w2.

As noted after Algorithm 1w} generated in step 2 has an exponen-
tial distribution with mean 2j (j — 1). If the population size is constant, then
A(t) = t, and Algorithm 2 reduces to Algorithm 1. Observations having the
distribution of the tree length, can be generated as described after Algo-
rithm 1.

54.1 Thebivariate processrevisited

The analysis of the bivariate ancestral process with variable popula-
tion size follows immediately from the representation

(AL, Apt) = (An(A®D), An(A(D))), t=>0. (5.27)
From this follows the fact that
P(A}’n(t) =1, Aﬁ(t) =Kk) = gm(AM)g(n, k|m,l), (5.28)

whereq(n, k|m,1) is given in (5.19). Note that the combinatorics of the bi-
variate process remain as they were in the constant-population-size case; only
the waiting times between the jumps of the process change. In particular, the
probability that the population and the sample share their MRCA is still given
by (5.20).

Distributions in the bivariate process can also be simulated easily. Al-
gorithm 3 gives a method for simulating values of the height W, +- - -+W,
of the coalescent tree of the sample of sizéhe numbe’,(T,) of ancestors of
the sample at the time the subsample reaches its MRCA, and th&jfrem
then until the population reaches its MRCA. This extra time may, of course,
be 0.

Algorithm 3 Algorithm for bivariate ancestral process. U denotes uniform
(0,1) random variable, independently generated at each use.

1. Seta,, =m,a, =n,t =0.

2. Setw = —2log(U)/(am(am — 1)).
3. Solve fors the equatiom (t +s) — A(t) = w.
4, Sett =t +s.
5. Set
an(@a — 1)
= — 5.29
am(am — 1) (5:29)

anda, = ay, — 1.
6. With probabilityp, seta, =a, — 1. Ifa, > 1, goto 2.
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7. Sett, = t, a* = ay. If a* = 1, setty, = 0, and stop. Otherwise, use
Algorithm 2 starting front = t,, n = a* to generate an observatigg,
on the total height of a coalescent treeadindividuals, then stop.

The values ot,, a*, andt,, returned by a single pass through Al-
gorithm 3 have the joint distribution of the height, the number of ances-
tors An(Tn) of the population at the time the subsample finds its MRCA, and
the additional time required to get to the MRCA of the population. Note that
tm = tn + tam has the distribution of,,. More detailed information about the
genealogical trees could also be recorded, but this is all we need later on.

5.5 MUTATIONSIN THE GENEALOGICAL TREE

To model the effect of mutations in the genealogy of the sample, we
assume that the times at which mutations occur form a Poisson process of con-
stant rate9/2, independently in each branch of the tree. A branch of length
therefore has a Poisson number of mutations with me&at2. The parameter
0 is defined by

wherep is the mutation rate per gene per generation in the underlying discrete
model. When the mutation rateis of the order of the reciprocal of the pop-
ulation sizeN, the genealogy and the genetics compete on equal terms; both
features are included in the coalescent approximation.

To model the evolution of DNA-sequence data we have to describe
how a sequence is changed when a mutation occurs in it. We here use the
infinitely-many-sites model of Watterson (1975). Because we are ignoring the
effects of recombination (it is not thought to occur in the data at hand), each
sequence may be thought of as a completely linked sequence of DNA sites.
Whenever a mutation occurs, it occurs at a site that has not had a mutation be-
fore.

Observing that each mutation in the coalescent tree introduces a new
segregating site into the sample, the number of segregatingssitethe sam-
ple ofn chromosomes is precisely the number of mutations that arise in its ge-
nealogical tree. Thisinturn has a Poisson distribution with mé&an2, where
L, is the total length of the tree, defined in (5.15)lhy= nW,+(n—DW,_1+
.-+ 2Ws. That is,

P(S, = k| Ly, =1) =Po(,6l/2), (5.31)
where Pdak, w) is the Poisson probability

k
Pok, 1) = e,ﬂ%’ k=0,1,.... (5.32)

5.6 CONDITIONING ON THE DATA

Our aimis to find the distribution of the time to the MRCA of a popu-
lation of sizem given data from a sample afindividuals. In this chapter, we
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summarize the data by takirfg to be the number of segregating sites in the
DNA sequences. Prior to sampling, the required probability density is that of
T, defined as

T = Win + -+ + Wb (5.33)

We call this thepredata density of TMRCA. Thepostdata density function is
that of T, givenD = {S, = k}, which, using Bayes’ formula, satisfies

fr,t D) x fr, (HP(S =k|Tm =1). (5.34)
As in (13) of Tavae et al. (1996), this can be expressed as follows:

mmm&zmmzo::fmmM¢nm&=mm=nu=nm
0

/00 fr.L G DP& =k Ly =1 dl
0

- / L (L POk, 16/2)d. (5.35)
0

In (5.35), fr,,..,(t, 1) is the joint probability density of, andLy, in the bivari-

ate coalescent process. Supposing for the moment that an observaltjon
could be generated from the joint densityTaf and L., we see from (5.35)
that thergjection method can be used to generate from the conditional distri-
bution in (5.35). The idea is to keep the observatianth probabilityu =
Po(k,16/2), and reject it otherwise. The rejection step can be improved by
noting thatt can be accepted with probability c for any constant > u. Be-
cause Pak, 10/2) < Po(k, k), we may take = Po(k, k), and hence we accept

t with probabilityu given by

_ Po(k,16/2)
~ Pok, k)

Ripley (1987)( pg. 60) gives a description of the rejection method.

To generate an observation from the joint distributiormgfand L,
we can use Algorithm 3 directly. In addition, it generates observations from the
conditional distribution of the numbe¥,(T,,) of ancestors of the population of
sizem givenD. In summary, we have the following algorithm.

(5.36)

Algorithm 4 Rejection algorithm for fr (t|S, = k). U denotes a uniform
(0,1) random variable, independently generated at each use.

1. Setaj, =m,a,=n,t =0, =0.

2. Setw = —2logU)/am(am — 1).
3. Solve fors the equatiom (t +s) — A(t) = w.
4, Sett =t +s,l =1 +a,s.
5. Set
an(an — 1
= 5.37
P~ an@n - 1) (5:37)

anday, = am — 1.
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6. With probabilityp, seta, =a, — 1. Ifa, > 1, goto 2.

7. Setu =Po(k,10/2)/Po(k, k). Accept(t, an) with probabilityu, else go
to 1.

8. Sett, = t, a* = ay. If a* = 1, setty,, = 0, and stop. Otherwise, use
Algorithm 2 starting fromt = t,, n = a* to generate an observatitm,
on the total height of a coalescent treeadindividuals, then stop.

The values of,, a*, t.m generated by a single run through Algorithm 4
have the joint distribution of the sample tree heightthe number of ancestors
Am(T,) of the sample at the time the sample finds its MRCA, and the additional
time T, required to get to the MRCA of the population conditional on having
observed segregating sites in the sample. The valug,of t, + t,,m has the
distribution of T, given §, = k.

5.7 APPLICATIONS

Whitfield et al. (1995) sequenced a region of 15,680 base pairs from
the Y chromosome af = 5 individuals. They observed just three segregating
sites and estimated the coalescence time of the sample to be between 37,000
and 49,000 years. Their analysis was not based on a population genetics model.
Tavag et al. (1996) use coalescent methods to reanalyze these data, using a
number of plausible scenarios about variability in the effective population size
N and the underlying mutation raje Whitfield et al. (1995) estimated the
mutation rate in the region to he= 3.52 x 10~ substitutions per generation,
based on a generation time®f= 20 years. Using an estimate Mf= 4, 900,
the value used by Hammer (1995), Tavet al. (1996) found a 95% credible
region for TMRCA of the sample of 30,000-183,000 years.

Here we examine two aspects in more detail: we estimate TMRCA for
the population, and we estimate the chance that the sample and the population
share their most recent common ancestor, given the data of 3 segregating sites
from the sample of 5 individuals. For illustration, we use a model of determin-
istic fluctuation in population size of the form

a1 t>V,

At) = ’
a0 <t<V.

(5.38)

This corresponds to a model in which the population has constant relative size
a € (0,1) prior to timeV ago, and exponential growth to relative size 1 at
the time of sampling. We take a value of 50,000 yearsfpando = 104
For comparison with our earlier work, we suppose that the effective size in the
constant phase is 4900, so tiat= 4.9 x 107,

To apply Algorithm 4 we need a value to use far In practice, it
is difficult to detect a difference between the distributions of, Jay and
Ts00, and we choose for this illustration a valuerof= 200. We use Algo-
rithms 3 and 4 to simulate 10,000 observations from the predata distribution of
(Ts, T200) and the corresponding postdata distribution, given that in the sample
of size 5 there are 3 segregating sites.
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For this demographic model, the predata distributiomsdfas a mean
of 199,000 years and 95% of the distribution of lies in the interval (76,000—
464,000) years. (Here and in what follows, all ages are rounded to the nearest
1000 years. We use the shorthand 195 to denote the interval such that 2.5% of
the mass of a distribution is to the left of the left endpoint, 2.5% to the right of
the right endpoint.) The predata distributionTego, representing the TMRCA
of the whole population, has a mean of 238,000 years, and an 195 of (113,000—
504,000). In the 10,000 simulations, the observed fraction of times that the
sample and the population had the same MRCA was 0.671, in good agreement
with the theoretical value of 0.673 from (5.20).

The postdata distribution dfs has a mean of 108,000 years, and an
195 of (61,000—194,000) years. Note that the postdata distribution suggests a
much shorter time for the TMRCA of theample, and the postdata distribu-
tion is much more concentrated than the predata distribution. The estimated
densities are plotted in Figure 5.3.

3

0 100000 200000 300000 400000 500000 600000

Time to MRCA (years)

Figure 5.3. Density functions for the pre-data (solid lines) and post-data distribution
of Ts. x-axis is in years.

The proportion of the 10,000 runs that resulted in the population and
the sample having a common MRCA was 0.233, markedly smaller than the
predata fraction. On the basis of this, we anticipate that the additional time to
the MRCA of the population will be much larger than the corresponding in-
crement in the predata distribution. This is indeed the case; the former has a
mean of 101,000 years, the latter 39,000 years. The mean time to the popu-
lation MRCA is 209,000 years, with an 195 of (99,000-465,000) years. This
interval is somewhat shorter than the 195 for the predata distribution. The es-
timated densities are plotted in Figure 5.4.
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3

0 200000 400000 600000 800000

Time to MRCA (years)

Figure 5.4. Density functions for the predata (solid lines) and postdata distribution of
To0. X-aXis is in years.

Two points from this analysis should be emphasized. First, the post-
data TMRCA of thesample can be a serious underestimate of the correspond-
ing time for thepopulation. Second, the extra information contained in this
small sample does rather little to refine our predata assessment of TMRCA for
the population; as can be seen in Figure 5.4, the two densities are very similar.

Finally, what is the effect of the population expansion? For a constant-
size model withN = 4900 and the same value pf the 195 of the postdata
distribution ofToq is (59,000-410,000) years. The population expansion has
shifted this interval to the right by about 54,000 years, essentially the time to
the start of the constant phase. The intuition behind this is clear. By the begin-
ning of the expansion phase at tiiea sample of moderate sigeis likely to
have almostn distinct ancestors. The time to the MRCA is therefore approx-
imatelyV plus the corresponding time in a population of constant size.

5.8 DISCUSSION

This chapter gives a feel for one approach to an intriguing problem
in the historical sciences: estimation of the time to the most recent common
ancestor of a population of individuals given DNA-sequence data on a sample
from the population. The approach described here, based on a stochastic model
for the ancestral relationships between individuals, is intended to be illustrative
of the field.

We based our inferences on a summary statistic (the number of segre-
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gating sites) of the sample of DNA sequences. Related methods for the full
data (once more under the infinitely-many-sites mutation model) have also
been developed. The theory of the reduced genealogical trees that represent the
complete sequence information appears in Griffiths (1989) and Griffiths and
Tavae (1995). Computer-intensive inference methods are described in Grif-
fiths and Tavar (1994a).

There are many open problems that remain to be solved. Careful
analysis of samples of molecular sequences should take account of the role
of demography: nonrandom mating, population subdivision, and fluctuations
in population size. With the availability of more data, more refined mutation
models could also be exploited. The assumption of random sampling is im-
plicit in most analyses, but nonrandom samples are more likely the rule. Fi-
nally, we have assumed that mutation rates and population-size fluctuations
are known. Methods that allow for variability in these parameters, and further
discussion of many related issues, appear in Donnelly et al. (1996) anctTavar
et al. (1996).
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PART II: CELL BIOLOGY

Mark A. Lewis

Organisms and their constituent cells have an immense number of
tasks to perform, from information processing to growth and cell division to
signaling to maintaining a constant internal environment in the face of exter-
nal variation (homeostasis). While the disciplines of biochemistry, biophysics,
genetics, and molecular biology are central to any understanding of how these
tasks are performed, biological experience cannot always predict the conse-
guences of complex physiological interactions. In this realm of unpredictabil-
ity, mathematical of models can have a crucial role in our understanding of
physiology. Mathematics provides a quantitative means with which to formu-
late precise hypotheses about physiology. The purpose of a model is not to
“simulate” the biology, but to judiciously simplify the level of detail to where
only the most important elements controlling the physiology remain. Analy-
ses of the model then serve to show which hypotheses are consistent with the
more complex experimental detail.

The chapters in this section discuss mechanisms governing physiolog-
ical phenomena. Subjects include signal transduction via control of calcium
and second-messenger dynamics (Chapter 6 by H. G. Othmer), control of cel-
lular replication (Chapter 7 by J. J. Tyson, K. Chen and B. Novak), periodic
diseases of the blood (Chapter 8 by M. C. Mackey), oscillatory responses of
pupil nervous system to stimuli (Chapter 9 by J. Milton and J. Foss), and elec-
trical bursting behaviors of cells (Chapter 10 by A. Sherman). Although each
chapter deals with distinct phenomenon, mathematics allow us to look beneath
the specific details to underlying themes that pertain to many of the chapters.

One theme common to each section is biological oscillations, whether
in the intracellular calcium levels (H. G. Othmer), the control of cell cycling (J.

J. Tyson, K. Chen, and B. Novak), blood counts in diseased individuals (M. C.
Mackey), the diameter of the pupil responding to a light source (J. Milton and
J. Foss) or the onset of active spiking interspersed with silent states in electri-
cal behavior of cells (A. Sherman). Mechanisms governing each of the above
oscillatory systems clearly depend upon specific biological milieu. The mathe-
matics used in their study, however, have some common origins. For example,
it may interest the reader to note that Mackey’s discussion of periodic diseases
of the blood (Chapter 8) and Milton and Foss’ discussion of the pupil-light re-
flex (Chapter 9) use similar nonlinear delay differential equation (DDE) mod-
els. Although the processes differ in the biological specifics, oscillations arise
in both cases from negative-feedback loops with delays, making DDESs suitable
for their study. Both show that the results of long delays can be dramatic, lead-
ing not only to oscillations, but also to a variety of very complex temporal pat-
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terns. These patterns are not simply mathematical niceties; they are observed
biologically either under disease conditions (Mackey) or under laboratory con-
ditions (Milton and Foss).

The theme of excitable dynamics arises in Othmer’s discussion of cal-
cium dynamics (Chapter 6), Tyson et al.’s discussion of cellular control (Chap-
ter 7) and Sherman'’s discussion of electrophysiology (Chapter 10). Models in
each of these chapters possess a nonlinear threshold, so that small (subthresh-
old) stimuli have little effect, but larger (suprathreshold) stimuli cause a dra-
matic, large-scale response. The classic example of an excitable system arises
in the firing of a nerve: the stimulus to a nerve must exceed a threshold before
the nerve fires. Mathematical details of this behavior were pioneered in the
early 1950s by Hodgkin and Huxley, with an ODE model for the nerve. This
elegant work had a profound impact on electrophysiology that is still evident
today (see Chapter 10 by A. Sherman) and earned Hodgkin and Huxley a Nobel
prize in physiology. Many models in this section more closely resemble later
simplifications of Hodgkin and Huxley’s (1952) work by FitzHugh (1961) and
Nagumo (1962), who showed how the essence of the nerve could be described
by a pair of coupled ODEs with excitable dynamics. The themes of oscilla-
tions and excitability are connected. It turns out that small modifications of
excitable dynamics can give rise to oscillatory dynamics. In the modified ex-
citable system, for example, the nerve never returns completely to a rest state,
but fires repeatedly. This kind of oscillation mechanism, exemplified in Chap-
ters 6, 7 and 10, differs from the delayed-negative-feedback loop in Chapters 8
and 9.

Although this section examines a diverse body of work, readers may
find other themes that unify. They are also encouraged to ask questions of each
chapter:

e How isthe mathematics useful? Are precise hypotheses formulated?
Does analysis of the model yield specific predictions? If so, how do these
compare with experiment? How would one proceed without mathemat-
ics?

o Where do the equations come from? Each chapter derives equations
using specific modeling principles. How do the authors make the transi-
tion from scientific hypotheses to mathematical formulae?

e Doesthe model work? A key element of each chapter is the author’s
ability to tailor a mathematical model to focus on the specific question
at hand. What is missing from each model? How do we know whether
it is important or not?
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