
5. ANCESTRAL INFERENCE FROM
DNA SEQUENCE DATA

Simon Tavaré

5.1 INTRODUCTION

After the pioneering paper of Cann et al. (1987), many authors have
discussed methods for inferring ancestral history from samples of DNA se-
quences taken from human populations. Much of this research has focused on
the evolution of mitochondrial DNA. These molecules have been exploited
in evolutionary studies because of their high mutation rate; this means that
DNA sequence differences can be detected between individuals who are quite
closely related. In addition, mitochondria are maternally inherited, so these
molecules are particularly suited to studying the female lineages in which they
arise. One tantalizing problem, usually referred to as “the time to Mitochon-
drial Eve,” is to estimate the time to the most recent common mitochondrial
ancestor of the population from which the sample sequences were drawn. The
papers of Templeton (1993), Ayala (1995), Wallace (1995) and Wills (1995)
provide further background and discussion. More recently, DNA sequence
data from the male-specific part of the Y chromosome have begun to appear,
along with analyses of the time to “Y Adam.” See Dorit et al. (1995), Ham-
mer (1995), Whitfield et al. (1995), and the review of Jobling and Tyler-Smith
(1995).

In this paper we describe one approach to drawing inferences about
the distribution of the time to the most recent common ancestor (TMRCA)
of a population, given data from a sample of DNA sequences taken from that
population. In practice we do not know the ancestral history of the DNA se-
quences in the sample in any detail. Therefore statistical statements about TM-
RCA have to be based on a stochastic model for this ancestry. We use a model
called thecoalescent (Kingman 1982a; Griffiths 1980; Hudson 1983; Tajima
1983), reviewed briefly in Sections 5.2 and 5.3. The effects of deterministic
fluctuations in population size are discussed in Section 5.4.

The sample consists ofn individuals from the population of interest.
The dataD in the sample aren DNA sequences from a given molecular region.
For example, many mitochondrial data sets contain sequences from the control
region of the molecule, while Dorit et al. sequenced an intron of theZ FY locus
on the Y chromosome. We assume the sequences in the sample are the same
length. We can then think of the data as a matrixX = (xi j ) with n rows, where
the entryxi j records the DNA base (either A, C, G, or T) in individuali at site
j . A site, then, refers to a location in the DNA. It is sometimes convenient to
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82 Simon Tavaŕe

ignore any columns ofX that have identical bases in every sequence. The re-
maining columns are referred to assegregating sites; they comprise locations
in the DNA sequences where not every individual is identical. The differences
observed in the sample sequences arise from the effects of mutation in their an-
cestry. We suppose that these differences are due to the effects ofsubstitutions,
the replacement of one base by another when a mutation occurs. We model the
locations of the mutations in the ancestral tree of the sample in Section 5.5.

In practice it is often either difficult or uninformative to get explicit
mathematical expressions for quantities of interest such as the conditional dis-
tribution of TMRCA given the dataD. Instead we use a computational ap-
proach that simulates observations from the required conditional distribution.
Summary statistics such as histograms and moments can then be found from
these simulated values in the usual way. In this chapter we summarize the data
matrix X in terms of the random quantitySn, the number of segregating sites in
the sample. Conditional distributions of TMRCA givenSn = k can be found
by a rejection method, discussed briefly in Section 5.6. Applications of these
simulation methods toY -chromosome data are given in Section 5.7.

5.2 THE COALESCENT

Inferences about the TMRCA of a population are to be made on the ba-
sis of a comparison of the DNA sequences from the molecular region of inter-
est from a sample of people in the population. Differences in these sequences
come from the effects of mutation in the unknown ancestry of the sample. It
follows that to study TMRCA we need a stochastic model for this ancestry. In
the molecular regions of interest here (the intron in theZ FY locus on the Y
chromosome or the D loop of the mitochondrion for example) there appears
to be no recombination. The molecular region is passed on intact, modulo the
effects of substitutions, from parent to offspring. As a result, each molecule
(or “individual”) has a single haploid “parent” in the previous generation (the
molecule from which it was copied), that “parent” itself has a single parent in
the previous generation, and so on back into time. It is this genealogical pro-
cess that we have to model.

Population geneticists have modeled such genealogies in a variety
of circumstances, in particular when the population size is large. Consider
then a particular generation in a large random mating population of constant-
size N haploid individuals, and label them 1, 2, . . . , N . Population genetics
models are often defined by specifying the joint distribution of the numbers
ν1, ν2, . . . , νN of offspring born to individuals 1, 2, . . . , N . For example, the
classical Wright-Fisher model specifies that the offspring numbers have a sym-
metric multinomial distribution:

IP(ν1 = m1, . . . , νN = mN ) = N !N−N

m1! · · · mN !
(5.1)

wherem1, . . . , mN ∈ {0, 1, . . . , N } satisfym1 + · · · + mN = N and the off-
spring numbers in different generations are independent and identically dis-
tributed. This prescription shows how to construct the model forwards in time.
However, for our inference problem it is much more convenient to study not
how parents have offspring, but rather how children “choose” their parents.
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Chapter 5. Ancestral Inference from DNA Sequence Data83

The Wright-Fisher model can be described by saying that each individual in a
given generation chooses its parent independently of others in its generation,
uniformly and at random from theN potential parents in the previous genera-
tion. Continuing this process back into the past yields a genealogical tree that
relates the individuals in a given generation to their parents, grandparents, and
so on.

This genealogy is hard to analyze for a given fixed value ofN , but it
may be approximated in a simple way whenN is large. Notice that the chance
that two randomly chosen individuals have distinct parents in the previous gen-
eration is 1− N−1. It follows that the chance that these two have distinct an-
cestors in generations 1,2,. . . , r is (1− N−1)r . If we measure time in units of
N generations, so thatr ≈ Nt for somet > 0, we see that the timeW2 during
which the sample of two individuals has no common ancestor satisfies

IP(W2 > t) =
(

1 − 1
N

)Nt

≈ e−t . (5.2)

This shows that in a large population, the timeW2 until two individuals have a
common ancestor has (approximately) an exponential distribution with mean
1. What of the genealogy of a sample of size three? Looking back into the past,
there will be a first time at which some members of the sample share a common
ancestor. At this time, either all three will have a common ancestor, or a par-
ticular pair will. In a large population, this last possibility is overwhelmingly
the most likely. Furthermore, the timeW3 (measured once more in units ofN
generations) has approximately an exponential distribution with mean

(3
2

) = 3,
so

IP(W3 > t) ≈ e−3t . (5.3)

At the time the first pair of individuals has found a common ancestor, the sam-
ple of three individuals has two distinct ancestors. The additional time taken
for these two to find their common ancestor has the distribution ofW2, inde-
pendent ofW3.

Thus in a large population we can give a simple description of the ge-
nealogy of a sample ofn individuals. This stochastic process, known as theco-
alescent, describes the genealogical tree of the sample as time goes back into
the past. With time measured in units ofN generations, the timeWj during
which the sample hasj distinct ancestors has an exponential distribution with
parameter

( j
2

) = j ( j − 1)/2, the timesWn, Wn−1, . . . , W2 being independent
for different j . W j should be thought of as the length of each of thej branches
of the genealogical tree when the sample hasj distinct ancestors. This tree is
bifurcating; at the timeWn, two of then ancestors are chosen at random and
their branches are joined, givingn − 1 ancestors for the sample. At the time
Wn+Wn−1, two of thesen−1 ancestors are chosen at random and their branches
are joined, resulting inn−2 distinct ancestors in the sample. This process con-
tinues until the time

Tn = Wn + · · · + W2, (5.4)

when all the individuals in the sample have been traced back to their most re-
cent common ancestor (MRCA). A sample path of this process appears in Fig-
ure 5.1.
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Figure 5.1. A sample path of the coalescent for a sample of sizen = 5.

The previous discussion was based on the Wright-Fisher model. Re-
markably, the same approximation applies to a very wide class of discrete ex-
changeable reproduction models. Kingman (1982a; 1982b) showed how the
coalescent arises as the limiting approximation (as the population sizeN →
∞) to these underlying discrete genealogies. In this approximation, time is
measured in units ofσ−2N generations, whereσ 2 ∈ (0,∞) is the limiting vari-
ance of the numberν1 of offspring born to a typical individual. For ease of
exposition, we assumeσ 2 = 1 (as it is for the Wright-Fisher model) in what
follows.

The mean time to the MRCA, and so the mean height of the ancestral
tree, can be found from (5.4) as

IETn = IE(Wn + · · · + W2) (5.5)
= IEWn + · · · + IEW2 (5.6)

= 2
n(n − 1)

+ · · · + 2
2(2 − 1)

(5.7)

= 2
(

1 − 1
n

)
(5.8)

in coalescent units. The variance ofTn can be computed easily because theW j
are independent and exponentially distributed. We obtain

Var(Tn) =
n∑

j=2

4
j2( j − 1)2

. (5.9)

In large samples this variance is about 1.16, most of which comes from the time
W2 when the sample has just two ancestors. Times are often converted from
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Chapter 5. Ancestral Inference from DNA Sequence Data85

the coalescent timeTn to yearsT y
n via

T y
n = Tn × N × G, (5.10)

whereG is the number of years in a generation.

5.2.1 The ancestral process

In the sequel we make use of the Markov chain{An(t), t ≥ 0} that
counts the number of distinct ancestors of the sample of sizen at timest ≥ 0.
In Markov chain parlance, this is adeath process: it starts fromAn(0) = n,
waits an exponential amount of timeW j in state j , and then moves to state
j −1 and so forth. Eventually the process is absorbed in the state 1, at the time
Tn. The probability distributiongnj (t) of An(t) was found by Griffiths (1979).

gnj (t) = IP(An(t) = j)

=
n∑

k= j

(−1)k− j e−k(k−1)t/2 (2k − 1) j(k−1)n[k]

j !(k − j)!n(k)

, (5.11)

where we have used the notation

a(n) = a(a + 1) · · · (a + n − 1); a(0) = 1; (5.12)
a[n] = a(a − 1) · · · (a − n + 1); a[0] = 1. (5.13)

Because{Tn ≤ t} = {An(t) = 1}, the distribution function ofTn fol-
lows immediately from (5.11):

IP(Tn ≤ t) = gn1(t), t ≥ 0. (5.14)

While this provides an explicit formula for the distribution ofTn, it is harder
to find explicit results for other quantities of interest such as the distribution of
the total lengthLn of the tree, defined by

Ln = nWn + (n − 1)Wn−1 + · · · + 2W2. (5.15)

Instead we can resort to a Monte Carlo approach, in which observations hav-
ing the required distribution are simulated. These simulated values can then
be used to estimate the probability density of the underlying random variable,
together with any required statistics such as percentiles, mean and variance.
A convenient introduction to stochastic simulation can be found in Ripley
(1987). To illustrate the ideas, we give an algorithm for simulating the times
Wn, Wn−1, . . . , W2.

Algorithm 1 Algorithm to generate Wn, . . . , W2 for constant population size.
U denotes a random variable with the uniform distribution on (0,1), generated
independently at each use.

1. Sett = 0, j = n.

2. Generates = −2 log(U )/j ( j − 1).
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3. Setw j = s, t = t + s.

4. Setj = j −1. If j ≥ 2, go to 2. Else returnTn = t , Wn = wn, . . . , W2 =
w2.

Step 2 generates an observation having the exponential distribution with mean
2/j ( j − 1), just as needed forWj . The valuet returned in Step 4 has the dis-
tribution of Tn = Wn + · · · + W2. The algorithm can be modified to generate
observations having the distribution ofLn; simply setl = 0 at Step 1,l = l+ j s
at Step 3, and returnLn = l at the end of Step 4. Later in this chapter, we ex-
ploit this simulation approach in cases where exact results are unobtainable.

Genealogical methods based on variations of the coalescent, using
both theoretical and simulation approaches, have proved very powerful for un-
derstanding the structure of complex stochastic models in population genetics
and as a useful guide to intuition in understanding the evolution of many pop-
ulation genetic phenomena. The recent reviews of Hudson (1991); Hudson
(1992) and Donnelly and Tavaré (1995) describe some of these developments.

5.3 THE BIVARIATE ANCESTRAL PROCESS

In order to study TMRCA for a population given sequence data from a
sample, we need to understand thejoint behavior of the genealogy of both pop-
ulation and sample. We make use of the process{(Am(t), An(t)), t ≥ 0} that
counts the number of ancestors in a population of sizem and a random sam-
ple of sizen taken from it. (It is convenient to refer to the set ofm individuals
as the population, and the subset of sizen as the sample. This avoids ambigu-
ity and terms like “sample” and “subsample” or “supersample” and “sample”.)
This bivariate process is Markovian and it makes transitions from a state of the
form (i, j) whenever two individuals in the current population of sizei share a
common ancestor. If this coalescence event involves the ancestors of two in-
dividuals in the sample, then the new state becomes(i −1, j −1). In any other
case, it is(i − 1, j). From(i, j) we move to

(i − 1, j) at rate (i(i − 1) − j ( j − 1))/2 (5.16)
(i − 1, j − 1) at rate j ( j − 1)/2. (5.17)

A sample path of the bivariate process form = 9, n = 5 is given in Figure 5.2.

The distribution of(Am(t), An(t)) was found by Saunders et al. (1984)
as

IP(Am(t) = l, An(t) = k) = gml(t)q(n, k | m, l), (5.18)

wheregml(t) is given in (5.11), andq(n, k | m, l) is given by

q(n, k | m, l) = (5.19)
(m − n)!(m − l)!n!(n − 1)!l!(l − 1)!(m + k − 1)!

(n − k)!(l − k)!m!(m − 1)!k!(k − 1)!(l + n − 1)!(m + k − l − n)!
.

The quantityq(n, k | m , l) is the probability that the sample of sizen taken at
any timet > 0 hask distinct ancestors given that the population of sizem has
l ancestors at that time.
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Figure 5.2. A sample path of the bivariate coalescent for a population of sizem = 9
and a sample of sizen = 5. The sample individuals are labeled 1,2,. . . , 5.

The sample path in Figure 5.2 shows that at the timeTn when the sam-
ple reaches its MRCA, the numberAm(Tn) of distinct ancestors of the popula-
tion is random. The distribution of the numberAm(Tn) is known. In particular,
Watterson (1982) showed that the probability that the population of sizem and
a sample of sizen share a common ancestor is

IP(Am(Tn) = 1) = (n − 1)(m + 1)

(n + 1)(m − 1)
. (5.20)

If the sample is at all large, there is an appreciable chance that the sample and
the subsample will share their MRCA, and that the time to the MRCA is thus
the same for both sample and subsample. On the other hand, if they do not
share a common ancestor then theextra time Tnm required to reach the MRCA
of the sample is stochastically larger thanW2, the time taken for two individuals
to be traced back to their common ancestor.

5.4 VARIABLE POPULATION SIZE

In order to apply coalescent methods to human population data, we
need to account for the effects of variations in population size through time.
Fortunately, this is straightforward in the case of deterministic fluctuations.
To keep the presentation simple, we concentrate on the approximation to the
Wright-Fisher model once more. The effect of variable population size is to
change the joint distribution of the timesW j (Kingman 1982b; Griffiths and
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Tavaŕe 1994b; Donnelly and Tavaré 1995). In particular, these times are no
longer independent. We assume that the population size at the time of sam-
pling is N , and again measure time in units ofN generations. We writeN p(t)
for the population size a (coalescent) timet ago and defineλ(t) = 1/p(t). The
conditional distribution of the timeWj for which there are exactlyj ancestors
of the sample, given that the time for which there are more thanj ancestors is
s, is

IP(W j > t |Wn + · · · + W j+1 = s) = exp
(

−
(

j

2

)∫ s+t

s
λ(v) dv

)
.

(5.21)

We assume that
∫ ∞

0 λ(v) dv = ∞ to ensure that any pair of individuals (and
thus the sample) can be traced back to a common ancestor.

The process{Av
n(t), t ≥ 0} that counts the number of ancestors at time

t of a sample of sizen taken at time 0 is now a time-inhomogeneous Markov
process. Given thatAv

n(t) = j , it jumps to j − 1 at ratej ( j − 1)λ(t)/2. A
useful way to think of the processAv

n(·) is to notice that a realization may be
constructed via

Av
n(t) = An(�(t)), t ≥ 0, (5.22)

whereAn(·) is the corresponding ancestral process for the constant-population-
size case, and

�(t) =
∫ t

0
λ(s) ds. (5.23)

Thus the variable-population-size model is just a deterministic time change of
the constant-population-size model. Some of the properties ofAv

n(·) follow im-
mediately from this representation. For example,

IP(Av
n(t) = j) = gnj (�(t)), j = 1, . . . , n (5.24)

wheregnj (t) is given in (5.11), and so

IP(Tn ≤ t) = IP(Av
n(t) = 1) = gn1(�(t)), t ≥ 0. (5.25)

Once more, simulation provides a valuable way to study properties of
genealogy when the population size varies. The representation (5.21) gives a
direct way to simulate the timesWn, Wn−1, . . . , W2.

Algorithm 2 Algorithm to generate Wn, . . . , W2with variable population size.
U denotes a random variable with a uniform distribution on (0,1), generated
independently at each use.

1. Sett = 0, j = n.

2. Generate

w∗
j = −2 log(U )

j ( j − 1)
.

3. Solve fors the equation

�(t + s) − �(t) = w∗
j . (5.26)
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Chapter 5. Ancestral Inference from DNA Sequence Data89

4. Setw j = s, t = t + s.

5. Setj = j −1. If j ≥ 2, go to 2. Else returnTn = t , Wn = wn, . . . , W2 =
w2.

As noted after Algorithm 1,w∗
j generated in step 2 has an exponen-

tial distribution with mean 2/j ( j − 1). If the population size is constant, then
�(t) = t, and Algorithm 2 reduces to Algorithm 1. Observations having the
distribution of the tree lengthLn can be generated as described after Algo-
rithm 1.

5.4.1 The bivariate process revisited

The analysis of the bivariate ancestral process with variable popula-
tion size follows immediately from the representation

(Av
m(t), Av

n(t)) = (Am(�(t)), An(�(t))), t ≥ 0. (5.27)

From this follows the fact that

IP(Av
m(t) = l, Av

n(t) = k) = gml(�(t))q(n, k | m, l), (5.28)

whereq(n, k | m, l) is given in (5.19). Note that the combinatorics of the bi-
variate process remain as they were in the constant-population-size case; only
the waiting times between the jumps of the process change. In particular, the
probability that the population and the sample share their MRCA is still given
by (5.20).

Distributions in the bivariate process can also be simulated easily. Al-
gorithm 3 gives a method for simulating values of the heightTn = Wn+· · ·+W2
of the coalescent tree of the sample of sizen, the numberAm(Tn) of ancestors of
the sample at the time the subsample reaches its MRCA, and the timeTnm from
then until the population reaches its MRCA. This extra time may, of course,
be 0.

Algorithm 3 Algorithm for bivariate ancestral process. U denotes uniform
(0,1) random variable, independently generated at each use.

1. Setam = m, an = n, t = 0.

2. Setw = −2 log(U )/(am(am − 1)).

3. Solve fors the equation�(t + s) − �(t) = w.

4. Sett = t + s.

5. Set

p = an(an − 1)

am(am − 1)
(5.29)

andam = am − 1.

6. With probabilityp, setan = an − 1. If an > 1, go to 2.
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7. Settn = t, a∗ = am . If a∗ = 1, settmn = 0, and stop. Otherwise, use
Algorithm 2 starting fromt = tn, n = a∗ to generate an observationtnm
on the total height of a coalescent tree ofa∗ individuals, then stop.

The values oftn, a∗, and tnm returned by a single pass through Al-
gorithm 3 have the joint distribution of the heightTn, the number of ances-
tors Am(Tn) of the population at the time the subsample finds its MRCA, and
the additional time required to get to the MRCA of the population. Note that
tm = tn + tnm has the distribution ofTm . More detailed information about the
genealogical trees could also be recorded, but this is all we need later on.

5.5 MUTATIONS IN THE GENEALOGICAL TREE

To model the effect of mutations in the genealogy of the sample, we
assume that the times at which mutations occur form a Poisson process of con-
stant rateθ/2, independently in each branch of the tree. A branch of lengthw
therefore has a Poisson number of mutations with meanwθ/2. The parameter
θ is defined by

θ = 2Nµ, (5.30)

whereµ is the mutation rate per gene per generation in the underlying discrete
model. When the mutation rateµ is of the order of the reciprocal of the pop-
ulation sizeN , the genealogy and the genetics compete on equal terms; both
features are included in the coalescent approximation.

To model the evolution of DNA-sequence data we have to describe
how a sequence is changed when a mutation occurs in it. We here use the
infinitely-many-sites model of Watterson (1975). Because we are ignoring the
effects of recombination (it is not thought to occur in the data at hand), each
sequence may be thought of as a completely linked sequence of DNA sites.
Whenever a mutation occurs, it occurs at a site that has not had a mutation be-
fore.

Observing that each mutation in the coalescent tree introduces a new
segregating site into the sample, the number of segregating sitesSn in the sam-
ple ofn chromosomes is precisely the number of mutations that arise in its ge-
nealogical tree. This in turn has a Poisson distribution with meanθ Ln/2, where
Ln is the total length of the tree, defined in (5.15) byLn = nWn +(n−1)Wn−1+
· · · + 2W2. That is,

IP(Sn = k | Ln = l) = Po(k, θl/2), (5.31)

where Po(k, µ) is the Poisson probability

Po(k, µ) = e−µ µk

k!
, k = 0, 1, . . . . (5.32)

5.6 CONDITIONING ON THE DATA

Our aim is to find the distribution of the time to the MRCA of a popu-
lation of sizem given data from a sample ofn individuals. In this chapter, we
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Chapter 5. Ancestral Inference from DNA Sequence Data91

summarize the data by takingD to be the number of segregating sites in the
DNA sequences. Prior to sampling, the required probability density is that of
Tm , defined as

Tm = Wm + · · · + W2. (5.33)

We call this thepredata density of TMRCA. Thepostdata density function is
that ofTm givenD = {Sn = k}, which, using Bayes’ formula, satisfies

fTm (t |D) ∝ fTm (t)IP(Sn = k | Tm = t). (5.34)

As in (13) of Tavaŕe et al. (1996), this can be expressed as follows:

fTm (t)IP(Sn = k | Tm = t) =
∫ ∞

0
fTm ,Ln (t, l)IP(Sn = k | Tm = t, Ln = l) dl

=
∫ ∞

0
fTm ,Ln (t, l)IP(Sn = k | Ln = l) dl

=
∫ ∞

0
fTm ,Ln (t, l)Po(k, lθ/2) dl. (5.35)

In (5.35), fTm ,Ln (t, l) is the joint probability density ofTm andLn in the bivari-
ate coalescent process. Supposing for the moment that an observation(t, l)
could be generated from the joint density ofTm and Ln, we see from (5.35)
that therejection method can be used to generate from the conditional distri-
bution in (5.35). The idea is to keep the observationt with probability u =
Po(k, lθ/2), and reject it otherwise. The rejection step can be improved by
noting thatt can be accepted with probabilityu/c for any constantc > u. Be-
cause Po(k, lθ/2) ≤ Po(k, k), we may takec = Po(k, k), and hence we accept
t with probabilityu given by

u = Po(k, lθ/2)

Po(k, k)
. (5.36)

Ripley (1987)( pg. 60) gives a description of the rejection method.
To generate an observation from the joint distribution ofTm andLn,

we can use Algorithm 3 directly. In addition, it generates observations from the
conditional distribution of the numberAm(Tn) of ancestors of the population of
sizem givenD. In summary, we have the following algorithm.

Algorithm 4 Rejection algorithm for fTm (t | Sn = k). U denotes a uniform
(0,1) random variable, independently generated at each use.

1. Setam = m, an = n, t = 0, l = 0.

2. Setw = −2 log(U )/am(am − 1).

3. Solve fors the equation�(t + s) − �(t) = w.

4. Sett = t + s, l = l + ans.

5. Set

p = an(an − 1)

am(am − 1)
, (5.37)

andam = am − 1.
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6. With probabilityp, setan = an − 1. If an > 1, go to 2.

7. Setu = Po(k, lθ/2)/Po(k, k). Accept(t, am) with probabilityu, else go
to 1.

8. Settn = t, a∗ = am . If a∗ = 1, settmn = 0, and stop. Otherwise, use
Algorithm 2 starting fromt = tn, n = a∗ to generate an observationtnm
on the total height of a coalescent tree ofa∗ individuals, then stop.

The values oftn, a∗, tnm generated by a single run through Algorithm 4
have the joint distribution of the sample tree heightTn, the number of ancestors
Am(Tn) of the sample at the time the sample finds its MRCA, and the additional
time Tnm required to get to the MRCA of the population conditional on having
observedk segregating sites in the sample. The value oftm = tn + tnm has the
distribution ofTm given Sn = k.

5.7 APPLICATIONS

Whitfield et al. (1995) sequenced a region of 15,680 base pairs from
the Y chromosome ofn = 5 individuals. They observed just three segregating
sites and estimated the coalescence time of the sample to be between 37,000
and 49,000 years. Their analysis was not based on a population genetics model.
Tavaŕe et al. (1996) use coalescent methods to reanalyze these data, using a
number of plausible scenarios about variability in the effective population size
N and the underlying mutation rateµ. Whitfield et al. (1995) estimated the
mutation rate in the region to beµ = 3.52×10−4 substitutions per generation,
based on a generation time ofG = 20 years. Using an estimate ofN = 4, 900,
the value used by Hammer (1995), Tavaré et al. (1996) found a 95% credible
region for TMRCA of the sample of 30,000–183,000 years.

Here we examine two aspects in more detail: we estimate TMRCA for
the population, and we estimate the chance that the sample and the population
share their most recent common ancestor, given the data of 3 segregating sites
from the sample of 5 individuals. For illustration, we use a model of determin-
istic fluctuation in population size of the form

λ(t) =



α−1, t > V ,

α−t/V , 0 ≤ t ≤ V .
(5.38)

This corresponds to a model in which the population has constant relative size
α ∈ (0, 1) prior to timeV ago, and exponential growth to relative size 1 at
the time of sampling. We take a value of 50,000 years forV , andα = 10−4.
For comparison with our earlier work, we suppose that the effective size in the
constant phase is 4900, so thatN = 4.9 × 107.

To apply Algorithm 4 we need a value to use form. In practice, it
is difficult to detect a difference between the distributions of, say,T200 and
T500, and we choose for this illustration a value ofm = 200. We use Algo-
rithms 3 and 4 to simulate 10,000 observations from the predata distribution of
(T5, T200) and the corresponding postdata distribution, given that in the sample
of size 5 there are 3 segregating sites.
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For this demographic model, the predata distribution ofT5 has a mean
of 199,000 years and 95% of the distribution of lies in the interval (76,000–
464,000) years. (Here and in what follows, all ages are rounded to the nearest
1000 years. We use the shorthand I95 to denote the interval such that 2.5% of
the mass of a distribution is to the left of the left endpoint, 2.5% to the right of
the right endpoint.) The predata distribution ofT200, representing the TMRCA
of the whole population, has a mean of 238,000 years, and an I95 of (113,000–
504,000). In the 10,000 simulations, the observed fraction of times that the
sample and the population had the same MRCA was 0.671, in good agreement
with the theoretical value of 0.673 from (5.20).

The postdata distribution ofT5 has a mean of 108,000 years, and an
I95 of (61,000–194,000) years. Note that the postdata distribution suggests a
much shorter time for the TMRCA of thesample, and the postdata distribu-
tion is much more concentrated than the predata distribution. The estimated
densities are plotted in Figure 5.3.

Time to MRCA (years)

0 100000 200000 300000 400000 500000 600000

0

1

2

3

Figure 5.3. Density functions for the pre-data (solid lines) and post-data distribution
of T5. x-axis is in years.

The proportion of the 10,000 runs that resulted in the population and
the sample having a common MRCA was 0.233, markedly smaller than the
predata fraction. On the basis of this, we anticipate that the additional time to
the MRCA of the population will be much larger than the corresponding in-
crement in the predata distribution. This is indeed the case; the former has a
mean of 101,000 years, the latter 39,000 years. The mean time to the popu-
lation MRCA is 209,000 years, with an I95 of (99,000–465,000) years. This
interval is somewhat shorter than the I95 for the predata distribution. The es-
timated densities are plotted in Figure 5.4.
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Figure 5.4. Density functions for the predata (solid lines) and postdata distribution of
T200. x-axis is in years.

Two points from this analysis should be emphasized. First, the post-
data TMRCA of thesample can be a serious underestimate of the correspond-
ing time for thepopulation. Second, the extra information contained in this
small sample does rather little to refine our predata assessment of TMRCA for
the population; as can be seen in Figure 5.4, the two densities are very similar.

Finally, what is the effect of the population expansion? For a constant-
size model withN = 4900 and the same value ofµ, the I95 of the postdata
distribution ofT200 is (59,000–410,000) years. The population expansion has
shifted this interval to the right by about 54,000 years, essentially the time to
the start of the constant phase. The intuition behind this is clear. By the begin-
ning of the expansion phase at timeV , a sample of moderate sizem is likely to
have almostm distinct ancestors. The time to the MRCA is therefore approx-
imatelyV plus the corresponding time in a population of constant size.

5.8 DISCUSSION

This chapter gives a feel for one approach to an intriguing problem
in the historical sciences: estimation of the time to the most recent common
ancestor of a population of individuals given DNA-sequence data on a sample
from the population. The approach described here, based on a stochastic model
for the ancestral relationships between individuals, is intended to be illustrative
of the field.

We based our inferences on a summary statistic (the number of segre-
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Chapter 5. Ancestral Inference from DNA Sequence Data95

gating sites) of the sample of DNA sequences. Related methods for the full
data (once more under the infinitely-many-sites mutation model) have also
been developed. The theory of the reduced genealogical trees that represent the
complete sequence information appears in Griffiths (1989) and Griffiths and
Tavaŕe (1995). Computer-intensive inference methods are described in Grif-
fiths and Tavaŕe (1994a).

There are many open problems that remain to be solved. Careful
analysis of samples of molecular sequences should take account of the role
of demography: nonrandom mating, population subdivision, and fluctuations
in population size. With the availability of more data, more refined mutation
models could also be exploited. The assumption of random sampling is im-
plicit in most analyses, but nonrandom samples are more likely the rule. Fi-
nally, we have assumed that mutation rates and population-size fluctuations
are known. Methods that allow for variability in these parameters, and further
discussion of many related issues, appear in Donnelly et al. (1996) and Tavaré
et al. (1996).
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PART II: CELL BIOLOGY

Mark A. Lewis

Organisms and their constituent cells have an immense number of
tasks to perform, from information processing to growth and cell division to
signaling to maintaining a constant internal environment in the face of exter-
nal variation (homeostasis). While the disciplines of biochemistry, biophysics,
genetics, and molecular biology are central to any understanding of how these
tasks are performed, biological experience cannot always predict the conse-
quences of complex physiological interactions. In this realm of unpredictabil-
ity, mathematical of models can have a crucial role in our understanding of
physiology. Mathematics provides a quantitative means with which to formu-
late precise hypotheses about physiology. The purpose of a model is not to
“simulate” the biology, but to judiciously simplify the level of detail to where
only the most important elements controlling the physiology remain. Analy-
ses of the model then serve to show which hypotheses are consistent with the
more complex experimental detail.

The chapters in this section discuss mechanisms governing physiolog-
ical phenomena. Subjects include signal transduction via control of calcium
and second-messenger dynamics (Chapter 6 by H. G. Othmer), control of cel-
lular replication (Chapter 7 by J. J. Tyson, K. Chen and B. Novak), periodic
diseases of the blood (Chapter 8 by M. C. Mackey), oscillatory responses of
pupil nervous system to stimuli (Chapter 9 by J. Milton and J. Foss), and elec-
trical bursting behaviors of cells (Chapter 10 by A. Sherman). Although each
chapter deals with distinct phenomenon, mathematics allow us to look beneath
the specific details to underlying themes that pertain to many of the chapters.

One theme common to each section is biological oscillations, whether
in the intracellular calcium levels (H. G. Othmer), the control of cell cycling (J.
J. Tyson, K. Chen, and B. Novak), blood counts in diseased individuals (M. C.
Mackey), the diameter of the pupil responding to a light source (J. Milton and
J. Foss) or the onset of active spiking interspersed with silent states in electri-
cal behavior of cells (A. Sherman). Mechanisms governing each of the above
oscillatory systems clearly depend upon specific biological milieu. The mathe-
matics used in their study, however, have some common origins. For example,
it may interest the reader to note that Mackey’s discussion of periodic diseases
of the blood (Chapter 8) and Milton and Foss’ discussion of the pupil-light re-
flex (Chapter 9) use similar nonlinear delay differential equation (DDE) mod-
els. Although the processes differ in the biological specifics, oscillations arise
in both cases from negative-feedback loops with delays, making DDEs suitable
for their study. Both show that the results of long delays can be dramatic, lead-
ing not only to oscillations, but also to a variety of very complex temporal pat-
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terns. These patterns are not simply mathematical niceties; they are observed
biologically either under disease conditions (Mackey) or under laboratory con-
ditions (Milton and Foss).

The theme of excitable dynamics arises in Othmer’s discussion of cal-
cium dynamics (Chapter 6), Tyson et al.’s discussion of cellular control (Chap-
ter 7) and Sherman’s discussion of electrophysiology (Chapter 10). Models in
each of these chapters possess a nonlinear threshold, so that small (subthresh-
old) stimuli have little effect, but larger (suprathreshold) stimuli cause a dra-
matic, large-scale response. The classic example of an excitable system arises
in the firing of a nerve: the stimulus to a nerve must exceed a threshold before
the nerve fires. Mathematical details of this behavior were pioneered in the
early 1950s by Hodgkin and Huxley, with an ODE model for the nerve. This
elegant work had a profound impact on electrophysiology that is still evident
today (see Chapter 10 by A. Sherman) and earned Hodgkin and Huxley a Nobel
prize in physiology. Many models in this section more closely resemble later
simplifications of Hodgkin and Huxley’s (1952) work by FitzHugh (1961) and
Nagumo (1962), who showed how the essence of the nerve could be described
by a pair of coupled ODEs with excitable dynamics. The themes of oscilla-
tions and excitability are connected. It turns out that small modifications of
excitable dynamics can give rise to oscillatory dynamics. In the modified ex-
citable system, for example, the nerve never returns completely to a rest state,
but fires repeatedly. This kind of oscillation mechanism, exemplified in Chap-
ters 6, 7 and 10, differs from the delayed-negative-feedback loop in Chapters 8
and 9.

Although this section examines a diverse body of work, readers may
find other themes that unify. They are also encouraged to ask questions of each
chapter:

• How is the mathematics useful? Are precise hypotheses formulated?
Does analysis of the model yield specific predictions? If so, how do these
compare with experiment? How would one proceed without mathemat-
ics?

• Where do the equations come from? Each chapter derives equations
using specific modeling principles. How do the authors make the transi-
tion from scientific hypotheses to mathematical formulae?

• Does the model work? A key element of each chapter is the author’s
ability to tailor a mathematical model to focus on the specific question
at hand. What is missing from each model? How do we know whether
it is important or not?
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