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ABSTRACT 
The paper is concerned with methods for the estimation of the coalescence time (time since the most 

recent common ancestor) of a sample of intraspecies DNA sequences. The methods take advantage of 
prior knowledge of population demography, in addition to the molecular data. While some theoretical 
results are presented,  a central focus is on computational methods. These methods are easy to implement, 
and, since explicit formulae tend to be either unavailable or unilluminating, they are also more useful 
and more informative in most applications. Extensions are presented that allow for  the effects of uncer- 
tainty  in our knowledge of population size and mutation rates, for variability in population sizes, for 
regions of different mutation rate, and for inference concerning  the coalescence time of the entire 
population. The methods are illustrated using recent data from the human Y chromosome. 

TH  the  abundance of molecular genetic data 
that is  now becoming available, and  the interest 

in assessing current levels  of human genetic diversity, 
attention has recently turned toward the question of 
what these data can tell  us about  human prehistory. 
More specifically,  several recent papers have addressed 
the  problem of inferring times since the most recent 
common ancestor of a sample of homologous DNA se- 
quences drawn from a diverse range of contemporary 
humans. 

Haploid sequences are convenient for such studies 
because the  need  to distinguish an individual's two hap- 
lotypes at  an autosomal locus is then avoided. Studies 
have therefore  tended  to favor either  the maternally 
inherited mitochondrial DNA (mtDNA) (e.g., WAL 
LACE 1995;  WILLS 1995) or the male-specific part of 
the Ychromosome (HAMMER 1995;JOBLING and TYLER- 
SMITH 1995; WHITFIELD et al. 1995). These two sources 
of  DNA represent, in effect, only two loci, one  or both 
of  which  may be subject to selection, so that  data from 
autosomal loci (AYALA  1995; HARDING et al. 1997)  are 
also needed to obtain a reasonably good picture of  re- 
cent  human evolutionary history. 

Extracting information  about  human history from 
these data  requires careful modeling of the complex 
underlying processes such as mutation, demography 
and genealogical structure ( DONNELLY 1996), by which 
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we mean the ancestral relationships among  the se- 
quences. In  recent years, a convenient mathematical 
framework has emerged  for describing these processes, 
known as coalescent theory. 

In Section 2, we give a brief outline of standard coa- 
lescent theory. This theory describes, in terms of proba- 
bilities, the ancestral relationships we would expect to 
find in a sample of sequences before any  of the sequences 
are observed. Once  the  data have been  examined, these 
probabilities can be revised in the light of the data. 
The correct  method  for revising the initial coalescent 
probabilities on the basis  of the observed data is  given 
by the usual rules of probability. The relevant calcula- 
tions are, however, difficult, and a range of ad hoc alter- 
native approaches have been developed in the litera- 
ture. Some of these approaches  are discussed in Section 
4.  Many  of them make inefficient use  of the  data and 
some are fundamentally incorrect. 

In this paper, we describe the  correct  approach  for 
drawing inferences about coalescence times from se- 
quence  data, within the framework of  infinitely-many- 
sites coalescent theory. Exact solutions to  the  inference 
problem in this setting have been  obtained for samples 
of  size two ( TAJIMA 1983) (Section 3 )  and samples of 
any  size that display no diversity (Section 5.2). In  other 
cases, the theory and  computational implementation of 
an exact solution are complex ( GRIFFITHS and TAV& 
1994a). We describe in Section 5.1 a very simple and 
fast approximate simulation method based on replacing 
the full data  set with  only the  number of segregating 
sites in the sample. Extensions are  presented  that allow 
for the effects  of uncertainty in our knowledge  of popu- 
lation size and mutation rates, for variability in popula- 
tion sizes, for regions of different mutation rate, and 
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FIGURE 1.-Coalescent tree for 
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a sample of five individuals. 

for  inference  concerning the coalescence time of the 
entire  population. 

Our focus here is on methods  that use population 
genetics modeling  in  inferring coalescence times from 
molecular genetic data. Another class  of methods does 
not use population  modeling (see Section 7.2 for  an 
example). In principle, such approaches  are ineffi- 
cient,  in not using all  of the available information (see 
Section 3 for a comparison in the simplest case). They 
also suffer from various practical drawbacks. In particu- 
lar, most implementations seriously underrepresent  the 
uncertainty in the resulting estimates. For a critique of 
some of these difficulties in the  context of human 
mtDNA data see TEMPLETON ( 1993). 

2. The coalescent: Kingman's coalescent ( KINGMAN 

1982a) is a probability model  for  the genealogical tree 
of a random sample of n genes drawn from a large 
population. For recent reviews see HUDSON (1991 ) , 
DONNELLY and TAVARE ( 1995).  In the simplest formula- 
tion,  the  population size is a  constant,  Nchromosomes, 
although this constraint is relaxed below. An example 
of a genealogical tree  for  a sample of size n = 5 is 
illustrated in Figure 1. Each branch tip represents  a 
sequence in the  current sample, and moving up the 
tree  corresponds to going backward in time. Branches 
merge at  a  node when the associated sequences first 
share  a  common  ancestor, so that  the  root of the  tree 
occurs at  the most recent  common ancestor of the  en- 
tire sample. 

Time is measured continuously in  the coalescent. In 
fact, the time y during which the sample has j distinct 
ancestors, 2 5 j 5 n, has the  exponential  distribution 
with parameter j (  j - 1) /2 ,  the times for  different j 
being  independent. This description provides a close 
approximation to a  range of population genetics mod- 
els in which time is expressed in  generations, provided 
that one unit of coalescent time is interpreted as N 
generations. An even larger class  of models is approxi- 
mated if a  unit of coalescence time is interpreted as 
N /  IS' generations,  in which IS' is the variance in an 
individual's number of offspring (KINGMAN 1982a). 
Here, we shall assume IS = 1, but  note  that converting 

estimates of coalescence times into years requires  a 
knowledge of u. 

There  are two important quantities associated with a 
genealogical tree:  the  height of the  tree, T,,, which is 
the time to the most recent  common  ancestor, and  the 
length of the  tree, L,, which is the total of  all the  branch 
lengths. These are  defined by 

n n 

T,, = y, L,, = j y .  ( 1 )  
J = 2  1=2 

The expectation of I4$ is E ( y) = 2 / j (  j - 1 ) , and so 
the expectations of T, and L, are given by 

Notice that as the sample size, n,  gets large, E ( T,) 
approaches  2  units of coalescent time, equivalent to 
2N generations, while E (L,)  increases without bound, 
growing like 2 log ( n )  . The variances of T, and L, are 
also readily obtained: 

Var (T,)  = 8 - 4 ( 1  - i)', 
, = 2  I 

,-l 1 

1=1 I 
Var (L , )  = 4 -2. ( 3 )  

For n large, Var ( T,) approaches 47r2/ 3 - 12 = 1.16, 
whereas Var (L,)  converges to 27r2/ 3 = 6.58. Notice 
that T,, the  height of the  tree, has a high variance 
relative to its mean and that this ratio is not reduced 
by increasing the sample size. On  the  other  hand,  the 
length L, has variance that becomes negligible relative 
to its mean as n increases. This is because L, becomes 
dominated by the large number of  very short  branches 
that  occur  near the tips of the tree, whereas T,, is mainly 
affected by the two long  branches  that  emanate from 
the  root of the  tree. 

The times at which mutations  occur  are  modeled 
in the coalescent by assuming that these times form a 
Poisson process of constant rate B / 2 .  This means that 
if a  branch of the  tree has length w, then  the  number 
of mutations on  that branch has a Poisson distribution 
with mean wO/2, independently of the mutations on 
the  other branches. Here 

B = 2Np, (4) 

in which /A is the  mutation rate per  gene  per  generation. 
If the data  are DNA sequences, then /A is equal to the 
sequence  length times the  mutation  rate  per site per 
generation. 

As well  as describing the locations of mutations on  the 
genealogical tree,  a description of mutation types is  also 
needed. Awide variety of different models for  the muta- 
tion process can be incorporated  into  the coalescent. 
When the  data are DNA sequences, the injinitely-many- 
sites model may be appropriate ( WATTERSON 1975) . In 
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this model,  each  gene is considered  to be a  sequence 
of completely linked sites, so that  no recombination 
occurs within the  sequence.  Further, every mutation 
occurs at  a site different from the sites  of the previous 
mutations, so that  a new segregating site arises. 

It follows from  the infinitely-many-sites assumption 
that, given the length of the  tree L,, the  number S, of 
segregating sites in the sample has a Poisson distribu- 
tion with mean OL,/2.  Formally, 

P(S, = kI L,z = I) = Po(k, 8 1 / 2 ) ,  ( 5 )  

in which we introduce Po ( k ,  A )  to  denote  the probabili- 
ties  of the Poisson distribution, 

for k = 0,1, . . . , and A 2 0. The unconditional distribu- 
tion of S, is then  obtained by integrating  the condi- 
tional distribution (5) with respect to  the  distribution 
of L,. 

3. Samples of size two: It is helpful to consider ini- 
tially this simplest case because both  the principles un- 
derlying the  correct  approach to inference and  the de- 
ficiencies of some alternative approaches are readily 
highlighted. 

Under  the infinitely-many-sites assumption, all of the 
information  in the two sequences is captured  in S,, 
the  number of segregating sites. Our goal, then, is to 
describe T2,  the time to the most recent  common ances- 
tor of the  sample, or coalescence time, as  fully  as  possible 
under the assumptions of the  model and in  the light 
of the  data, which  is the observed value  of S,. 

One  approach is to treat  the realized value  of T2 as 
an unknown parameter  that is then naturally estimated 
by T2 = &/O, since E (S ,  I T 2 )  = OT,. Such an  approach, 
however, does not use  all of the available information. 
In  particular, the information available about T2 due to 
the effects of genealogy and demography are ignored. 

Under  the coalescent model, when n = 2 the coales- 
cence time Ty has an exponential  distribution with 
mean 1 before  the  data  are observed. As TAJIMA (1983) 
noted, it  follows from Bayes Theorem  that, after observ- 
ing S, = k ,  the  distribution of T2 is gamma with parame- 
ters 1 + k and 1 + 0, which has probability density 
function (pdf) 

In  particular, 

l + k  
1 + o ’  l E ( T , I S , = k )  =- 

Var( T21 S, = k )  = 
l + k  

( 1  + 8)2 
The pdf ( 7 )  conveys  all  of the  information available 

about T2 in the light of both  the  data  and  the coalescent 
model.  It  represents  a  complete solution to the infer- 
ence  problem  for coalescence time in the case n = 
2. In some contexts it may be helpful to give interval 
estimates of T2. For example, intervals that  contain T2 
with probability 95% are readily obtained  for particular 
data sets. 

When, as here,  the post-data distribution of T2 is  avail- 
able, merely reporting  a  point estimate would  usually 
be  inappropriate. Nevertheless, if a  point estimate were 
required, (8) suggests the choice i$ = ( 1 + S , )  / (1 + 
0 )  . Perhaps not surprisingly, the estimator %, which is 
based on all of the available information, is superior to 
T2 that ignores the pre-data information. For example, 
writing MSE for  the  mean  square error of an estimator, 
straightforward calculations show that 

1 1 
1 + 8  0 

The difference in  mean  square  errors could be substan- 
tial for small 0. In  addition, the estimator T2 is clearly 
inappropriate when S2 = 0. 

4. Previous  approaches: In general terms, our prob- 
lem is to describe the coalescence time T, as  fully  as 
possible in the light both of the observed sequences 
and  appropriate modeling assumptions. A  complete so- 
lution is given by fT, ( tl D) , t > 0,  the pdf of T, given 
the  sequence  data D. Within the infinitely-many-sites 
modeling framework, this solution is available in terms 
both of exact expressions and convenient simulation 
methodologies, described in Section 5. Here, we briefly 
discuss a  number of alternative approaches  that have 
been employed in the literature and  point  out some of 
their flaws and inefficiencies. 

To distinguish clearly the  distribution of T, based on 
the genealogical model only and that based on  both 
model and observed data, we will use the phrases “pre- 
data” and “post-data.” 

TEMPLETON (1993) considered  the time since mito- 
chondrial “Eve”, that is the coalescence time of extant 
human mtDNA. For a  particular  reconstruction of the 
genealogical tree of the sampled sequences, he calcu- 
lated the  number of differences between each pair of 
sequences whose common  ancestor is the  root of the 
tree and  then averaged this  pairwise difference across 
all such pairs. He observed that  the value, x, of the 
average varied little over plausible reconstructed trees. 
He  then substituted the value of in place of k in ( 8 )  
and ( 9 )  , claiming that this represented  the post-data 
mean and variance, respectively,  of T ,  the coalescence 
time of the sampled sequences. He  then  referred to a 
result of KIMURA (1970) to the effect that  the distribu- 
tion of Tis approximately gamma and obtained  “con- 
fidence limits” for  Tusing  the gamma distribution with 
the  mean and variance he  had  calculated, 

There  are several problems with this method.  The 
results ( 8 )  and ( 9 )  give  post-data moments  for  the 

MSE( T2) = - < - = MSE(T*). ( i o )  
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coalescence time of a sample of two randomly chosen 
sequences. Templeton chose pairs  of sequences that 
were on different “sides” of the reconstructed genea- 
logical tree. A pair of such sequences is not randomly 
chosen: they are chosen to have the longest coalescence 
time among all  pairs of sequences in the  tree and will 
thus tend  to be more  different  than  a typical pair. The 
discussion  of the previous section, and in particular (8) 
and (9 ) ,  do  not apply for  a pair of sequences chosen 
from different sides  of a reconstructed tree.  It is not 
clear what the  correct expressions are for such se- 
quences. Second, even if ( 8 )  and (9)  had  obtained for 
each of the pairs of sequences Templeton  considered, it 
does not follow that they remain  correct on substituting 
k for k .  

DORIT et al. ( 1995) reported no variation in 38 hu- 
man Y chromosome sequences of length 729 bp. They 
used a coalescent model of population genetics to infer 
confidence intervals for the coalescence time. Their 
analysis  also contained serious errors. For a discussion 
see  DONNELLY et al. (1996) and accompanying papers. 

A different study of Y-chromosome variation was re- 
ported in HAMMER ( 1995). A 2 .6kb  fragment of the 
male-specific portion of the Y chromosome was se- 
quenced from 16 humans and four chimpanzees. The 
author  presented estimates of the coalescence time for 
the  human sequences. The largest value  of k among all 
pairs was substituted into (8) and (9)  to obtain an 
estimate of T and confidence intervals based on  an 
approximating gamma distribution, as in ( TEMPLETON 
1993). This method is invalid for effectively the same 
reasons as Templeton’s.  In particular, ( 8 )  and (9)  do 
not apply to  a pair of sequences chosen because they 
are maximally different. In fact, DONNELLY and KURTZ 
(1997) have  shown that  the  number of mutations be- 
tween the two maximally different sequences in a sam- 
ple of size n goes to infinity  as n increases. This holds 
even though  the coalescence time for the sample re- 
mains bounded. Use of the maximally different pair of 
sequences might thus be very misleading, particularly 
when the sample size is large. 

5. Simulation methods  for valid inferences: As stated 
above  in  Section 4, a complete solution to the problem 
of inferring T,, the time to the most recent common 
ancestor of a random sample of n sequences, is  given 
by frn ( tI D) , t > 0, the conditional pdf of T, given the 
complete data D. In this  section we describe methods 
for obtaining this solution within the infinitely-many-sites 
mutation model. 

From the definition of conditional probability we 
have 

- 

In words, the post-data pdf of Tn is given by the pre- 
data pdf times a factor that is the ratio of the probability 
of observing the  data if T, = t to  the unconditional 

probability of the data. Notice that ( 11 ) accords well 
with intuition in that, if the  data  are relatively more 
likely when T, = t ,  then  the  postdata pdf will be larger 
than  the pre-data pdf at that value of t ,  and vice  versa. 

Since bn ( t I D )  is a probability density function,  there 
is no need  to evaluate P (D) directly: it is a constant 
(with respect to t )  and its value is determined by the 
constraint that fT, ( t I D) must integrate to one.  In view 
of this simplification, we can write 

f,it(tID) ~ f , . ~ ( t ) P ( D l T n  = t ) -  (12)  

Equation 12 is not directly useful in general, because 
an explicit expression for P (Dl T, = t )  is only  available 
in simple cases, such as n = 2 (Section 3)  or S, = 0 
(Section 5.2). A computer-intensive approach is de- 
scribed in Section 5.6. First we describe a simple and 
fast approximate simulation method, based on replac- 
ing  the complete data  D with the summary statistic S,. 

5. I .  Conditioning  on S, : An important simplification 
to ( 12) is obtained by replacing Dwith S,, the  number 
of segregating sites  in the sample. The simplification 
arises because the distribution of S,, described near 
(5) , depends  on  the coalescent tree only through L,, 
the  length of the  tree.  The finer details of branch 
lengths and topological structure are irrelevant. More- 
over, the distribution of L, is completely specified in a 
form convenient for simulation by its definition ( 1) as 
a weighted sum of independent,  exponential  random 
variables. 

Substituting S, = k for D in ( 12) and rearranging, 
we derive 

fTn ( t l$ l  = k )  f T , ( t ) P ( &  = k l T ,  = t> 

= [fTn,L7,( t ,  1 )  

X P (S, = klT, = t ,  L, = 1)d l  
P 

= J frn,Ln( t ,  I) P (S, = kl L, = I )  dl  
0 

= fT,,I.,(t, 1 )  P o ( k ,  1 0 / 2 ) d l ,  (13) 

in which fT,&,,( t ,  1 )  denotes  the joint pdf, under  the 
coalescent model, of T, and L,. Evaluation  of (13) by 
stochastic simulation is  now straightforward, using the 
following algorithm: 

Algorithm 1 Rqection algorithm forfrn ( tl S, = k )  . 
1. simulate the (independent, exponential random vari- 

ables with parameter j (  j - 1 ) /2, j = 2,  . . . , n )  ; 
2. evaluate T, and L, according to the &$nation ( I  ); 
3. keep T, with probability u, dejned by 

otherwise  discard T, and go to I. 
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FIGURE 2.-Pre- and postdata density curves for Tlo with 0 
= 1. -, predata density; * e ,  SI, = 1; ---, SI, = 3; - - -, Slo 
= 5.  

The resulting value  of T, is a sample of  size one 
from the  required distribution. The algorithm can be 
repeated arbitrarily often, to estimate quantities of in- 
terest as accurately as desired. Let t l ,  . . . , t, be the 
times returned from m iterations of Algorithm 1. The 
density fT,( tI S, = k )  may be estimated from a histo- 
gram of the observations t l ,  . . . , t,, or by using more 
sophisticated density estimation methods. Moments of 
the distribution can be estimated from the  correspond- 
ing sample moments. For example, ( tl + * * - + t,) / 
m approximates the post-data mean of the coalescence 
time. 

Notice that  the  denominator of (14) satisfies 

Po ( k ,  k )  = max  Po ( k ,  A ) .  

This constant can  be  replaced with  any larger value, for 
example, 1. The resulting  algorithm will be  valid, but less 
efficient,  since  smaller  values of u increase the chance that 
T, is rejected.  Algorithm 1 belongs  to a class  of simulation 
methods known as acceptancerejection sampling (RIPLEY 
1987). When the acceptance probability u is small,  these 
algorithms  can be time  consuming. One might then use 
a Markov chain Monte  Carlo method. A natural choice 
is the independence sampler with the predata distribu- 
tion as the proposal (6 GILKS et aZ. 1996, Chapter 1). 

Figure 2 illustrates results from Algorithm 1 with n 
= 10 and 0 = 1. The solid cume indicates fTn ( t )  , the 

X 2 0  

pre-data pdf of the coalescence time Tlo. The  other 
curves  in the figure show the post-data density curves 
for Tlo gwen three  different observed  values for Slo. 
Moments of each of the distributions for TI ,  are given 
in the first two columns of Table 1. From ( 2 ) and ( 3 ) , 
the pre-data distribution of the  length of the  tree Llo 
has mean 5.66 and variance 6.16.  Given the value  of 
Llo, the  number of segregating sites Slo has the Poisson 
distribution with mean Llo/2. It follows that Slo has 
mean 2.83 and variance 4.12. A feature of Algorithm 1 
is that it is usually  very  fast: the simulations underlying 
Figure 2 and Table 1 require only a few seconds on a 
desktop workstation. 

5.2. The  case S, = 0: A set of sequences displaying 
no variation was presented in DORIT et al. (1995)  and 
discussed further in DONNELLY et al. ( 1996)  (see also 
the accompanying discussion and  authors'  response) . 
In this case, the  data  are fully summarized by the event 
S, = 0. Although the simulation algorithms described 
earlier can be used, there is no  need; exact results  have 
been available for some time ( TAVARP 1984) . No segre- 
gating sites occur in the sample if and only if there 
are no mutations in the coalescent tree of the sample. 
Conditional on D = [ S, = 01, it follows that  the time 
q during which the sample has j distinct ancestors has 
probability density proportional to 

Y 2 j ( j -  1)  e x p ( - j ( j -   l ) w / 2 ) . ( e x p ( - 8 ~ / 2 ) ) j .  

Hence %has an exponential distribution with parameter 
j (  j + 0 - 1 ) / 2, and (since mutations are independent 
in different branches of the tree) the %are independent 
random variables. Thus the post-data  distribution of T, 
is that of T,, defined by 

T,= w,+ . . .  + w 2 ,  (15) 

which  has probability density function 
12 

j r n ( t l  s, = 0 )  = (-1)J 
1=2  

w h e r e x ( i ) = x ( x + l ) * - - ( x + j - l ) a n d x , , ~ = x ( x  
- 1 ) * - - ( x - j + 1 ) . This follows directly from equa- 
tion 5.2 of  TAVARI? (1984). 

It is clear that  the mean time to the most recent 
common ancestor, given S, = 0, is smaller than its pre- 
data  mean, since 

Furthermore, given that  the sample has no variability, 
the time to  the most recent common ancestor of the 
sample is, as expected, stochastically smaller than  the 
unconditional distribution. 

5.3. The  case S, = k > 0: When 0 is assumed known 
and  the  population size  is assumed constant, some ex- 
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TABLE 1 

Effect of uncertainty about 8 

l 9 = 1  8 random, E (0) = 1 

Data Mean of TI, Variance of TI, Mean of TI, Variance of' TI,) 

None 1.80 1.16 1 .80 1.16 
S," = 1 1.30 0.44 1.60  0.87 
SI" = 3 1.79  0.75 1.78 1.04 
S," = 5 2.38  1.19 1.90 1.18 

Pre-data  and  post-data  moments of TI,  for three values of SI,,, for 8 known and 8 random.  The predata 
values are exact, from (2) and (3), whereas  the  post-data  values  are  estimated  from 10,000 iterations of 
Algorithm 1 or Algorithm 2. For B random,  its value is 2Np, where Nis lognormal (9,l) and p is gamma with 
shape parameter 2 and  mean 1/26,719. It follows  that B has mean 1, median 0.48 and SD 1.75. 

plicit results are available for the distributions of inter- 
est. In view  of the  independence  structure,  generating 
functions provide a useful tool. It follows from ( 5 )  and 
the  independence of the waiting  times that 

+ n  (u, z) = E (e-uTvlzSn)  

= [EIE (e-"'nz,'n I T,, L,) 
- - [ E ( e - u T " e - 8 ( l - L ) I > , / 2  ) 
- [E ( e - ~ ~ = ~ ~ ( u + ~ j ( l - ~ ) / 2 )  ) 

- - J-J Ee-(u+B(l-z)jwI/2) 

- 

n 

j = 2  

n 
- - j( j -  1) 

' ( j -  1 + 8 ( l  - z ) )  + 2 u '  1=2  J 

The bivariate generating  function +n( u, z) has the 
property that 

( cf: FELLER 1968, Chapter XI). Differentiating and sim- 
plifymg, we have 

so that, by equating coefficients of z k ,  we have 

k 

x P(S,= m )  
1 -  1 

m=O ( 1 + : - l ) k - m l + 8 - 1  . (17) 

An explicit expression for P ( S, = m )  appears in equa- 
tion 9.5 of TAVAR~ (1984). 

A similar analysis establishes that  the conditional den- 
sity f?;, ( tl S, = k )  has the form 

fT,(tl S, = k )  

where gn( t ,  e )  is the density in ( 1 6 ) ,  and [ z"] f (  z) is 
the coefficient of zk  in f (  z) . 

5.4. h e o r a t i n g  uncertainty about N and p: The anal- 
yses of Section 5.1 are conditional on  the value  of the 
scaled mutation parameter 8 and thus are directly use- 
ful only when 8 is known,  which  usually requires knowl- 
edge both of the (haploid) population size Nand of 
the  mutation rate p. In practice, there will be substantial 
uncertainty about 8. Often,  the value of p can be esti- 
mated by comparisons with homologous sequences in 
related species, but  there will  always be some uncer- 
tainty  in such estimates. Further,  there is  typically little 
information available about the (variance effective ) 
population size. 

The  sequence  data will be informative about  both 
the quantity of direct  interest, T,, and  the  other  un- 
knowns such as Nand p. For example, an observation 
of little variation in the sample, compared with expecta- 
tions under the  model, is evidence for a relatively  small 
value of T,. However, such an observation may be due 
in part to the value of either N or p,  or  both, being 
smaller than  had  been  thought. An analysis that ignores 
uncertainty in Nand p may  give misleading results since 
the effect of a small  value of N o r  p may wrongly be 
attributed to T,. 

Fortunately, Algorithm 1 is readily modified to allow 
for uncertainty about Nand p. We assume that, before 
observing the  data, Nand p are mutually independent 
random quantities, and  independent of T,, and L,. 
Equation 13 can then be rewritten 

f , ; ( t l  s, = k )  cc J"m JOffi f?,,L" ( t ,  1 )  

x 7 r N (  u) 7 r w (  v )  Po ( k ,  luv) dZdudv, (19) 

in which we introduce 7 r N  and 7 r w  for the pre-data densi- 
ties  of Nand p. Although N is,  strictly speaking, a dis- 
crete variable, it is convenient, and leads in practice 
to negligible error,  to describe it mathematically as a 
continuous variable. 

The pre-data distributions 7 r N  and 7 r w  should be cho- 
sen so as to summarize the information available about 
Nand y, for example from relevant genetic and anthro- 
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pological studies. Typically, such information will not 
uniquely specify rN and In practice, therefore, it is 
prudent to consider several different plausible choices 
and to investigate the sensitivity  of conclusions to differ- 
ent formulations of the pre-data information. 

Equation 19 suggests the following modification to 
Algorithm 1: 

Algorithm 2 Modijied rejection  algon’thm f w  fT,, ( tl S, = k )  . 
1. simulate N from T ~ ;  

2. simulate p from T ~ ;  

3. simulate the q (independent, exponential random vari- 
ables with  parameterj( j - 1)  / 2 ,  j = 2, . . . , n ) ;  

4. evaluate T, and L, according to the &$nition ( 1  ); 
5. keep T,,, N, and p with probability u, de$ned  by 

PO ( k ,  NpL)  u =  
Po(k, k )  ’ 

(20) 

othmise  discard them and go to 1. 

Accepted values  have the joint post-data distribution 
of ( T,, N ,  p )  . These observations can be used as before 
to study properties of  this post-data distribution. For 
example, it is often useful to give ancestral times  in 
years rather  than coalescent units. Denoting  the time 
in years by P,, we have 

T % =  NX G X  T,, 

where G denotes  the  number of  years per generation, 
and we continue to assume that CT = 1. The post-data 
distribution of P, can be found by returning values  of 
NGT, from each set of ( T,, N, p )  values accepted in 
step  5 of Algorithm 2. The post-data distribution of N 
and 0 = 2Np can be studied similarly. 

Some results from use  of Algorithm 2  are displayed 
in the final two columns of Table 1. Notice that allowing 
for uncertainty in 0 draws the  expected value  of Tlo 
closer to the pre-data value, compared with the 0 known 
case, while  also increasing its post-data variance. 

We remark  that  the rejection methods exploited here 
can be used to study a variety of other problems. For 
example, one might be  interested in inferring times 
to  the  common  ancestor of a sample given that  the 
segregating sites arose in specified positions in the coa- 
lescent tree. All the  method requires is that we be able 
to calculate the analogues of the rejection probabilities 
( 14)  and  (20). It is also clear that  the  methods  gener- 
ate observations on  the post-data distributions of the 
coalescence times r/r: themselves;  merely return  the full 
vector ( W2, . . . , W,) rather  than  the summary statistic 
T,. Computer  implementations of these algorithms are 
available from the  authors. 

5.5. Mean paanuise differences: Instead of simplifjmg 
the  complete  data  set by reporting only the  number 
of segregating sites in the sample, which leads to the 
inferential  method described above, other approaches 
to data  reduction sometimes employed are based on 

n,, the average  of the nucleotide differences over  all 
pairs of sequences in the sample. Unlike S,, the distribu- 
tion of n, does  depend  on  the details of the genealogy 
and so a detailed simulation method, such as that de- 
scribed in Section 5.6, is required. However, since this 
approach is not simpler than  the exact method,  there 
seems no advantage in pursuing it. 

5.6. Exact simulation methods: Under  the infinitely- 
many-sites model, the full data D are equivalent to an 
unrooted tree ( GRIFFITHS and TAV& 1995).  The prob 
ability distribution of such trees can be determined re- 
cursively ( GRIFFITHS 1989), though direct recursive 
computation is feasible  only for small sample sizes. In 
practice, Markov chain simulation techniques can be 
used to approximate any required probabilities to arbi- 
trary  accuracy. Further details and examples are grven 
in  GRIFFITHS and TAV& ( 1994a, 1995).  The same  com- 
puter-intensive approach may be used  to find the post- 
data distribution of T, given D; see GRIFFITHS and TA- 
v& (1994a). In practice these methods can be quite 
time consuming, especially for large sample sizes n. The 
approximate methods based on replacing the full data 
D by the summary  statistic S,, and using Algorithms 1 
and 2, are much quicker and  hence allow a wider range 
of modeling assumptions to be investigated. An assess- 
ment of  how this data summary  affects the post-data 
distribution of T, is given  in GRIFFITHS and TAV& 
( 1996). We return to this  issue  in  Section 8. 

5.7. Variable population size: The effect of  variable 
population size  is to change  the joint distribution of 
the times y ( KINGMAN 1982b) ; see  also GRIFFITHS and 
TAV& ( 1994b) , SLATKIN and HUDSON ( 1991 ) , TAJIMA 
( 1989 ) , and DONNELLY and TAV& ( 1995 ) . In particu- 
lar, these times are  no  longer  independent. Suppose 
that  the population size at  the time of sampling is N ,  
and measure time in units of N generations. We write 
Np( t )  for the  population size a time t ago, and define 
A ( t )  = 1 / p  ( t )  . Under  a wide  class  of demographic 
models, the  conditional distribution of the time LT( for 
which there  are exactly j ancestors of the sample, given 
that  the time in  which there  are  more  than j ancestors 
is s, is 

= exp(- ( i )  S : ” A ( u ) d u ) .  (21 )  

This provides a  direct way to simulate times W,, W,-l, 
. . . , W, having the  required distribution; see  GRIFFITHS 
and TAVAR~? (1994a), for example, for conditions un- 
der which (21 ) is valid. 

A very useful way to think of the process A ( * ) that 
counts  the  number of distinct ancestors of a sample is 
to write 

A ” ( t )  = A ( A ( t ) ) ,   t z  0, (22) 



512 S. Tavari. et al. 

where A ( - ) is the  corresponding process for  the con- 
stant  population size case, and 

R ( t )  = X ( s ) d s .  

Thus  the variable population size model is just a  deter- 
ministic time change of the constant size model. De- 
spite this fact, it is often difficult to provide useful ex- 
plicit results for many quantities of interest. We remark 
that Algorithms 1 and 2 may be employed directly as 
long as the n: are simulated with the  distribution  deter- 
mined by (21 ) .  

5.8. Other  demographic  scenarios: The coalescent ap- 
proximation described in Section 2 applies to popula- 
tions that  are panmictic, and whose  size is constant 
through time. The methods described in Sections 5.1- 
5.7 aim  to  use background knowledge of population 
genetics, together with the  information in the  data, to 
infer coalescence times. For these methods to be appro- 
priate, it is necessary that  the assumptions underlying 
the  population genetics models apply (at least approxi- 
mately) to the  population from which the  data  are ob- 
tained. 

The previous section explained how to relax the as- 
sumption of constant  population size.  Recall that  the 
only alteration to the simulation Algorithms 1 and 2 was 
that  the times r/t; between coalescences were simulated 
from the distribution appropriate  for  the  model with 
variable population sizes. 

There  are  other situations in which the version of the 
coalescent described in Section 2 does not adequately 
describe the sample genealogy. In some such situations, 
the  appropriate genealogical structure, and in particu- 
lar  the pre-data distribution of the times Y, is known. 
These  include models for  populations with certain 
forms of geographical structure, genealogy at a  neutral 
locus that is tightly linked to one  at which a selective 
sweep has recently occurred,  and  a  neutral locus that 
is tightly linked to a locus at which balancing selection 
is operating. For further details, see, for  example, HUD- 
SON ( 1991 ) and references therein. 

Inferences  about coalescence times on  the basis of 
DNA sequence  data can be  undertaken  for any  of these 
situations, along  the lines of the algorithms described 
above. The only change  that is needed is that in step 1 
of Algorithm 1 and step  3 of Algorithm 2, the times 

between coalescences should be simulated from the 
version of the coalescent that is appropriate for the 
particular genetic or demographic  scenario under con- 
sideration. 

If limited information is available about  the  demo- 
graphic  scenario  that actually pertained  during  the rele- 
vant period of the  population’s history, it would be 
prudent to undertake an analysis under several differ- 
ent assumptions to assess the sensitivity  of the conclu- 
sions to the initial assumptions. 

5.9. Variable mutation rates: These rejection methods 

l 
can be employed directly to study the behavior of the 
infinitely-many-sites model  that allows for several re- 
gions with different  mutation rates. Suppose then  that 
there  are r regions, with mutation rates yI , . . . , p,. The 
analysis  also applies, for  example, to r different types 
of mutations within a given region. We sample n individ- 
uals, and observe k1 segregating sites in  the first region, 
k2 in  the  second, . . . , and k,  in the  rth.  The problem 
is to find  the  conditional distribution of T , ,  given the 
vector ( k , ,  . . . , k , )  . 

When Nand  the yE are assumed known, this can be 
handled by a modification of Algorithm 1. Conditional 
on L , ,  the probability of ( k , ,  . . . , k, )  is 

h ( L , )  = Po(k1, L,,6,,/2) X * X Po(k,, L,,6,,/2), 

where 0, = 2Ny,, i = 1, 2, . . . , r. It is  easy to check 
that h(L, )  5 h(  k / 6 , ) ,  where 

k =  k l +  * * *  + k,, 6, = o1 + - * + 0,. 

Therefore  in  the rejection algorithm we  may take u = 
h ( L , )  / h ( k /  e ) ,  which  simplifies to 

Equation 23 establishes the  perhaps surprising fact that 
the  conditional distribution of T,, given ( k l ,  . . . , k , )  
and (0 ,  , . . . , 0,) depends  on these values  only through 
their respective totals: the total number of segregating 
sites k and  the total mutation  rate 6,. Thus Algorithm 1 
can be employed directly with the  appropriate values of 
k and 6,. This result justifies the  common practice of 
analyzing segregating sites data  through  the total num- 
ber of segregating sites, even though these sites may 
occur in regions of differing mutation rate. 

If allowance is to be  made  for uncertainty about  the 
pi, then this simplification no longer holds. However, 
Algorithm 2 can be employed with the rejection step 
( 20) replaced by ( 24) : 

In this case, step 2 requires  generation of a vector of 
rates y = ( yl, . . . , y r )  from the joint prior T,, . Further- 
more,  the  algorithm immediately extends to the case 
of variable population size. 

6. The  time to the MRCA of a population  given data 
from  a  sample: In this section, we show how the rejec- 
tion technique can be used to  study the time to the 
MRCA of a sample of m individuals, conditional on the 
number of segregating sites in a subsample of  size n. 
In many applications of ancestral inference,  the real 
interest is on  the time to the MRCA of the population, 
given data on a sample. This can be obtained by setting 
m = N below. 

The quantities of interest  here  are A, (the number 
of distinct ancestors of the sample), A, (the number 
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of distinct ancestors of the subsample),  and T, (the 
time to the MRCA  of the  subsample).  The results of 
SAUNDERS et al. ( 1984) justify the following algorithm. 

Algorithm 3 Qection algorithm for f rm ( t I S, = k )  . 
1. 
2. 

3. 

4. 

5. 

Set A ,  = m, A,, = n,  T, = 0 ,  L,, = 0. 
Generate W, exponential of rate A, ( A ,  - 1 ) / 2. Set 
T ,  = T,, + W, L, = L, + A; W. 
Setp = A,(A,  - l ) / A m ( A m  - 1 ) .  SetA, = A, - 
1. With probability p set A, = A, - 1. rf An > 1 go 
to 2. 
Set u = Po(k ,  % L n / 2 ) / P o ( k ,  k ) .  Accept (A,, T,,) 
with probability u, else go to 1. 
If A, = 1, set  T,, = 0,  and return T, = T,. Else, 
generate independent  exponentials with parameter 
j ( j - l ) / 2 , f m j = 2 , 3  , . . . ,  A,,andsetT,,= W, 
+ . . .  + WAm. Return T,  = T, + T,,,, 

Many aspects of the joint behavior of the sample and 
a subsample can be studied using this method.  In partic- 
ular, values  of (A,, T,,) accepted at  step  5 have the  joint 
conditional distribution of the  number of ancestors of 
the sample at the time the subsample reaches its  com- 
mon ancestor and  the time  of the MRCA of the subsam- 
ple, conditional on the  number of segregating sites in 
the subsample. In  addition, values of T,, produced at 
step  5 have the  conditional distribution of the time 
between the two most recent  common ancestors. It is 
straightforward to modify the  method to cover the case 
of  variable population size, and  the case where uncer- 
tainty  in Nand p is modeled. With high probability, 
the sample and the subsample share  a common ances- 
tor and therefore  a  common time to the MRCA.  How- 
ever, if the two common ancestors differ, then  the times 
to the MRCA can differ substantially. This is explored 
further in the examples below. 
7. Examples: In this  section we illustrate the methods 

described above by applying them to two recently p u b  
lished data sets on DNA variation on the human Y chre 
mosome. One of the original papers aimed to  use  coales- 
cent-based methods in  estimating  coalescence  times, the 
other used methods that do not make  use of population 
modeling. We concentrate on methods that assume a 
constant-sized, panmictic, population, and focus on the 
effects on the conclusions  of  various levels  of uncertainty 
about the parameters involved.  Use  of such data in  mak- 
ing inferences about early human evolution should in- 
volve a more detailed analysis  of the extent to which the 
conclusions depend also on the underlying demographic 
assumptions. These can  be  investigated  using the meth- 
ods described in  Sections  5.7 and 5.8. 

7.1. Hammer data: HAMMER ( 1995)  sequenced  a 2.6- 
kb fragment  containing  a polymorphic Alu insertion 
for  a sample of n = 16 human Ychromosomes. Having 
observed three segregating sites, he estimated the time 
to the  common ancestral human Y chromosome to be 
188,000 years,  with a 95% confidence interval of 
51,000-411,000 years. 

The results of several  reanalyses of the  data  are sum- 
marized in Table 2. The analyses differ in the aspects 
of the  data they  utilize and  the  amount of uncertainty 
associated  with underlying parameters. 

Line a of Table 2 summarizes the  inference in HAM- 
MER (1995). As mentioned above, there  are several 
flaws in the methodology of the  paper. Lines b  and  c 
present reanalyses  of the  data  HAMMER used. In each 
case we have used the same values  as HAMMER  for  the 
other parameters: a value  of  4900 for N,  the variance 
effective population size, and a value for ps, the rate 
per  generation of point mutations in the region consid- 
ered, of 9.88 X corresponding to 2600 X 1.9 X 

= 4.94 X substitutions per  sequence  per year, 
with a  generation time of 20 years. 

The  three polymorphic nucleotides in the  data  are 
consistent with the infinitely-many-sites assumption 
( GRIFFITHS and  TAVAR~  1994a). Analysis b is based on 
the  number of segregating sites (here SI, = 3 )  as a 
summary of the  data, and uses Algorithm 1. In contrast, 
analysis c uses the full data set and  the  method of  GRIF- 
FITHS and TAV& (1994a). We note  that, in this exam- 
ple, the analysis  based on the full data gives similar 
results to that  that uses  only the summary statistic S,,, 
although  the  former has a smaller range of uncertainty. 
Both  analyses  also lead to similar conclusions to those 
originally reported by HAMMER. 

The  data also  show presence or absence of a YAP 
element, which can have either  a  long or  short poly ( A )  
tail. This does not  appear to have been utilized  in HAM- 
MER (1995) for estimating coalescence times. It seems 
plausible that  the YAP element was inserted just once 
and we assume here  that  there was a single insertion 
event. Little information is available about  the insertion 
rate, but it seems likely to be substantially smaller than 
the nucleotide substitution rate. We  will not  attempt to 
model the mutation mechanism that resulted in the 
lengthening or shortening of the YAP element,  and so 
do  not distinguish between the long and  short version 
of the insert. 

Analyses d  and  e use the YAP insertion in addition 
to the  three polymorphic nucleotide sites. They use the 
values for Nand ps given above, and in addition assume 
the rate of insertions, per  generation, in the region 
examined, to be p r  = 9.88 X lo-*. Analysis d is based 
on segregating sites, three of  which pertain to point 
mutations and  one to the insertion. Since there  are 
two different types  of mutation we use the methods 
discussed  in Section 5.9.  Recall that  the analysis  based 
on segregating sites  only depends  on  the total number 
(here  four) of segregating sites and the sum of the 
mutation rates (here 9.89 X It follows that the 
analysis will not  depend sensitively on the value  of p r  
(about which little is known) provided this is small 
relative to ,us. Analysis e is based on the full data  for 
both  the polymorphic nucleotides and  the YAP inser- 
tion (although without distinguishing short from long 
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TABLE 2 

Reanalyses of data of HAMMER 

Mean  of TI, (X  lo3) 95% Interval ( ~ 1 0 ~ )  

Data  Model Predata Post-data Pre-data Postdata 

(a) SI, = 3 HAMMER (1 1) 188 51  -411 
(b) SI, = 3 N = 4900 184 173  56-460  62-377 

( 4  Full data N = 4900 184  172  56-460  65-341 
PS = 9.88 X 10-~  

(not insert) PS = 9.88 X 10-5 
SI, = 4 N = 4900 

( 4  (3 subs, 1 insert) PS = 9.88 X 10-~  184  198 56-460 71-426 

(e) Full data Ps = 9.88 X 1 0 - ~  184 193 56-460 86-343 

= 9.88 x 10-8 
N = 4900 

= 9.88 x 10-8 
N = 4900 

p I  lognormal 
N gamma 

( f )  SI, = 4 PS gamma 184 210 56-460 72 - 485 

(g) SI, = 4 Ps = 9.88 X 10-~  186 200 34-560 65-455 
= 9.88 x 10-8 

N gamma 

p f  lognormal 
N lognormal 

p r  lognormal 

(h) SI, = 4 P S  gamma 186 239  34-560  61  -606 

(i) s,, = 4 PS gamma 492  484  27-2,320  74- 1,738 

Line a gives the results reported by the author. Reanalyses are given both without a-c and with d-i taking the YAP insert 
into account. Mean and 95% interval are estimated from samples of  size 10,000 generated by Algorithm 1 for b and  d, and 
Algorithm 2 for f-i, while c and e make use  of the exact simulation methods described in GRIFFITHS and T A V ~  (1994a). Details 
of the gamma and lognormal distributions used to model uncertainty about N, ps and P I  are given in  the text. 

inserts).  It uses an extension of the algorithm in GRIF- 
HTHS and T A V M  (1994a).  The effect of including  the 
YAP insert in the analysis is to increase both  the  mean 
of the post-data distribution of the coalescence time, 
and the uncertainty surrounding this time. 

In practice, of course, we do  not know the values of 
the parameters N, ps, and pz. There is uncertainty 
about each of these, perhaps  rather  more so for Nand 
pz. Any analysis that treats these parameters as  known 
will underrepresent  the uncertainty in inferences about 
the coalescence time. The  methods of Section 5.4, and 
in particular Algorithm 2, can be used to  incorporate 
uncertainty about these parameters. Each  of the analy- 
ses f-i is based on the  number of segregating sites  of 
each of the two types (three polymorphic sites, one 
insertion) in the  data. 

The analysis described at line f of Table 2 treats Nas 
known (using  the same value, 4900, used in analyses 
a-e) but  incorporates uncertainty about  the  mutation 
rates ps and pz. We used a gamma distribution with 
mean 9.88 X and shape parameter  2  to encapsu- 
late uncertainty about  the polymorphic site rate ps (Fig- 
ure 3A) . For the insertion rate pz we used a lognormal 
prior with parameters (-17.5, 1.5). This distribution 
has mean 5.3 X lo-*, fifth percentile 2.1 X lo-’ and 
95th percentile 3.0 X 10”.  There  are  no compelling 

reasons for  the particular choices of gamma and lognor- 
mal here. These distributions both have the desirable 
properties of being smooth, unimodal and excluding 
negative  values. In  addition,  the lognormal has heavier 
tails, reflecting greater uncertainty about  the value of 
p I .  Having adopted these functional forms, the parame- 
ter values  were chosen to give desired means and vari- 
ances. 

Analysis g  incorporates uncertainty about  the value 
of N ,  while assuming that  both ps and p f  are known 
exactly. We modeled uncertainty about  N in the form 
of a gamma random variable  with mean 5000 and shape 
parameter  5  (Figure 3B, solid curve) . This distribution 
has  fifth percentile 1970; mode 4000; median 4671; 
mean 5000; and 95th percentile 9154. It thus concen- 
trates largely on values  between 0 and 10,000, and is 
“centred”  around  the value  4900 used by HAMMER, 

which, as he notes, is supported by other studies (TAKA- 
HATA 1993; FULLERTON et al. 1994). 

Analyses h and i incorporate  the effects of uncertainty 
about each of N ,  ps and p l .  Analysis i differs from h in 
examining the effect of a larger range of prior uncer- 
tainty about  the value of N .  Specifically, it incorporates 
a lognormal (9, 1 ) prior  (Figure 3B, dashed curve). 
This distribution has fifth percentile 1564; mode 2981; 
median 8103; mean 13,360; and 95th percentile 41,976. 
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FIGURE 3.- ( A )  Probability  density  for  the  gamma  distribution  with  mean 1 and shape  parameter 2. This  distribution,  scaled 

so that  the mean matched  the  original  authors’ point estimates, was  used  to  model  uncertainty about the polymorphic  site 
mutation  rate, ,us. ( B )  Probability  densities for the two distributions used  to  model  uncertainty  about the (variance  effective) 
population size N (number of chromosomes). Solid  curve,  gamma  distribution with mean 5000 and  shape  parameter 5;  dashed 
cuke, lognormal  distribution with  parameters 9 and 1 .  - 

As expected,  each of the analyses f-i results in  a wider 
range of uncertainty  about the coalescence time T than 
the analyses that  treat  the  parameters as known. (The 
natural  comparison is  with  analysis d.)  In  addition,  the 
post-data distribution of T,  and in  particular its mean, 
is shifted toward larger values in  each case.  Specifically, 
in  comparing  d with f and g, we see that  the failure to 
allow for  uncertainty  about first the  mutation rates and 
second  the effective population size,  may result in un- 
derestimation of T. 

Direct comparison of  analysis i with the  other analyses 
in the table requires some caution. Recall that times in 
the coalescent analysis must be converted  to  genera- 
tions through multiplication by N. Increasing  the value 
of N will affect the coalescent analysis (by increasing 
e ) ,  but it will also  have a  direct effect on the resulting 
times through this multiplication. [Even with data 
showing no variation, the  direct effect of the multiplica- 
tion by Ncan outweigh the indirect effect of shortening 
the coalescence time ( DONNELLY et al. 1996) , notwith- 
standing the comments of  DORIT et al. (1996) .] 

Analysis i allows for  the possibility that  N may be 
substantially larger  than 4900. It is thus not surprising 
that this results in  rather  larger post-data estimates of 
T. On  the  other  hand, we do  not have good  prior infor- 
mation  about  N, and  the beliefs encapsulated in this 
analysis, and  the resulting conclusions, may not be un- 
reasonable. At the very least, this analysis  shows that 
inferences  about T can depend sensitively on what is 
known about  the relevant population size. Further,  un- 
certainty about  the value  of Ncan result in considerable 
uncertainty  about  the coalescence time. 

7.2. Whitjield  data: WHITFIELD et al. ( 1995) describe 
another  Fchromosome  data  set  that includes a sample 
of n = 5 humans. The 15,680-bp region has three poly- 
morphic  nucleotides  that  once again are consistent with 
the infinitely-many-sites model. WHITFIELD et al. esti- 
mated the coalescence time of the sample to be between 

37,000 and 49,000  years. Again, we present several re- 
analyses, each of  which is based on  the  number of segre- 
gating sites in  the  data.  The results are summarized in 
Table  3 and illustrated in Figure 4. 

In estimating the coalescence time, WHITFIELD et al. 
adopt a  method  that does not use population genetics 
modeling, While the  method is not systematically  bi- 
ased, it may be inefficient to ignore pre-data informa- 
tion about plausible values  of the coalescence time. In 
addition,  the  method substantially underrepresents  the 
uncertainty associated with the estimates presented 
(see TEMPLETON  1993) . 

Here, we contrast  the results of such a  method with 
those of one that does incorporate  background infor- 
mation. The conclusions of a coalescent analysis  will 
depend  on  the assumptions about N, whereas the ap- 
proach Of  WHITFIELD et a[. ( 1995 ) does not involve  this 
parameter. There is thus no particular value of N on 
which to base a  direct comparison of the two methods. 
Pre-data beliefs about  the variance effective male popu- 
lation size should not  depend  on  the region of the Y 
chromosome  being  examined, and in  particular  should 
be the same for  the analyses of the  data of Sections 7.1 
and 7.2. We use the same three assumptions about  N 
that we employed in our analyses  of HAMMER’S data,  for 
the reasons given earlier and to facilitate comparisons. 

While it is natural to make the same assumptions 
about Nin each analysis, the  mutation  rate  per site may 
differ between the two regions investigated. We use the 
average figure of 1.123 X lo-’ substitutions per nucleo- 
tide position per year  given in WHITFIELD et al. ( 1995), 
and a  generation time of  20 years, to give p = 15,680 
X 1.123 X lo-’ X 20 = 3.52 X substitutions per 
generation. For these parameter values, the post-data 
mean of T5 is 87,000 years,  which is much less than any 
of the post-data means of TI6 for  the HAMMER et al. 
data,  but  much  greater  than  the upper estimate given 
by WHITFIELD et al. ( 1995 ) . 
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TABLE 3 

Renalyses of data of W m  et al. 

Mean of T5 (XlO’) 95% interval (x107 

Model Predata  Postdata  Predata Post-data 

(a) WHITFIELD et al. 37-49 
(b) N = 4900 157 87 31-429 30-184 

(c) N = 4900 157 125 31-429 32-321 

( 4  N gamma 159 80 21-517 26- 175 

(e) N gamma 159 117 21-517 25 - 344 

(0 N lognormal 428 149 19-2200 22-543 

ps = 3.52 X 10 -~  

PS gamma 

P,y = 3.52 X 1 0 - ~  

PS gamma 

P S  gamma 

In each case the data are S5 = 3. Line a gives the interval reported by the  authors (but note that they 
assigned no probability to their interval). Mean and 95% interval are estimated from samples of  size 10,000 
generated by Algorithm 1 for  b, and Algorithm 2 for c-f. The gamma and lognormal distributions are those 
of Figure 3; details are given in the text. 

As noted in the previous section, the  appropriate val- 
ues of the parameters are  not known.  Analysis c incor- 
porates uncertainty about p, in the form of a gamma 
distribution with shape  parameter 2 and mean 3.52 X 

while continuing to assume that  N is  known to 
be 4900. The effect is to greatly increase the post-data 
mean of  T.  Allowing Nto be  uncertain while psis known 
has, on  the  other  hand,  the effect of slightly reducing 
the post-data estimates of T5,  compared with the case 
that Nand ps are  both known. This may be attributed 
to the  data favoring values of Nsmaller  than 4900. 

Analyses e and f incorporate uncertainty about  both 
Nand ps. They use the same prior distributions as  analy- 
ses g and i, respectively,  of the previous section. Note 
that, as should be expected,  the uncertainty about Tis 
larger than when one  or  both of Nand ps are assumed 
known  exactly. The post-data distributions of Tin e  and 
f of Table 3 are shifted toward smaller values than  are 
the respective lines of Table 2, although there is consid- 
erable overlap between the two distributions. (Because 
of the lack  of recombination within the relevant region 
of the Y chromosome,  the  entire population must  have 

E r 

r z 
b 

; 
1 0  

N 

0 1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 4 0 0 0 0 0  0 1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 4 0 0 0 0 0  0 100000 2ooM)o 300000 400000 

A 

time (years) 

0 C 

FIGURE 4.-Probability  density  curves for T5 based on  the  data of WHITFIELD et al. ( 1995). In each panel the three curves 
correspond as  follows: solid, predata; dashed, postdata assuming ps gamma; dotted, postdata assuming ps = 3.52 X The 
three panels correspond to (A)  N = 4,900, ( B )  Ngamma, ( C )  Nlognormal. The gamma and lognormal distributions are those 
of Figure 3, details are given in the text. 
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the same coalescence time at the  different regions con- 
sidered by the two studies, but  note  that this need  not 
be  true of the samples examined in each study.) 

WHITFIELD et al. (1995) point to their estimated co- 
alescence time as being substantially shorter  than those 
published for  the  human mitochondrial genome.  In 
contrast,  the ranges in each of our analyses b-e overlap 
with recent interval estimates (see for example TEM- 
PLETON 1993) for  the time since mitochondrial Eve. In 
addition, recall that  the quantity T5 being estimated in 
Table 3 is the coalescence time of the sample of  five 
males sequenced in the study. As noted in Section 6, 
this time may be different from, and substantially 
shorter  than,  the coalescence time of allexisting Ychro- 
mosomes. Under  the assumption that N = 4900 and ,u 
= 3.52 x Algorithm 3 can be used to show that 
the  mean time to  the  common ancestor of the male 
population,  given S, = 3, is 157,300 years,  with a  corre- 
sponding 95% interval of (58,900 - 409,800) years. 
These figures differ markedly from the  corresponding 
values for the sample, given at line b of Table 3. It is 
the  population values that  are likely to be of primary 
interest. 

8. Discussion: We have described a simple simulation 
approach based on the acceptance-rejection method to 
generate observations from the  postdata distribution of 
TMRCA. This allows  us to explore this distribution in 
settings in which  analytical  expressions are  either intrac- 
table or uninformative. When the acceptance probability 
is  very small the method can be slow; alternatives  based 
on Markov chain Monte Carlo can then be exploited 
( c j  GILKS et al. 1996, Chapter 1 ) . 

The rejection method is particularly useful when the 
data  are summarized by the  number of segregating sites 
in the sample. It is important to know  how inferences 
based on this data  reduction  compare to those based 
on the full data. In principle it is  always better to use 
the full data if possible, and  the differences can be 
marked ( GRIFFITHS and TAV& 1996). However, infer- 
ences using the  method given here  are often very close 
to those for  the full data (as in the examples in Section 
7 ) ,  and it allows much  more flexibility to  explore  the 
effects  of different modeling assumptions. 
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Note added in prooj For results relating to Section 5.3, 
see also Fu, Y-X (1996). Genetics 144: 829-838. 
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