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Multivariate Ewens Distribution' 

1 GENESIS AND HISTORY 

The Multivuriate Ewens Distribution (MED), called in genetics the Ewens Sampling 
Formula (ESF), describes a specific probability for the partition of the positive integer 
it into parts. It was discovered by Ewens (1972) as providing the probability of the 
partition of a sample of n selectively equivalent genes into a number of different gene 
types (alleles), either exactly in some models of genetic evolution or as a limiting 
distribution (as the population size becomes indefinitely large) in others. it was 
discovered independently by Antoniak (1974) in the context of Bayesian statistics. 

The impetus for the derivation of the formula came from the non-Darwinian 
theory of evolution. It is claimed, under this theory, that the quite extensive genetical 
variation observed in natural populations is, on the whole, not due to natural selection, 
but arises rather as a result of purely stochastic changes in gene frequency in finite 
populations. The MED describes the partition distribution of a sample of n genes into 
allelic types when there are no selective differences between types, and thus provides 
the null hypothesis distribution for the non-Darwinian theory. 

The distribution contains one parameter, usually denoted by 0, which in the genetic 
context is related to (a) the rate of mutation of the genes to new allelic types. (b) the 
population size, and (c) the details of the evolutionary model, being extremely robust 
with respect to these details. For the case 8 = 1 the distribution is quite old. going 
back in effect to Cauchy, since it then describes the partition into cycles of the 
numbers (1,2, . . . , n) under a random permutation, each possible permutation being 
given probability ( n ! ) - ' .  As noted below, the distribution arises for a much wider 
variety of combinatorial objects besides permutations. 

We thank Professors S. Tavark and W. J.  Ewens for providing us an original \vrite-up of  this chapter, and 
we thank J .  W. Pitman for comments on early drafts. The distribution described in this chapter. which 
originated from applications in genetics and also independently in Bayesian statistical methodolo,- o\. serves 
as a striking example of  adaptabilit! and universality of  statistical methodology for scientific elplorations 
in various seemingly unrelated fields. 
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2 DISTRIBUTION, IMOMENTS, AND 
STRUCTURAL PROPERTIES 

The MED is most easily described in terms of sequential sampling of  animals from 
an infinite collection of distinguishable species [Fisher. Corbet, and Williams ( 1943). 
McCloskey ( I W ) ,  and Engen (l978)j.  We use this example throughout, except 
where specific genetic or other properties are discussed. Suppose that the species 
have (random) frequencies P = ( P I .  Pz, . . .) satisfying 

X 

O < P ; <  I ,  i =  1 , 2  ,.... EP;= 1 .  (41.1) 
i=  I 

Let ql, q2, . . . denote the species of the first, second. . . . animal sampled. Conditional 
on P, the qj are independent and identically distributed, with Pr[q = k I PI = P k ,  

k = 1,2, .  . . . The sequence 11, 1 2 , .  . . of distinct values observed in q1, q2, . . . induces 
a random permutation P' = (PI,, PI2,. . .) of P. The vector P' is known as the 
size-biased permutation of P. 

Consider the sample of n individuals determined by ql ,  . . . , qn, and write Ai ( n )  
for the number of animals of first species to appear, A2(n) for the number of animals 
of the second species to appear, and so on. The number of distinct species to appear 
in the sample is denoted by Kn. Another way to describe the sample is to record the 
counts C,(n),  the number of species represented by j animals in the sample. The 
vector C(n)  = (CI(n), . . . , C,(n)) satisfies E;=, jCj (n)  = n and K,, = C',r=, C,(n). 

In what follows, we consider the case where P satisfies 

where, for some 0 < 8 < x ,  

W1, W2, . . . are i.i.d. with density 8( 1 - -I-)'-', 0 < x < 1. (4 1.3) 

The MED gives the distribution of the vector C ( n )  as 

(4 1.4) 

where, as earlier, 8["l = 8(8 + 1) 
vector of non-negative integers satisfying a1 + 2a2 + * - * + nu,, = n. 

- (0 + n - 1) and n(n)  = ( a ! ,  a?, . . . , a,,) is a 

The distribution of K,, is [Ewens (1972)l 

Here S ( n ,  k)  is the coefficient of fIk in 8l"l-that is, a Stirling number of the third 
kind (see Chapter 34). The distribution of the vector A(n)  = ( A I ( n ) ,  Az(rz), . . .) is 



determined by [I)onnelly and Tavark ( 1986)) 

PrlK,, = k , A , ( n )  = n,,  i = I .  2 . . . . ,  k l  

for i l l  + + = 1 2 .  

The conditional distribution of C(n) .  given K,, = k .  i s  

(41.7) ‘ 

An alternative expression for this probability is as follows [due to Ewenc (1972)l. 
Label the K,, species observed in an arbitrary way (independently of the sampling 
mechanism), and denote the number of animals of species i by N,, i = 1.2, . . . , Kn. 
Then 

This conditional distribution is used in the statistical testing of the non-Darwinian 
theory (see Section 6.1 on page 239). 

2.1 Moments 

The joint factorial moments of C(n),  of arbitrary order, are 

(4 1.9) 

when m = n - cjr; 1 0 and are 0 when m < 0 [Watterson (197411; here 
X ( r )  = x(x- l ) . . . ( x - r +  1)forv =0.1,2 ,.... 

The number of singleton species is of particular interest. The distribution of this 
number is 

(4 1 . 1  0) 
j !  ( n  + 6 - a - j ) [~+~l  

’ 1 n--a e’ ( n  + 1 - a - j ) [ O + l l  
Pr[C,(n) = a ]  = - 

a! 

so that the mean and the variance of the number of singleton species are, respectively, 
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where 6,.  . . . , are independent Bernoulli random variables with 

From this [for example, Cauchy ( l 9 0 S ) ] ,  
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(41.13) 

(4 I .  14) 

2.2 Urn Models 

Now we consider the properties of (41.4) and (41.6) for two consecutive sample 
sizes, n and n + 1 .  We denote the history of the sample of size n by 3& = 
(A( l ) ,  A(2).  . . . , A ( n ) )  and ask: Given Hn, what is the conditional probability that 
the next animal will be of a new species? This probability is found from (4 1.4) as 

(41.15) 
e 

l l + e *  Pr[ (n  + 1)th animal of a new species I SI] = - 

The representation (4 1.12) follows immediately from this. If a given species has been 
observed nz times (m > 0) in the sample of n, the conditional probability that the 
( n  + 1)th animal will be of this species is 

Pr[(n + 1)th animal of a particular species seen 

m times in the sample I H,] = - (41.16) 
m 

n + e '  

The probabilities (4 1.15) and (41.16) may be used to generate the process A(n),  
n = 1,2 .  . . by a sequential urn scheme, starting from A( 1) = 1. This model is a 
special case of an urn scheme of Blackwell and MacQueen (1973) that arises in the 
context of sampling from a Dirichlet process (see Section 6.2). Hoppe (1984, 1987) 
exploited a similar urn model in genetics. 

2.3 Species Deletion (Noninterference) 

Let p, denote the distribution of the partition vector C(n) when sampling from the 
species model in (4 1.1). We say the sample has the species deletion property if, when 
an animal is taken at random from the sample, and it is observed that in all there are r 
animals of this species in the sample, then the partition distribution of the remaining 
n - r animals is p,,-,. Kingman (1978a,b) shows that the species deletion property 
holds for the MED (when pU., is given by (41.4)]. 

2.4 Characterizations 

The urn probabilities (41.15) and (41.16) and the species deletion propert! may be 
used to churucferize the MED in the context of sampling from the model (4 1.1). 



. . . . - . . . , . , 

ii. If the species deletion property i n  Section 2.3 hold\. then the vector C ( n )  has 
distribution pIl given by the ESF [ Kinginan ( I97Xa.b)l. 

2. Tho /mt *  of s i ~ ~ - e s . s i o n .  Suppose that the saniple hi\tory is given. If the 
conditional probabilitl that the next anirnd be of a new \pecks depends only 
on ti. then this probability must be o f  the form H / (  8 + t i )  for some non-negative 
constant 8 I Donnelly ( I986)l. If. further. the conditional probability that this 
animal be of a specific species seen 111 time\ in the \ample depends onl\r on 
t t i  [the sufficientness principle o f  Johnson ( 1932)l. then the \pecks partition 
probability i \  given by the MED IZabell (I996)l. 

There is a theory of exchangeable random partitions that describes samplins from 
models slightly more general than (4 I .  1 ): see Kingiiian ( 1978a), Aldous ( 1985 ). and 
ZabeII 1992). 

3 ESTIMATION 

Equation (41.4) shows that the MED is a member of the exponential family of 
distributions; see, for example, Chapter 34. The complete sufficient statistic for 8 
is K,,. The maximum likelihood estimator 8 is, from (41.5). given implicitly as the 
solution of the equation ~~~~ 8/(8 + i) = K,,. This estimator is biased, but the bias 
decreases as n increases. For large n, the variance of 8 is tl/(x:.'Z: i / ( e  + i)') [Ewens 
( 1972)j. 

The only functions of 8 admitting unbiased estimation are linear combinations of 
expressions of the form 

[(i + e ) ( j  + e) . - - (m + e)]-] , (41.17) 

where i, j , .  . . , in are integers with 1 5 i < j < - - - < in 5 ii - 1 .  
The "law of succession" probability (41.15) thus does not admit unbiased esti- 

mation. However, bounds to unbiased estimation are readily provided by using the 
inequalities 

. 

(4 1.18) 

and the MVU estimate s(n - 1 ,  k - 1)/5(iz, k)  of P,~ .  
In genetics one frequently wishes to estimate the homozygosity probability, which 

in the species context is the probability ( 1  + e)-' that two animals taken at random 
are of the same species. Given C(n) = a(iz), it is natural to estimate this probability 
by a,i(i - l) /n(n - l) ,  an estimator occurring often in the genetics literature. The 
sufficiency of K,, for 6 shows, however, that this estimator uses precisely the uninfor- 
mative part of the data and that, given K,, = k, the MVU estimator is T(n, k ) / S ( n ,  k), 
where T( t i ,  k )  is the coefficient of 8' in e(6 + 2)(8 - 3) - - . ( 0  + t i  - 1) .  
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4 RELATIONS WITH OTHER DISTRIBUTIONS 

The MED can be derived from other classical distributions (Watterson (1974)l. The 
first of these is the logarithrnic (see. t o r  example, Chapter 8). Suppose k is fixed and 
we observe k i.i.d. random variables NI, . . . , Nk having the logarithmic distribution 
Pr(NI = . jl  .r'/.j, j = 1 ,  2, .  . .  , for 0 < x < 1 .  Given that E N ,  = n, the 
distribution of (/VI, . . . , Nk)' is (4 1.8). For a second representation, suppose that 
ZI. Z?, . . . are independent Poisson random variables with E(Z, 1 = O / j .  Then 

(41.19) 

d where = denotes equality in distribution. 
Another representation, called the Feller Coupling, is useful for deriving asymp- 

totic results for the MED [Arratia, Barbour, and Tavark (1992)]. Let 6;. i 2 1, be 
independent Bernoulli random variables with distribution (4 1.13), and let C,(n) be 
the number of spacings of length j between the 1s in the sequence 61 62 - - - t,, 1. 
Then the distribution of the vector C(n)  is the MED. Further, if 2, is the number of 
spacings of length j in the infinite sequence - - ., then the 2, are independent 
Poisson random variables with mean E[Z,] = O / j .  

4.1 The GEM Distribution 

The distribution of the vector P = (PI,  P2, .  . .) determined by (41.2) and (41.3) is 
known as the GEM distribution (Generalized Engen-McCloskej distribufion). It is 
named after McCloskey (1965) and Engen (1978), who introduced it in the context 
of ecology, and Griffiths (1980), who first noted its genetic importance. 

The GEM distribution is a residual allocation model (RAM) [Halmos (1944), 
Patil and Taillie (1977)l-that is, a model of the form (41.2) where Wi, W2, . . . are 
independent. It is the only RAM P with identically distributed residual fractions for 
which the size-biased permutation P# has the same distribution as P [McCloskey 
1965), Engen (1975)l. For the analog of the noninterference property in Section 2.3 

for the GEM, see McCloskey (1965) and Hoppe (1986). For further discussion of 
size-biasing, see Donnelly and Joyce (1989), Perman, Pitman, and Yor (1992), and 
Chapters 3 (p. 146) and 43 (Section 5). 

The decreasing order statistics (Pc 1 ), P(2), . . .) of P have the Poisson-Dirichlef 
disrribufion with parameter 8 [Kingman (1975)l. The GEM is the size-biased permu- 
tation of the Poisson-Dirichlet [Patil and Taillie (1977)l. For further details about the 
Poisson-Dirichlet distribution, see Watterson ( 1976), Ignatov ( 1982), Tavark ( 1987), 
Griffiths (1988). Kingman (1993), and Perman (1993). 

4.2 The Pitman Sampling Formula 

The MED is a particular case of the Pifrnan Sampling Formulu [Pitman ( 1992, 1995)], 
which gives the probability of a species partition C(n)  = a(n) of n animals as 



a 
1 

Since we are considering only the infinitel> many species case, we have the 
re\trictions 0 5 LY < I ,  8 > - C Y .  [The other parameter range for which (41.20) 
defines a proper distribution is CY = - K ,  c) = t u K  for some positive integer in.  This 
corresponds to sampling from a population with t n  species.! The MED is then the 
particular case of the Pitman Sampling Forriiula \.\.hen a = 0. 

The Pitman distribution has several important properties, of which we note here 
one. Suppose in the RAM model (41.2) we no longer assume that W I  , W2, . . . are iden- 
tically distributed. Then the most general distribution of W; for which the distribution 
of ( P I ,  Pz.  P 3 , .  . .) is invariant under size-biased sampling [Pitman (1996)] is that for 
which W, has probability density proportional to 1 - u ' ) ~ + ~ ~ - ' .  This model for 
(4 1.2) yields the sampling distribution (4 1.20). The analogue of the Poisson-Dirichlet 
distribution in the two-parameter setting appears in Pitman and Yor (1995). 

1 
< 

1 

5 APPROXIMATIONS 

It follows from (41.10) and the method of moments that random variables C(n) with 
the MED (4 1.4) satisfy, for each fixed b, 

as 11 - x ,  denoting convergence in distribution. For 8 = 1 see Goncharov (1944), 
and for arbitrary 8 see Arratia, Barbour, and TavarC (1992). The Feller Coupling 
may be used to show that the total variation distance between (Cl (n), . . . , Cb(n))' and 
( Z I ,  . . . , Zb)' is at most c(8)6/n, where c(8) is an explicit constant depending on 8 
alone. For 8 # 1, the rate is sharp. 

The approximation in (41.21) covers the case of species represented a small 
number of times. A functional central limit theorem is available for the number of 
species represented at most n' times, for 0 < f 5 1 [Hansen (1990)l. In particular, 
the number K,, of species in the sample has asymptotically a normal distribution with 
mean and variance 8 log n. 

It follows directly from the strong law of large numbers that the proportions 
A(n)/iz converge almost surely as n - 2 to P'. which has the GEM distribution with 
parameter 8. The decreasing order statistics of A(n) /n  converge almost surely to the 
Poisson-Dirichlet distribution with parameter 8 [Kingman (1975)l. 



6 APPLICATIONS 

6.1 Genetics 

The original aim in devising (41.4) wa\ to obtain a testing procedure for the non- 
Darwinian thcory. since (4 1.4) provide\ the null hypothesis distribution for this 
theory. The parameter 8 depends, i n  thic context, on an unknown mutation parameter. 
;in unknown population size, and unknown detail\ about the evolutionary model. 
However. thc conditional distribution (31.9) does not depeiid on 8 and hence may be 
used a\ an objective basis for a test of the non-Darwinian theory. Watterson (1978) 
\hou’s that a suitable test statistic is a,i’/n’ and provides various examples of the 
application of this at different gene loci. Anderson [see Ewens ( 1  979), Appendix C] 
provides charts allowing rapid testing. 

The MED was derived directly by a genealogical argument by Karlin and McGre- 
c oor f 1972). The Poisson-Dirichlet distribution arises as the stationary distribution of 
the ranked allele frequencies in the infinitely-many-alleles model [Watterson ( 1976)]. 
Equation (4 1.6) provides the distribution of alleles frequencies when the alleles are 
ordered by decreasing age [Donnelly and Tavark (1986)], and this provides signifi- 
cant evolutionary information. See also Kelly ( 1979, Chapter 7). Correspondingly, the 
GEM distribution is the stationary distribution of the infinitely-many-alleles model 
when the types are ordered by age [Griffiths (1980)l. The MED may also be derived 
directly as a consequence of mutation in the coalescent [Kingman (1980, 1982a-c)l. 
See also Hoppe (1987) and Ewens (1990). 

6.2 Bayesian Statistics 

Dirichlet processes on a set S Ferguson ( 1973)] are often used as priors over spaces of 
probability distributions on S Suppose that the measure a of the process is nonatomic. 
and assume 8 = a ( S )  < z. Let P = ( P I ,  PI,. . .) have the GEM distribution with 
parameter 8 and let XI,  Xz, . . . be i.i.d. random elements of S with distribution cy(.)/8. 
independent of P. Sethuraman and Tiwari (198 1) represent the Dirichlet process as 
atoms of height Pi at locations Xi, i = 1,2, . . . . A similar representation arises as 
the stationary distribution of the infinitely-many-alleles measure-valued diffusion in 
population genetics [Ethier and Kurtz ( 1994)l. Thus the Bayesian setting is essentially 
the same as sampling animals from a GEM population where the labels (determined 
by the X,) of the animals are recorded as well. Antoniak (1974) showed that the 
MED gives the distribution of the partition induced by a sample from a Dirichlet 
process. See Ferguson, Phadia, and Tiwari (1992) and Sethuraman (1994) for recent 
developments. 

6.3 Permutations 

A permutation of the integers 1,2,. . . , ! I  may be decomposed into an ordered product 
of cycles by beginning the first cycle with the integer 1, the second with the smallest 
integer not in the first cycle, and so on. For any 8 > 0, a random permutation, 
decomposed in this way, may be generated by Dubins and Pitman’s Chinese restnitrant 
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process (cf. Aldous (1985)i: Integer I begins the first cycle. With probability O/(O+ 1) 
integer 2 starts the second cycle, and with probability 1 /(e + 1 )  i t  joins the first cycle, 
t o  the right o f  1 .  Once the first r - I integers have k e n  placed i n  cycles, integer r 
\tarts a new cycle with probability H/(8 + I- - ! ), o r  is placed in an existing cycle, to 
the right o f  a random chosen one of I ,  2,.  . . , I- - I .  After r7 steps of this process, the 
probability o f  obtaining a particular permutation 7r with k cycles is H A  / H I " I .  Since the 
number o f  ri-permutations having a, cycles of size i is / I ! /  n .;''!a,!. i t  follows that 
the -joint di\tribution of the numbers C, of cycles o f  size j .  j = 1 ,  2, . . . , 1 1 ,  is given 
by the MED (41.4). 

The case H = 1 corresponds to random permutations, which have been widely 
5tudied in the literature. Shepp and Lloyd ( 1966) show that the proportions in the 
largest, second largest, . . . cycle lengths, asymptotically as t i  - x, have a limiting 
Poisson-Dirichlet distribution. Erd6s and Turb  ( 1967) showed that the logarithm 
of the order (the least common multiple of its cycle lengths) of such a random per- 
mutation has asymptotically a normal distribution with mean log2 n / 2  and variance 
log3 n/3. See also Vershik and Shmidt (1977) for a connection with the GEM dis- 
tribution. The functional central limit theorem for the medium-sized cycles is given 
by DeLaurentis and Pittel (1985). When 8 = 1, random permutations are intimately 
connected to the theory of records [ Ignatov ( 198 1 ) and Goldie ( 1989)l. 

For arbitrary 8, Eq. (41.6) describes the joint distribution of the ordered cycle 
lengths. It follows that asymptotically the proportions in these cycles have the GEM 
distribution. Other approximations follow directly from Section 5.  For the Erdh- 
Turin law for arbitrary 8, see Barbour and Tavare (1994). 

6.4 Ecology 

In ecology, a long-standing problem concerned the species allocation of animals 
when species do not interact, in the sense that removal of one species does not affect 
the relative abundances of other species. Several attempts in the ecological literature, 
notably the "broken stick" model of MacArthur (1957), attempted to resolve this 
question. The noninterference property of the MED shows that this distribution 
provides the required partition, and (41.4) has been applied in various ecological 
contexts [Caswell (1976), Lambshead (1986), and Lambshead and Platt (1985)] 
where non-interference can be assumed. 

The description of species diversity, through conditioned or unconditioned log- 
arithmic distributions, has a long history in ecology [Fisher (1943). Fisher, Corbet, 
and Williams (1943), McCloskey (1963, Engen (1975), and Chapter 8 of Johnson, 
Kotz, and Kemp (1992)l. For a summary, see Watterson (1974). 

6.5 Physics 

The urn representation (41.15) and (4 1.16) is related to an urn representation of three 
classical partition formulae in physics [Bose-Einstein, Fermi-Dirac, and Maxwell- 
Boltzmann; for details see Johnson and Kotz (1977)l where a bali represents a 
*-particle" and an urn represents a "cell," or energy level. Constantini ( 1987) considers 



the case where balls are placed sequentially into a collection of i n  urns so that, if 
among the first I I  balls there are t1j in urn j .  the probability that ball ti  + I is placed 
in this urn i s  

(4 1.22) 

for some constant 5.  The Maxwell-Boltzmann, Bow-Einstein and Fermi-Dirac 
\tatistics follow when CC, - x ,  6 = I ,  6 = - 1 respectively. while (41.15) and (31.16) 
show that the MED follows when 6 - 0. / t i  - \\.itti ruli = 8. See also Keener, 
Rothman. and Starr ( 1987). 

None of the physics partition formulae satisfy the noninterference property. Direct 
application of the MED in physics, in cases where the noninterference property is 
required. are given by Sibuya, Kawai, and Shida (19901, Mekjian (1991). Mekjian 
and Lee 199 1 ), and Higgs ( 1995). 

6.6 The Spread of News and Rumors 

Bartholomew (1973) describes a simple model of the spread of news (or a rumor) 
throughout a population of n individuals. It is supposed that there is a source (e+., a 
radio station) broadcasting the news and that each person in the population first hears 
the news either from the source or from some other individual. A person not knowing 
the news hears it from the source at rate a, as well as from a person who has heard the 
news at rate p. The analogy with (4 1.15) and (4 1.16) is apparent, and Bartholomew 
shows that, when all persons in the population have heard the news, the probability 
that k heard it directly from the source is given by (413, with 8 = a/p. 

This model is a Yule process with immigration [see Karlin and Taylor (1975)] and 
much more can be said. Individuals can be grouped into components, each consisting 
of exactly one person who first heard the news from the source, together with those 
individuals who first heard the news through some chain of individuals deriving from 
this person. Joyce and Tavare’s (1987) analysis applies directly to show among other 
things that the joint distribution of the component sizes is given by the MED. 

6.7 The Law of Succession 

The law of succession problem is perhaps the most classical in all of probability 
theory [see, for example, Zabell (1989) for a lucid historical account of this rule]. 
In the sampling of species context, we ask, given a sample of tz animals, for the 
probability that animal n + 1 is of a previously unobserved species and also for the 
probability that this animal is of a species seen 111 (> 0) times in the sample. 

Clearly further assumptions are necessary to obtain concrete answers. For simplic- 
ity, we continue in the setting of (41.1) and we assume the sufficientness postulate. 
If we assume also that the probability that animal ti + 1 is of a new species depends 
only on ti and the number k of species seen in the sample, then [Pitman ( 1995) and 
Zabell(1996)j the species partition in the sample must be given by Pitman Sampling 
Formula (4 1.20). This implies that the probability that animal n + 1 is of a previously 



unobserved 
m times in 
remarkable 

species is (&a + 0 ) / ( n  + 8). and that it is of a particular species seen 
the sample is (m - a)/(!? + e) ,  where 0 5 cy < I ,  8 > -a. This 
result represents the most significant recent advance in the theory of the 

law of succession. If we further require the probability that animal tz + 1 be of a new 
species depends only on n, then a = 0 and the species probability structuie of the 
sample reduces to the MED. 

6.8 Prime Numbers 

Let N be an integer drawn at random from the set I .  2, .  . . . 1 2 .  and write N = 
pIp2p3 - * ,  where pI  2 pz 2 p3 - are the prime Factors of N. Writing Li = 
logp,/ log N ,  i 2 1,  Billingsley (1972) showed that (LI ,  Lz, . . . I has asymptotically 
as n + the Poisson-Dirichlet distribution with parameter f i  = 1 .  One of the 
earliest investigations along these lines is Dickman (1930); see also Vershik 1986) 
for more recent results. Donnelly and Grimmett (1993) provide an elementary proof 
using size-biasing and the GEM distribution. 

6.9 Random Mappings 

The partition probability (4 I .4) appears also in the field of random mappings. Suppose 
random mapping of (1,2,. . . , N) to (1,2, . . . , N) is made, each mapping having prob- 
ability Wh'. Any mapping defines a number of components, where i and j are in the 
same component if some functional iterate of i is identical to some functional iterate 
of j. In the limit N --+ m, the normalized component sizes have a Poisson-Dirichlet 
distribution with 8 = 1/2 [Aldous (19831, and the images of the components in the 
set {l ,  2,. , . , n}, for any fixed n, have the distribution (41.4), again with 8 = 1/2 
[King man ( 1977)]. 

6.10 Combinatorial Structures 

The joint distribution of the component counting process of many decomposable 
combinatorial structures satisfies the relation (4 1.19) for appropriate independent 
random variables Zi [Arratia and Tavark ( 1994)l. Examples include random mappings 
(discussed in the last section), factorization of polynomials over a finite field, and 
forests of labeled trees. When i E[Zj] - 0, i Pr[Zj = 11 --f 8 for some 8 E (0, fl~) 
as i -+ 2, the counts of large components are close, in total variation distance. to the 
corresponding counts for the MED with parameter 8 [Arratia. Barbour, and Tavark 
( 19931. Polynomial factorization satisfies 8 = 1. Poisson-Dirichlet approximations 
for a related class of combinatorial models are given by Hansen 1994). 
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