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ABSTRACT 
The most powerful, and most frequently  used, test of selective neutrality, based  on  data  consisting 

of observed allelic frequencies in a sample of genes at some locus, is the procedure of G .  A. Watterson. 
This procedure uses the sample  homozygosity F* as the test statistic, and in effect  leads to rejection 
of the hypothesis of selective  neutrality if the  observed value of F* differs  significantly  from  neutral 
theory expectations. The homozygosity  statistic is invariant  under  relabeling of the alleles and thus 
cannot use any further information on the alleles which might  be  available. We present results which 
suggest  that  information  concerning the age order of the alleles cannot be  used to provide a more 
powerful  testing  procedure  than that of Watterson. 

W E investigate  whether  information on  the  age 
order of alleles in a sample of genes from a 

stationary  population may be used to  obtain a  test of 
selective neutrality  more  powerful  than  the WATTER- 
SON (1 977) testing procedure. 

Suppose that a  sample  of n genes at some locus A 
yields nl genes of allelic type A I ,  n2 of allelic type A2, 
. . . , nk of allelic type Ah. To test for selective neutrality 
of the alleles at this locus, WATTERSON proposed  a 
testing procedure which uses as test statistic the sample 
homozygosity F *, defined by 

Significance points for F* were found by WATTERSON 
(1978) and ANDERSON (1978) [see Appendix  C in 
EWENS (1979)]  from  extensive  Monte  Carlo simula- 
tions, using as starting  point  the  joint distribution of 
n l ,  , nk conditional on n and k ,  under  the assump- 
tion of a neutral infinitely-many-alleles model. This 
distribution is most easily presented by giving arbi- 
trary labels A I ,  . . . , A,+ to  the k alleles observed, and 
then calculating the probability that  there  are n 1  genes 
of the allele labeled A l ,  - , nh of the allele labeled Ah. 
This probability is 

P ( n l ,  . . , nhl k ,  n ,  neutrality) 
(2) 

= n!/(k! 1 Ski n1n2 . . . nk) ,  

where S i  is a  Stirling number of the first  kind. Note 
that  the  distribution in (2) in symmetric, so that, 
conditional on k ,  each allele frequency has expectation 
n l k .  

A statistic equivalent to F* is the variance-like meas- 
ure F ,  defined as 

k 2 

F = (ni - s) . 
i= 1 

F is a  linear  function of F* and its significance points 
are  the same  linear  function of those  of F *. For  our 
purposes, it is more  convenient to use F rather  than 
F * ,  and we do so from now on. 

It might initially be thought [see, for  example, 
WRIGHT (1978, p. 303)] that  under selective neutrality 
the  numbers n l ,  . . , nk should be approximately 
equal, so that small values of F would suggest selective 
neutrality and  large values some  form  of selection. 
This is not, however, true.  If,  for example, n = 200 
and k = 6, a typical configuration of neutral allele 
numbers is, approximately, 

The reason why configurations such as (4) arise 
under selective neutrality is that alleles enter  the pop- 
ulation at various  points in the past, and  an allele 
which entered some considerable  time  ago has had 
more  chance  to  reach a  high  frequency  than an allele 
which has only recently entered  the  population. 

This raises the possibility that if the age order of the 
alleles in the sample is known (perhaps by a  reasonable 
inference  from  the DNA sequences of the alleles), 
then a  test of neutrality  taking this age-ordering  into 
account would be  more powerful  than the WATTER- 
SON (1977,  1978)  test which, because of the symmetric 
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way  in which nl, . . , nk enter F* (and equivalently 
F ) ,  cannot use age order information. 

Suppose then  that  age order information is avail- 
able, and  that we denote by n(l) the  number of genes 
of the oldest allele in the sample, . . . , n ( k )  the  number 
of genes of the youngest allele. Then (n(]), . . . , n(k)) is 
simply a  rearrangement of (nl ,  . . . , nk). DONNELLY 
and T A V A R ~  (1 986) have shown that  the  joint distri- 
bution of n(l), . . . , n(k), given k ,  n and neutrality, is 

P(n(l,, a ,  n(k) I K, n, neutrality) 

= n!/( I s: I n(k)(n(k) + n(k-1)) (5) 
* * * (n(k) + . . . + n(1))). 

This  formula, of course, bears a close resemblance to 
that in (2).  In the case n = 200, k = 6, we can use (5) 
to find the mean values of n(l), - .  ., a@): the  theory of 
section (i) of the APPENDIX shows that  these mean 
values are 

a 1 2  3 4 5 6  

E(n($ 94.19 52.95  28.53  14.55 6.88 2.90 . (6) 

This set of values indicates why, under selective neu- 
trality, we would expect  a sample configuration such 
as (4), since we would expect  about 94 genes of the 
oldest allele in the sample,  about 53 of the second 
oldest, and so on. With (6) in mind, we would clearly 
accept the hypothesis of selective neutrality, given the 
sample 

w (7) 

4“= n(,) 7 15 3 30 90  55 (8) 

which is the sample in (4) with a  particular  age order 
for  the alleles observed. On the other  hand, we would 
not be inclined to accept the hypothesis of selective 
neutrality given the sample 

since although in this sample the allele frequencies are 
a  rearrangement of those in (7), most allele frequen- 
cies differ considerably from  their  neutral  theory 
mean values. On  the  other  hand,  the WATTERSON 
statistic F* takes the same value for  (7) and (8), as 
does F ,  and hence must make the same decision on 
accepting or rejecting  neutrality  for the two data sets. 
This makes it plausible that we can improve  on  the 
WATTERSON test by using age  order information.  In 
particular, the test statistic G defined by 

k 

G = 2 (n(t) - E(n(i)))‘, (9) 
i= 1 

which is analogous to F ,  but which (unlike F )  should 
take small values under selective neutrality, might be 
expected to lead to a  more powerful test of neutrality 
than  does F. Thus for  the “neutral-like’’ data set (7), 

G = 24.15, while for  the  ‘non-neutral-like’  data set 
(8), G = 19,556.13.  Further, we obtain easily from  (3) 
and  (9) 

k 

E ( F )  = E ( G )  + C (E(n(i)) - n/K)’, (1 0) 
I= 1 

and we  may interpret this equation in the “analysis of 
variance” sense as showing that of the total expected 
variation in the ni values, a  portion 2 (E(TZ(~) )  - n/k)‘ 
is explained by age-order  information in the  testing 
procedure. For example,  for the case n = 200, K = 6 
described above, the methods given  in section (i) of 
the APPENDIX may be used to show that 

E ( F )  = 12,171.33, E ( G )  = 6,081.13, 
k 

(E(n(l)) - n/k)’ = 6,090.20 
E= 1 

under selective neutrality. This may be interpreted as 
showing that  approximately 50% of the value  of F can 
be explained by age-order  information. We  would 
hope  then  that  the use  of G would  yield a  more 
powerful test of neutrality  than would  use  of F .  We 
now examine  whether this is so. 

THEORY FOR AGE-ORDERED ALLELES 

If  we are to use (9) as a test statistic, we must first 
calculate E(n(i)). This is done, in principle, by using 
the probability distribution  (5). In practice, we use a 
direct and simple approach, using recurrence rela- 
tions, as described in section ( i )  of the APPENDIX. We 
will also consider test statistics which  use the variance 
a: of q i ) ,  and in section (i) of the APPENDIX we give a 
recurrence  relation  from which a: may also be calcu- 
lated. The expected values in (6) are  found using 
these recurrence relations. 

The test statistic ( I ) ,  or equivalently (3), was derived 
by  WATTEksoN using Neyman-Pearson statistical the- 
ory for the case where  age-order  information is not 
available. This theory leads to  a powerful test of 
neutrality  for this case. Unfortunately,  the  theory 
required when age-order  information is available, in 
particular the analog of the  distribution  (5) when 
selection exists, is not yet available, so our choice of 
test statistic is a subjective one.  Thus while the statistic 
G, defined in (9),  appears  a reasonable choice for  the 
exploitation of age-order  information, we have no 
guarantee  that it leads to a powerful test of selective 
neutrality. Given that a sample of n genes results in k 
different alleles, each of the quantities n(l), . . . , n ( k )  

could be used  as a test statistic. However we noted 
that  the values of q l )  and n ( k )  were more  influenced 
by selection than were the values of the  remaining n(l), 
and we therefore investigated, as test statistics, the 
quantities L = q k )  and M = We  also considered  a 
number of other statistics which  use  all the n(+ and 
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we examined the power  properties of  all  of them. 
These statistics are: 

H = c (n(t) - E(n( i )>)2/d;  

I = I n(t) - E(n(i)) I ; 
J = I n(i) - E(n(i)) I /os; 
K = C n(i)/E(n(i)); 

(1 1) 

L = number of genes of youngest allele; 

M = number of genes of oldest allele. 
In order  to find the power properties of the test of 

neutrality using each of these test statistics, we must 
first  find  their respective neutral  theory significance 
points. It is clear that  large values of H ,  I ,  J ,  K and L 
tend to reject  neutrality, as do small values of M .  The 
significance points must be found, as with F and F * ,  
by extensive Monte  Carlo simulation. This simulation 
requires  drawing  random vectors (n(l), + . . , n(k)) from 
the distribution in (5)  for given n and k values. The 
method  for  doing this is given in section (ii) of the 
APPENDIX. Estimated significance points  for n = 200 
and k = 6 are given in section (iii) of the APPENDIX. 

We next  estimate  the probability with  which the 
hypothesis of selective neutrality is rejected when 
selection exists, using these significance points,  for 
each of the statistics, F ,  G ,  . ., M .  The selective 
scheme of greatest  interest is that where  each  homo- 
zygote has fitness 1,  and each heterozygote fitness 1 
f s (s positive), with  new alleles arising by mutation 
according to  the infinitely-many-alleles model. The 
hypothesis of selective neutrality is rejected in favor 
of heterozygote  advantage when the observed value 
of F is too small. Unfortunately,  the mathematical 
form of the probability distribution  analogous  to  (5) 
when this form of selection exists is not  known, and 
we therefore  obtained empirical properties  about 
power curves (that is, the probability with  which the 
hypothesis of neutrality is rejected as a  function of s) 
by a large-scale simulation, which is described below. 

We decided first that  the  population  from which 
samples would be  taken would comprise 250 diploid 
individuals (and so 500 genes at  the locus of interest). 
The population would reproduce  according to  the 
standard  Wright-Fisher  model, allowing first  for  the 
fact that  heterozygotes have fitness 1 + s, and second 
that, with probability u each daughter generation 
gene is a new mutant.  For any given choice of s and 
u, the population was to evolve for  25,000  genera- 
tions. The first 4,000 generations were to be dis- 
carded in order  to overcome initial effects, so that 
observations  were to be  taken only in the final 2 1,000 
generations. 

In the sample of n genes which we decided to take 
from each generation, we planned to observe the 
values of the test statistics in (1 l), and  then  record, 
for each test statistic and  for each observed value of 

k, whether or not it exceeded its neutral  theory  95% 
significance point. We then  planned to calculate the 
fraction of generations in  which each of the statistics 
exceeded  the  appropriate  neutral  theory  percentage 
point: these fractions would provide unbiased esti- 
mates of the probability of rejecting the hypothesis of 
neutrality for  the chosen s and u values. 

Because of the high autocorrelation  from  one  gen- 
eration  to  another  there is no obvious and immediate 
way to calculate standard  errors  of these estimates. 
T o  allow for  this,  32  independent replicates of the 
25,000  generation  evolutionary  process  were 
planned. These were to be used to compute  a  grand 
average  estimate of the probability of rejecting the 
neutrality hypothesis, together with a  standard  error 
of this estimate. 

Our preliminary simulations showed that  the values 
of s which are of interest  for power curve  properties 
are those values between 0 and 0.2. The mean of the 
number k of  alleles  in a sample increases with s and 
also with u, the  mutation  rate. Since our aim is to 
estimate power curves for  a fixed value of k ,  we 
therefore chose the mutation rate in such a way that 
the mean number of  alleles observed was essentially 
the same for all s values.  We found  that  to do this, the 
following s and u values were appropriate: 

s 0.02 0.04 0.08 0.12  0.16  0.20 
u X lo3 0.46 0.44 0.40 0.35  0.29  0.22 ' 

With these choices we found  that in approximately 
95% of the generations  considered,  the value of k was 
4, 5, 6, 7 or 8, and in particular in approximately 
35% of  all generations  considered the value of k was 
6. 

RESULTS 

Essentially similar conclusions were  obtained  for all 
values of k noted, so we report  here in detail only the 
case n = 200, k = 6. Table 1 gives the fraction of 
times that  the null hypothesis (s = 0) of selective 
neutrality was rejected,  for  a variety of  values of s, for 
each of the statistics F ,  G ,  . , M .  Figure  1 displays 
these values graphically. 

The conclusion to  be drawn  from  Figure 1 is un- 
expected. The most powerful test of neutrality is the 
WATTERSON test, which does  not use age  order infor- 
mation at all. Of those testing  methods  that do,  the 
most powerful derives  from the statistic K .  Perhaps 
most surprising, the test statistic G has the most un- 
desirable  property  that, using it,  the probability of 
accepting the null hypothesis of selective neutrality 
increases steadily as the  degree of selection increases! 

There  are two conclusions to be  explained. The 
first is that F should lead to  the most powerful test, 
and  the second the very poor power properties of G ,  
I and M .  The first conclusion presumably arises be- 
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TABLE 1 

Empirical power estimates 

Value of s 

Statistic .02 .04 .OS . I 2  .16 .20 

F .20 .40 .74 .91 .97 .99 
(.09) (.09) (.OS) (.05) (.03) (.02) 

.G .03 .02 ,007 .004 ,001 .001 
(.05) (.03) (.02) (.016) (.010) (.006) 

H .15 .25 .43 .60 .71 .so 
(.11) (.11) (.13) (.13) (.14) (.lo) 

I .06 .07 .07 .OS .OS .09 
(.07) (.07) (.07) (.07) (.OS) (.07) 

(.11) (.11) (.13) (.13) (.14) (.lo) 
K .16 .31 .57 .76 .86 .93 

(.07) (.08) (.09) (.OS) (.07) (.05) 
L .01 .16 .33 .51 .64 .74 

(.06) (.07) (.OS) (.09) (.12) (.OS) 
M .07 .07 .06 .05 .05 .04 

(.05) (.04) (.04) (.04) (.04) (.03) 

J .16  .26  .44 .61 .73 .82 

Empirical  estimates  of the  probability  of  rejecting  the  null hy- 
pothesis  of  selective  neutrality (s = 0), using the statistics F ,  G ,  H ,  I ,  
J ,  K ,  L and M .  Standard  errors  in  parentheses.  See  text  for  details. 

cause the Neyman-Pearson likelihood ratio test leads 
to  the choice of F as test statistic, even when age-order 
information is available. This would occur if the like- 
lihood ratio  reduced  to  a  function of C n(2i)/n2 only, 
since this function is identical to F* and is a  linear 
function of F .  The theory  required  to check this 
conjecture, however, appears  quite difficult. 

The poor power properties of G are  more readily 
explained. In  the case TZ = 200, k = 6,  the  95% 
significance point of G is approximately 141 35.  In 
other words, the probability that G exceeds this value 
under selective neutrality is approximately 5%. Con- 
sider now an  extreme  form of heterotic selection (for 
example such as occurs with self-sterility alleles), when 
all alleles present in a sample tend  to  be  present in 
approximately  equal  frequencies.  In the present case, 
the  number of genes of each of the 6 alleles present 
in the sample would be  approximately 200/6. In  the 
extreme case where each T Z ( ~ )  = 200/6,  the value of G 
is only 6,090, well  below the  95% significance level 
and  indeed very close to  the neutral theory mean 
value of G. Further,  the variance in G under  extreme 
forms of heterotic selection is quite small, so that  the 
observed values of G vary little from  the  neutral 
theory mean value and very seldom reach the  (neutral) 
95% significance point. Indeed,  the  stronger  the se- 
lection, the  more likely it is that  the value of G will 
not  reach this significance point,  and  the  extent  to 
which this is so is shown by Table 1 and Figure 1. A 
similar conclusion applies to  the statistic I .  

A similar phenomenon arises for  the statistic M ,  the 
number of genes of the oldest allelic type. Here  the 
95% significance point is 10, values of M less than this 
cut-off being significant at  the  5% level. However 

‘t 
l f i F  

I 

M 
G +  0 

0 0 1  0.2 

FIGURE 1.-A comparison  of  the  empirical  probability P of  re- 
jecting  neutrality  for  different  values  of  the  selection  parameter s 
for  the  test  statistics F ,  G, . . . , M .  

although, when heterotic selection exists, the mean 
frequency of the oldest allele does  decrease consider- 
ably from its neutral  theory mean of 94.19,  the vari- 
ance also decreases considerably, and  the  net result is 
that  the probability that  the  frequency of this allele is 
less than 10 actually decreases as the intensity of 
selection increases. The extent  to which this is so is 
also illustrated in Table 1 and Figure  1. 

Although  the  array of test statistics in (1  1) does  not 
exhaust all  possibilities, they do cover all cases  which 
appear reasonably natural,  and it is therefore plausible 
that  age-order  information  cannot be used to improve 
on the WATTERSON test statistic F .  
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APPENDIX 

(i) Recursion  equations for moments of a(,,,): Here 
we derive  a  recursive scheme for  computing the mo- 
ments of the n(,) for  the  neutral  distribution  defined 
in Equation 5 .  The method is based on  the popular 
“genealogical urn”  representation  for  generating neu- 
tral samples; compare HOPPE (1  984,  1987), WATTER- 
SON (1 984), DONNELLY (1986), JOYCE and TAVAR~ 
(1987)  for  example.  According  to this theory, obser- 
vations having the (unconditional)  distribution of q l ) ,  

n(2), . . . may be generated sequentially. Given the (age- 
ordered) configuration of the first n - 1 genes, the 
nth  gene  to  enter  the sample is a  mutant  (and so a 
novel allele) with probability O/(e + n - l), or a copy 
of one of the first n - 1 genes, each with probability 
l/(e + n - 1).  Let vn denote  the  (random)  number of 
alleles in a sample of n genes. The distribution of vn 
was given by EWENS (1972) as: 

where x(n) = x(x + 1) . (x + n - l), and x(0) = 1. Let 
tn denote  the  number of genes of the mth oldest allele 
in a sample of  size n, and  define 

u,(n, k) = E(ELI{vn = k}), (A2) 

for m 5 k 5 n; r = 0,  1, - .  ., where we have defined 

f l  if A occurs; 
= 10 if A does  not  occur. 

When r = 0, uo(n, k) is given by (1);  for n 2 k, these 
elements may be  computed recursively via the equa- 
tion 

!9 
O + n - l  uo(n, k )  = uo(n - 1, k - 1) 

+ n - 1  
B + n - l  

uo(n - 1, k). 

To derive  an  equation  for the u,(n, k), choose and fix 
m,  and define three events A,, Bn and Cn as follows: 

An is the event  that the  nth  gene is a mutant, Bn is the 
event that  the  nth  gene is in the mth  allelic  class and 
is not  a  mutant,  and Cn is the event that  the  nth gene 
is not in the mth  allelic  class and is not  a  mutant.  It 
follows that 

[LI(vn = k} = [LI{vn = k J n }  + [LI{vn = k,Bn} 
(‘43) 

+ i $ I ( v n  = k,Cn). 

There  are  three cases to consider: 

urn shows that 
Case (a) k > m > I :  The structure of the genealogical 

[LI{vn = k, An} = &-1Z{vn-1 = k - l } I { A n } ;  

[LI{vn = k, Bn} = (1 + [n-1YI{vn-l = k}I{Bn};  (A4) 

tLI{vn = k, Cn) = EL-1I{vn-1 = k}I{Cn}. 

Now condition on tn-l, ~ ~ - 1 ,  and use the fact that 
I) 

When r = 1, we  may  simplify (A5) to obtain 

Hence  for k > m, we have 

e 
u1(n, k) = u,(n - 1, k - 1) 

B + n - l  

n (A6) + u,(n - 1, k). 
8 + n - 1  

When r = 2, and k > m, an  analogous  argument 
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gives 

e 
B + n - 1  UP(% k )  = up(n - 1 ,  k - 1)  

+ n + l  
d + n - l  uz(n - 1 ,  k )  (A7) 

A4 is to 

e 
u&, m)  = uo(n - 1 ,  m - 1) 

B + n - l  

Despite the explicit appearance of 0 in these recur- 
sions, the sufficiency of k for 6’ [EWENS ( 1  972)] guar- 
antees  that  the  moments calculated in (A10) are in- 
deed  independent of 8. 

(ii) Simulation  method for neutral  samples: In this 
appendix, we describe the simulation method used to 
derive  percentage points for  the null (selectively neu- 
tral)  distribution of the test statistics described in 
Equation 1 1 .  The idea is related to  that of STEWART 
in the appendix of FUERST, CHAKRABORTY  and NEI 
( 1  977). Recall from Equation 5 of the text  that  under 
the neutrality hypothesis the  joint distribution of 
n(l), . . . , n ( k )  given k is given by 

P(n(l), ’ ’ 9 n(k) I k) = n!/ ( 1  s i  I n(k)(n(k) + n(k-I)) 
(A1 1 )  

. * * (n(k) + . . . + y l ) ) ) ,  

for n(1) + . . + n ( k )  = n. It follows from this (compare 
DONNELLY and T A V A R ~  (1986, Equation 6.1)) that 
the  joint conditional  distribution of n(r+l), . . , n(k) 
given k ,  q l ) ,  . . -, n(,) is 

P(n(,+I), . ‘ * t n(k) 1 k ,  n(l), * ‘ . , n(r)) 
(A1  2) 

(n - n(l) - * * - 
while 

+ 1 
O + n - l  

ul(n - 1 ,  m). 

In  the last four  recurrences, u,(. , 0) = 0 and u&, j + 
1 )  = 0 for all j .  

Case (c) m = 1: If k > 1 ,  Equation A4, and hence 
(A6) and (A7), hold. If k = 1 ,  then Equation A4 is 
replaced by 

6 3 { v n  = 1 ,  A,) = 0, 

[:Z(v, = 1 ,  A i }  = ~‘Z{V, -~  = l )Z(A~) ,  

so that 

u,(n, 1 )  = n7 uo(n - 1 ,  1 )  
n - 1  

B + n - l  

= nTuO(n, l) ,  r = 1 ,  2. 

For a given value of m,  these equations can be solved 
numerically, beginning with n = m = k, and ur (m,   m)  
= uo(m,   m) ,  then n = m + 1, k = m,  m + 1 ;  n = m + 2, 
k = m,  m + 1 ,  m + 2 and so on until the desired 
maximum values of n and k are reached. Finally, we 
calculate 

Comparing (A 1 1 )  and (A 12), it is clear that given k 
and  the frequencies of the r oldest alleles, the remain- 
ing k - r age-ordered allele frequencies behave like a 
sample of  size n - q l )  - . . . - q r ) .  Given n and k ,  the 
probability p (  j 1 n, k )  that  the oldest allele has j rep- 
resentatives is given by 

j =  1 ,  . . a ,  n - k +  1 

We can therefore  generate  an age-ordered sample 
recursively using (A 12) and (A  13). First, simulate an 
observation n(l) from p ( .  I n ,  k ) .  Then simulate an 
observation n(2) from p ( .  1 n - n(l), k - l ) ,  . . . , an 
observation n(k-1) from p ( .  I n - n(l) - . . . - n ( k - P ) ,  2). 
Finally, set n(k) = n - - . . . - T L ( ~ - ~ ) .  

We can simulate observations from the distribution 
(A13) for  particular n and k values once  an efficient 
algorithm  for  computing such probabilities is found. 
We proceeded as follows: define 

v(n,  k )  = 1s; I /n!. 
It follows that 
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and  that  the v(n, k) satisfy the recursion (ii) of this APPENDIX. The values reported  here  are 

1 
n 

v(n-   1 ,k)+-v(n-   1 ,k-  1) 

for k = 1, , n;  n = 2,  3, , with initial conditions 

v ( l , l ) = l . O ,   v ( i , i + l ) = O . O ,   i = l , 2 , * . .  

For  a given value of n and k, only the v(m, j) values 
f o r j  5 k ,  m 5 n have to be  found. The look-up table 
of these values is computed  just  once  at  the  beginning 
of the simulation, and in conjunction with (A14) it 
provides all the probabilities we need. 

(iii) Estimated significance points  for  test  statis- 
tics: Estimated 95% significance points of the test 
statistics F ,  G ,  H ,  I ,  J ,  K ,  L and M when n = 200, k = 
6 were found using the  method  described in section 

the average of 5  runs, each using 25,000 simulated 
vectors. Values of G ,  H ,  I ,  J ,  K and L above the 
significance point shown reject  neutrality, while  values 
of F and M below the significance point reject neu- 
trality. 

F 

7.40 J 

215.18 I 

17.22 H 

16072 G 

3831 

K 11.26 

L 10 

M 10 


