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I. INTRODUCTION

The formidable volume of DNA sequence data generated in the last decade provides a
rich source of data to biochemist, geneticist, and statistician alike. This paper studies some
statistical aspects of the primary structure of nucleotide sequences.

We have divided our presentation into three main sections. The first gives a brief intro-
duction to molecular biology of the nucleic acids, followed by some examples from the
literature that give a feeling for the types of problems that are addressed. The second section
describes some Markov chain methods for assessing the dependence structure that exists in
a sequence of nucleotides. Particular emphasis is placed on methods for estimating the order
of the Markov dependence. These methods are illustrated with an analysis of the bacterio-
phage A genome.

Theo:demgofmebasesmanuclemdesequemeumﬂuencedbybothmdomfmm
(such as mutation) and deterministic pressures (such as selection). The third part of our
paper describes some methods for searching for repetitive or periodic patterns in a sequence.
We base our analysis on the discrete Walsh transform and compare it to the more familiar
Fourier methods.

Our aim has been to focus on some useful analysis techniques, without going into detail
on all the variations on a given theme. The references will provide the interested reader
with additional information, both biochemical and statistical, about this fascinating field.

II. STATISTICAL ASPECTS OF DNA SEQUENCES

A. Nucleic Acids — A Brief Review of Molecular Biology

The nucleic acids are of two types. The first, deoxyribonucleic acid (DNA), is composed
of deoxyribonucleotides connected by phosphodiester linkages. There are four types of
nucleotides in DNA: two purines, adenine (A) and guanine (G), and two pyrimidines, cytosine
(C) and thymine (T). DNA may be single-stranded (as in certain single-stranded DNA viruses
such as M13 or ¢X174 or when denatured by heat or alkali), but is usually found as double-
stranded molecules. The strands of the double helix are held together by hydrogen bonding
between bases on the two strands. A pairs with T form two hydrogen bonds per base pair,
while G and C pair to form three bonds.

The second type of nucleic acid is ribonucleic acid (RNA). LnchNA RNA is composed
of nucleotides joined by phosphodiester bonds. The nucleotides of RNA, however, are
ribonucleotides (ribose, the sugar component of each RNA nucleotide, has a hydroxy! group
at the 2’ position, whereas deoxyribose, the sugar component of DNA, does not). Further-
more, uracil (U) replaces T in RNA molecules. RNA molecules are usually single-stranded,
although there may be a great deal of intrastrand base pairing.

RNA occurs as one of three types of molecules. In a process known as *‘transcription’’,
RNA polymerase makes a complementary copy of the genetic information (i.e., the base
sequence) of one strand of DNA (called the *‘sense’’ strand) which is called messenger
RNA (mRNA). The mRNA carries sequence information and serves as the template for the
synthesis of proteins by a process known as ‘‘translation’’. Messenger RNA constitutes only
about 5% of the total cellular RNA. _

The information specifying one amino acid is contained in a ‘‘codon’, a triplet on the
mRNA strand recognized by the second type of RNA molecule, the transfer RNA (tRNA).
Since any position on the mRNA strand may be occupied by one of four bases, there are
4 = 64 possible codons but only 20 amino acids. Three of the codons are termination signals.
The remaining 61 triplets code for amino acids, which suggests the genetic code is degenerate.
The amino acids methionine and tryptophan are, for example, each specified by unique
codons, while leucine, arginine, and serine may each be specified by one of six codons.’
Similarly, the other 15 amino acids are each coded for by any of two, three, or four codons.
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The third and most abundant type of RNA, comprising about 80% of all cellular RNA,
is the ribosomal RNA (fRNA), an important constituent of ribosomes. The precise function
of rRNA is not known, although evidence suggests that it is crucial in binding certain
components of protein synthesis (such as tRNA and mRNA) to the ribosome.?

In 1977, powerful DNA sequencing techniques were announced by Gilbert and Sanger.
The concurrent development of these two important DNA sequencing techniques has fostered
the rapid accumulation of sequence data; currently, there are about 20 million bases of
information available for analysis. A great deal of statistical analysis has been performed
on these sequences; we describe some of them briefly.

B. Some Examples of Statistical Studies of DNA

The rapid development of sequencing techniques required the development of computer
programs capable of manipulating, analyzing, and comparing long sequences of data. The
proliferation of such software is all too obvious: programs are now available which aid in
planning cloning projects,’ predict secondary structure of tRNA and mRNA,* determine
whether a sequence is protein-coding or noncoding,*# and search for such signals as pro-
moters.®’

Since the bases on DNA encode the information necessary to make each protein, one
could suggest that any heterogeneity exceeding random expectation could be a consequence
of the difference in the amino acid composition of the various gene products. Elton® tested
this idea by selecting 42 protein sequences (32 vertebrate and 10 bacterial) with a total
combined length of 5801 amino acids. An arbitrary length (20 residues) of each sequence
was used to predict the corresponding DNA sequence. Because of the degeneracy of the
genetic code, a given protein sequence may be specified by one of several DNA sequences.
Elton predicted the base order of each gene fragment, assuming uniform codon preference
and then applied analysis of variance to the set of predictions. He concluded that the data
(applying uniform codon weighting) were consistent with the suggestion that DNA sequences
within genes approximate ‘‘random DNA"’ from the point of view of heterogeneity.*

Data, however, suggest that among possible codon choices there are preferences.*'* The
amino acid glutamine, for example, may be specified by either CAG or CAA, but the CAG
codon occurs with much greater frequency in some genes.*

Maniatis et al.* suggest that knowledge of degenerate codon preference has an important
practical application. When screening cellular mRNA for a specific, rare mRNA corre-
sponding to a desired gene product with a partially determined sequence, one can locate the
desired mRNA molecule by constructing oligomers complementary to the gene product.
Unfortunately, the degeneracy of the genetic code allows even short amino acid sequences
to possess a prohibitively large number of possible DNA coding sequences. Taking advantage
of codon preference patterns reduces the number of oligomers likely to specify a given
protein sequence and can make the mRNA screening process manageable.

Codon preference has been correlated with levels of gene expression in Escherichia coli
and yeast.!>'8 A strong correlation exists between codon frequency and the relative abundance
of the corresponding tRNA.'™!* Gribskov et al.’® suggested that codon preferences can be
used to predict the relative level of gene expression and give a method to construct preference
plots.

Furthermore, codon preferences and other statistical phenomena may be used to determine
the function of a given DNA sequence. A common question when analyzing sequence data
is whether the bases are part of a coding section (known as an ‘‘exon’’). As Staden'? argued,
there are two approaches to this problem: one may either infer a strand is proteincoding
from such clues as ribosome binding sites and an absence of stop codons or one may examine
the properties of the base sequence and determine if they are comsistent with properties
known to be associated with coding sequences. One such property is codon preference.
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Codons are used with unequal frequency in coding sequences. Fickett® noted that oligo-
nucleotides (especially single bases) tend to be repeated with a periodicity of three in a
protein-coding sequence. Furthermore, such periodicity is absent in noncoding sequences.
Coding regions may also be detected using vector Fourier methods.?' Statistical methods
may also be used to determine the reading frame of coding sequence.? -

Until the development of sophisticated DNA sequencing techniques, only a limited amount
of reliable sequence data existed. Among the first nucleic acid data analyzed, therefore,
were the base compositions of DNA from various sources. The four nucleotides are not
evenly represented in any given sequence, and the base composition varies within and
between sequences.®

Prokaryotic and eukaryotic DNA sequences also display distinct nearest neighbor patterns.
The most basic analyses of nearest neighbor frequencies are the observations of dinucleotide
frequencies. Distinct patterns, such as the relative rarity of the CG dinucleotide in
eukaryotes'?2+% and the preference for PuPu and PyPy pairs* over PuPy and PyPu pairs in
eukaryotic DNA?" have been observed. Nussinov*? has suggested that this preference results
from structural considerations, with the homopolymeric dinucleotides (PuPu and PyPy) and
other doublets which cause little or no steric strain in the DNA molecule being preferred.

Another example of nucleotide ordering is A clustering in sequences. Nussinov®® examined
long (>1 kb) RNA and DNA sequences for homopolynucleotides. She found that all but
one of the sequences (16S rRNA, which does not code for protein, but instead serves a
functional role in the ribosome) had fewer single and doubly clustered A than expected.
Longer runs of A such as triplets were found more frequently than would be expected from
random occurrence. G and C tended to cluster less frequently: single G and C and the
doublets GG and CC were present in the analyzed sequences more often than expected,
while longer clusters of G and C were observed less frequently than expected. Since a G-
C base pair has more hydrogen bonds and, consequently, a higher bond energy than an A-
T pair, Nussinov suggested that this clustering may be involved in facilitating the *‘unzip-
ping’’ of the DNA strands, expediting replication, transcription, and/or translation.

Nussinov®-*! has also examined DNA sequences near transcription inititation sites. Evi-
dence suggests that eukaryotic transcription factors recognize and bind to certain promoter
regions, including the so-called ‘‘CCAAT’’ and ‘‘TATA box’’ sequences located *‘up-
stream’*** from the transcriptional start site. Nussinov, however, has found other oligomers
arguably as significant as the CCAAT sequence. Eukaryotic sequences within 500 bP of
mRNA initiation sites were analyzed for recurring oligomers. TAT/ATA triplets and ATAT/
TATA quartets, for example, occur frequently about 275 bases upstream from the start site
with a signal strength twice that of the CAAT sequence at —80.%

Statistical evaluations have also been performed on single-stranded nucleic acids. The
sequences of the single-strand DNA viruses, for example, contain fewer palindromic regions
than expected. Palindromes are sequences which, if in double-stranded nucleic acid, would
contain a twofold axis of symmetry, e.g., AGCT; consequently, such sequences can fold
up on themselves. In one study, Duggleby* found improbably few four and six nucleotide
palindromes in the single-stranded DNA phage, $X174. Other palindromes occurred with
a frequency approximately as expected. Duggleby theorized that this paucity of palindromes
might be associated with constraints on the secondary structure of single-stranded DNA
viruses.

* Pu indicates purine base (A or G), while Py indicates pyrimidine base (C or T).

** “‘Upstream'" suggests base positions in the 3’ direction from the transcription initistion site. The locations of
bases upstream are described by negative integers, corresponding to the discrete number line with the start site
equal to zero. Similarly, *‘downstream®’ implies base positions in the 3’ direction from the transcription start
site. The locations of bases downstream are given by positive integers. )
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III. MARKOV ANALYSIS OF DNA/RNA SEQUENCES

A. Background
The previous section illustrated many examples of the statistical analyms of nucleotide

sequences. Many of these are ‘‘local’’ in nature; they use statistics from nearest neighbor
frequencies, codon counts, and so on. The very mechanism by which DNA sequences are
produced — sequentially in long chains — suggests that the analysis of such sequences
might profitably be carried out within the framework of Markov chain methodology. From
a statistical point of view, such analyses seem to fall naturally into two camps.

The first might loosely be called ‘‘informational analysis’’. This draws on statistical
machinery developed in the late 19505 by Kullback et al.** and others. Erickson and Altman*
used these techniques to search for patierns in the MS2 genome. Rowe and Trainor,* Lipman
and Maizel,* and Lipman and Wilbur®’ use related methods; see also Konopka® for a
discussion of the evolutionary implications of information content. The second group cor-
responds to (statistically) more classical Markov chain analysis. See Elton,>* Almagor,*
Blaisdell,**#' and Garden,*? for an example.

We first give a brief synopsis of Markov chain terminology. Let X = {X ,n = 0, 1,

, - » . } denote a stochastic process whose states represent the nucleotides in a given DNA
(or RNA) sequence. For definiteness, we label the bases in alphabetic order, so that A =
1,C=2,G=3,and T = 4. X is called a Markov chain of order k if

PriX..; = ipe, |X_ = e Xpcpet ™ dpogays ooes Xo = g}
=Pr{X,., = i,., |xa = dpy s Xacier = ducias)

for all n ® k — 1 and for all choices of states iyi,, . . . ,i,., from {1,2,3,4}.* Intuitively,
this says that the distribution of the next base in the sequence is determined by the previous
k bases, and not by earlier ones. When k = 0, the chain comprises independently distributed
bases. When k = ], we recover the usual first order Markov chain case.

The behavior of the (time homogeneous) process X is determined by its initial distribution
and the transition probabilities p(i,.i,, . . . .i,; i,.,) given by

Piyeizs oo s Buar) = P{Xis, = i,y [ X =iy, oo X, = i)} n

The aim is to estimate the order k of the model, the transition probabilities p(i,.iz, - - . Jiy; y+1)s
and then to assess various hypotheses about the DNA sequence(s). Typical among analyses
for a single sequence might be testing for independence (k = 0), testing for uniformity of
base composition, testing a fit to a hypothesized transition matrix, and testing particular
transition probabilities. For a collection of sequences (perhaps derived as subsequences of
a given sequence), one is usually interested in finding heterogeneity among the sequences.
Within the framework of first order Markov chains, these questions are addressed by Elton.*
Similar questions in higher dimensions may be studied using standard theory; References
43 and 44 are recommended.

Rather than focus on such detailed questions, our interest will focus on statistical aspects
of finding the order of the Markov chain.

B. Finding the Order of a Markov Chain
Suppose that the sequence of interest is of length N. Forr = 1,2, . . . letn(i,,i,, . . . ,i)

. Mmyhembmmdmmuc.ﬁ.ﬂ.faw {Pu,Py}. For simplicity, we
stay with the *‘nucleotide alphabet’’. The methods o be described later carry over, with obvious changes, to
other choices.
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be the number of transitions i,—»i,~ . . . —i, observed in the sequence. It is a standard
result*** that the maximum likelihood estimator of p(i,,i,, . . . i3 i.,) is

Blinaizs ooon s dear) = DCiyy dzs oovs iyr iaa WDy By evs o +) )]
where
0y, g vosias +) = Dy Bippize oves dyy §)

Notice that in fitting a k-th order Markov chain with m states, there are p=m*(m - )
independent parameters to be estimated; in our case m=4, so that

p=3 x4 3)

Thisgivesp=3(.k =0),p=12(k =1),p=48(k =2),p=192(k = 3),p =
768 (k = 4), and p = 3072 (k = 5). It is clear from this that very long DNA sequences
are required for ‘*good’’ estimation of the transition probabilities under the fully parame-
terized model of Equation 2. We will return to this problem later.

There have been several methods proposed for estimating the order k of a Markov chain.
Because we will later want to compare models which are not nested, we will use information
criteria rather than a multiple hypothesis testing framework. Among these is a standard
information theory method,*> Akaike’s information criterion (AIC),*2454¢ and the Bayesian
information criterion (BIC).***’ To compute the BIC, we evaluate the log-likelihood L of
the data

L = 3 nlipizs voos b deo ) €0 Pliraizs ooy s daay) @

the sum being over all i,.i;, . . . ,i,k., for which n(i,.i,, . . . ,i,,ii.,)>0. The BIC for
order k is then defined by

BICk) = -2L +plnn (&)

where n (=<N) is the number of subsequences from which the counts n(-) were formed. That
k which minimizes BIC(k) is taken as the estimator of the true order of the chain. We use
BIC because (unlike AIC) it is a consistent estimator of Markov chain order,*® and it chooses
simpler models.

As noted above, a full Markov chain analysis of high order requires very long data
sequences. Because of the inherent heterogeneity of the linear structure of DNA sequences,
such long homogeneous sequences are rather unusual. The data prevent us from performing
precisely the type of analysis that seems most interesting. A class of Markov chain models
that combines high order dependence with a small number of parameters could prove useful.

C. Models for High-Order Markov Chains
The class of Markovian models we will use in the present analysis was developed by
Raftery.*” The typical transition probability of the k-th order model is of the form

k
Plirsias -oes s i...)-zlx,q(i,.im) (6.

where Q={q(i,j), 1 = i,j = 4} is a row-stochastic matrix whose entries are to be estimated
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Table 1
FIVE BIOLOGICALLY INTERESTING
REGIONS '

Sequence Pesitions = Orientation® Length, N

Late 45000-19600 L-R 23102

Early 2 38220-45000 L-R 6780
Ealy 1|  35040-27581 R-L 7460
Control  38030-33290 R—L 4740
Silent  27580-19601 R-L 7980

* If orientation is R—L, sequence is read in reverse comple-
ment form.

from the data, and A,,A,, . . . ,A, are k parameters, summing to 1, that must also be
estimated. This model may be viewed as a discrete state-space analog of the auto-regressive
time series models; one extra parameter is introduced for each extra order after the first.

Notice that when k = 1, this model is identical to the usual first order Markov chain
described earlier. The number of parameters to be estimated in the k-th order case is reduced
from Equation 3 to

p=1+k )]

and so we should be able to look for high order dependence more successfully. The price
we pay for this is that the algebraic simplicity of Equation 2 no longer applies, and the
maximum likelihood estimates of the parameters must be found by numerically maximizing
the log-likelihood

k
L = 2 n(i‘,iz, ceey it' i.....) en (’Zl x} q(ijoiiql)) (8)

usingaconsm.inednonlinwopﬁmiziﬁonalxoﬁthm.
The BIC for this model is computed using Equation 5; L is the value of the right-hand
side of Equation 8 at the maximum likelihood estimates.

D. Examples :

We have chosen the bacteriophage )\ as the source of our example. The A genome was
sequenced by Sanger et al.** and is 48502 nucleotides in length. The sequence was initially
broken into five biolgocially interesting regions, given in Table 1.

‘The BIC indexes given by Equation 5 were calaculated for each sequence. For comparative
purposes, we also include a value of k = — 1 which corresponds to the model of independent
bases, each with relative frequency 1/4. In this case, there are no parameters to estimate,
and the BIC value is

BIC(~1) = —2nén 4

where n is the effective number of observations in the data. In all the results presented here,
the sequence comparisons were begun at the 7th base of each sequence, so thatn = N —
6 may be calculated from Table 1. The results of this analysis are presented in Table 2. .

The BIC criterion indicates first order dependence for the regions Silent, Early 1, Early
2, and Control. We might expect the Silent region to have less *‘structure’’ than the others,
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Table 2
BIC(k) VALUES FOR BACTERIOPHAGE A

Sequence Laste Earlyl Early2 Costrol Sient

k=-1 64036 20667 18782 13125 22109
63682 20566 18682 13025 21971
63258  20472* 18618* 12982 21900
62349° 20648 18743 13218 22026
63158 21706 19771 14133 23041
67923 26149 24040 18345 27580

R S

¢ Denotes order of chain using the BIC criterion.

Table 3
LOCATION OF LATE REGIONS

Sequence Pesitions Orientation®  Length, N

Head 1-8550 L~R 8550
Tsil 8550-19600 L—-R 11050
Lysis 4500046430 L~R 1430

*" If orientation is R—L, sequence is read in reverse comple-
ment form.

since N can propagate without this region.'* The Late region is clearly identified as having
an order of dependence of 2.

Models which are so clearly described by first order chains as those here will not typically
be improved by using the high order dependence (HOD) models of Equation 6. We therefore
analyzed only the Late region to determine whether the HOD model gives a more parsi-
monious description of the data. The BIC values are 62927 (k = 2) and 62935 (k = 3),

to the smallest value of 62349 (k = 2) for the general case (see Table 2). The
HOD model of order 2 provides the second best description of the data. That it is not the
best means that the second order transition matrix of the best model must have a more
complicated structure than is contained in Equation 6. The HOD models should provide
better models for sequences such as $X174* that exhibit a higher order of dependence
than A.

The low orders of dependence identified in these regions may be due in part to inho-
mogeneity in the sequences. To examine this further, we broke the late region into three
subregions labeled Head, Tail, and Lysis. The locations of these regions are given in Table
3 and the comesponding BIC values in Table 4.

The overall appearance of a second order model is maintained. Remarkably enough, the
Lysis region is adequately described by the ‘‘completely random’’ model in which bases
are laid down uniformly and at random. The Lysis region is composed of three genes, S,
R, and RZ.“* R and S genes are necessary for lysing the bacterium after the production of
progeny phage and so are essential to the propagation of the phage in nature. Naively
perhaps, we expected the structure of these genes to be similar to other A genes (i.e., showing
some dependence). Individual gene sequences, however, show the same completely random
structure as the eatire Lysis region. We conjecture that the variability in the estimated orders
of dependence of these coding regions can be attributed to different patterns of codon usage
among the genes.

We also examined one of the open reading frames in the Early 2 region, ORF290. Once
again, a model of independent bases is adequate. It is tempting to conclude that ORF290
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Table 4
BIC(k) VALUES FOR
BACTERIOPHAGE A

Sequence  Hoad Tall Lysis

k=1 23689 30620 3948
] 23532 30287 3966
1 23352 30152 3997
2 2113 2960 4193
3 24114 30567 5017
4 28439 35070 -—

*  Denotes order of chain using the BIC cri-
terion.

has no coding function, but our experience in the Lysis region (and that of Garden*? for the
replicase gene of MS2) demonstrates that protein coding regions may often appear struc-
tureless.

- IV. TRANSFORM ANALYSIS OF DNA/RNA SEQUENCES

A. Background
The previous section of this article is devoted to stochastic models for the analysis of the

primary structure of one or more stretches of DNA. These methods are useful for finding
parsimonious descriptions of stretches of sequence with little apparent structure. One in-
teresting feature of eukaryotic DNA is the presence of tandem (or periodic) repeats and
interspersed base sequence repeats throughout the genome. Such repeats vary in length from
simple dinucleotide periodicities (for example, the dinucleotide AG [repeated 28 times)
found upstream from the mouse immunoglobulin G3 constant region gene®) to very large
tandem repeats; the GNOMIC dictionary*® is an invaluable compilation of examples of this
type. Nucleotide sequences that exhibit repetitive structure cannot usefully be described by
the earlier Markov chain models; alternatives are needed.

The presence of periodicities in DNA (or protein) sequences has led several authors to
use what might broadly be called Fourier analysis methods to search for such structure.
Kubota et al.5! and McLachlan and Kamn* use correlation coefficients calculated from
sequences when residues are replaced by various quantitative properties of the amino acids,
such as hydrophobicity. Liquori and co-workers?! have introduced several Fourier-analytic
methods for studying sequence similarities between proteins of different species. Felsenstein
et al.* suggested Fourier analysis as a fast technique for computing the fraction of matches
between two large nucleic acid sequences. Silverman and Linsker* and Trifonov and Sussman®
use related methods to detect regularities in DNA sequences.

In this section we describe another technique of sequency analysis based on the Walsh
transform, that is also applicable to problems involving symbol-sequence periodicities.

B. The Walsh Transform
~ We first give an inductive definition of the Walsh functions {W,(x),0=x<1},n = 0,1, . ...
We initialize the induction by defining

Wox)= 1, x€[0,1)
1, x€[0,172)

Wi(x) = ¢))
-1, x€[172,1)
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and then proceed recursively forn = 1,2, . .. via

W,(2x), 0sx<12
Wa(x) = (10
(-D"W,(2x -1), 12€x<1

W.(2x), 0sx<1n2
Wiasi(x) = (1)
(-1 wWe2x=-1), 17€x<1

The Walsh functions are orthogonal and piecewise constant on [0,1).5 The even numbered
Waish functions are symmetric about x = '/, (and play the role of the cosine terms in Fourier
series), while the odd-numbered Walsh functions are antisymmetric about x = '/, (and so
play the role of the sine terms in Fourier series). These functions may be used to construct
the discrete Walsh transform of the sequence x=(x,,X,, . . . ,Xn.-;). When N is a power
of 2 (so that N = 2° for some positive integer p), the following recipe does the trick.

We define first

wk,j) = W(GN), j=01,.. ,N~-1 (12)

The Walsh transform of x is then given by

N-1
a = 1 > xwkj, k=0,1,..,N -1 (13)
N 5
and the inverse transform® by
N=1
X, = ;o aw(, k), j=01,.. ,N=1 (14)

1 1
There is an explicit formula for w(k,j).* If j = i j2,and k = S: k2, then
rw=0

r=0
p-1
wik,j) = (—1)2o T S (15)

from which it readily follows that w(k,j) = w(j,k).

We will use the discrete Walsh transform to hunt for periodicities in DNA sequences.
Imagine that our sequence of length N = 27 is listed as A A, . . . ,Ay_,, where (as in
Section III) A, takes the value 1 if the i-th base is an A;2, ifitisa C; 3, if it is G, and 4
if it is T. We generate four associated sequences {x,,j = 0,1, .. . ,N — 1} of indicators
as follows. Fori = 1, ... .4, set

1, fA/=i j=0,1,..,N-1
X, = (16)
0, otherwise
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Then form the associated Walsh transforms using Equation 13:
l N-1
a == xwkj, k=01,..,N-1 a7
N j=0
Notice that a,, is the fraction of base i in the sequence.
The power spectrum {c, .k = 0,1, . . . ,N — 1} of the sequence x is then defined by
4

=28 (18)

ju]

Notice that from a computational point of view, only three of the transform sequences {a,,
k =0,1,... N — 1} need to be calculated. Since

it follows that

the last equality following from orthogonality.

We will now compare the properties of the Walsh power spectrum with the perhaps more
familiar Fourier power spectrum, found by replacing Equation 17 with

Ex_,emw k=0,1,...N-1 (19)

N j=o

and the value of c, in Equation 18 by
‘ .
& = 2 I 20)

There are alternative ways of representing the structure of a DNA sequence other than
via the indicator variables used in Equation 16. Silverman and Linsker,* for example, use
a tetrahedral coordinate representation. '!'hecompmtiomlalgonﬂxmusedhetetocalculne
the fast Fourier transform is based on the code of Press et al.”

C. Examples
Figures 1 through 3 display the spectra for a 128 bP consensus sequence from the AT-
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0.10 -

oo AL S,

1 84 127

FIGURE 1. ‘Fauierpowerspecnumforlzsbueseqw
from X. laevis oocyte 5§ DNA.
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FIGURE 2. Walsh power spectrum for 128 base sequence
from X. laevis oocyte 5S DNA.

rich spacer region of the SS DNA of Xenopus laevis.®® Figure 1 illustrates the familiar
symmetry of the Fourier power spectrum. The pronounced peak atk = 16 shows a periodicity
of length 8, corresponding to the simple sequence repeat 8 bases in length.>** In contrast,
the Walsh spectrum (Figure 2) is not symmetric; now the peak near k = 32 is indicative
of a periodic component of length 8. Figure 3 gives the graphs of both transforms, plotted
on common axes for comparative purposes. Note that in these plots (and those that follow),
the base-frequency information that corresponds to k = 0 is not plotted.

The second example is a 128-bP sequence from the human £-globin gene™; it starts at
position 210, in Intron 1. There is a 14 base repeat sequence ACAGTGGGAGGGG repeating
(with very little variation) through this region. Notice from Figures 4 and S that both power
spectra are considerably less well defined, despite the presence of the repeat. There are
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FIGURE 3. Composite of Figures | and 2. Dotted lines cor-
respond to Fourier transform and solid lines to the Walsh trans-
form.
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FIGURE 4. Fourier power spectrum for 128 bese sequence
from human §-globin, intron 1.

several reasons for this, among them, the rather repetitive substructure of the repeat and the
fact that maximum emphasis of the peaks will occur when the length of the sequence is a
multiple of the length of the repeat. Figure 6 gives the superposition of the two graphs.
There are several other comments worth making about use of the discrete Walsh transform
in this setting. First, the technique is not limited to the analysis of sequences which have
length a power of 2, however, when the length is a power of 2, the computation of the
transform coefficients is very simple, both in terms of computational code and speed of
execution. The fast Walsh transform requires less storage space than the corresponding fast
Fourier transform, and seems to execute about five times faster. On the other hand the Walsh
transform is, by its nature, better adapted to hunting for periodicities that are powers of 2
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FIGURE 5. Walsh power spectrum for 128 base sequence
from human §-globin, intron 1.
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FIGURE 6. Composite of Figures 4 and 5. Dotted lines cor-
respond to Fourier transform and solid lines to the Walsh trans-
form.

in length, and it is not always easy to interpret the form of the power spectrum. Nevertheless,
both techniques are a useful augmentation to more traditional oligonucleotide dictionary
searches in the hunt for symbol patterns.
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