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I. INTRODUCTION 

'Ibe formidable volume of DNA llequence data gamtcd in the last decade p o v i d w  8 
rich #HoTx ofdrtrtobiochemirt, geneticist, rad rtrtirtici8nrliLe. Thirpapastudiesrome 
statistical aspects ofthe prinmy stnrturr of nucleotide requenccr. 

duction to mokcular biology of the nucki  ridr, followed by some exuIlplcs from the 
litenwn that gin afceliag forthe types ofproblems tbum ddrrpsed. The second saction 
describes some Markov chain mctbods for messing tbe dependemx structm that exists in 
a sequence of nucleotides. particuluempbrci is placedon methods farestimsting theorder 
of the W o v  dependence. These memodr m illuotnted with an d y s i s  of the bsrterio- 

The orderiog of the bases in a nuclattidc sequence is M d  by both Mdom factors 
(such as mutation) and deterministic pressures (ruch as selection). The third pat of our 
Paper describes u#IIc methodo fOrseuching for- ar@OdiC pP#efils 8 #qucnCe. 

We base aw analysis on the discre& Wplsh trmsform ud comprrr it to tk  mor^ familiar 
Fourkrmetbodr. 

Our aim has been to focuo on some useful analysis techniques, without going into &tail 
on ail the variations on a given theme. 'Ihe nfermces will provide the intensted Mder 
with additional infonnrtion, both biochemicrl and statistical, about this fascinating fgld. 

II. STATISTICAL ASPECIS OF DNA SEQUENCES 

we h8Wdividcd Wrp#caution thret IlUiU ~~. The fm @veS 8 brief h&O- 

phast A gCnOm. 

A. Nudcic --A BrW R&w d Mdcclllv Bidaoy 
The nucleic acids are of two types. The fm, deoxyribonucleic acid (DNA), is compcd 

of deoxyribonuclwticks CoMeCtcd by pb@odiestcr linkages. There arc four type of 
nucleotides in DNA two purines. ddenine (A) and guanine (G), and two pyrimidines, cytosine 

such as MI3 or 9x174 or when denatured by heat or alkali), but is usually found as double- 
otnndedmoleculeo. 'Ibe oh'mds of tbe double helixrre held togetha by h y ~ ~  
between bases on tk two strands. A pairs withT fam two hydmgcn bonds pabue pair, 
while 0 rad C pair to fonn three bonds. 
The second type of nucki acid is ribonucleic acid (RNA). Like DNA, RNA is composed 

of wclsorider pined by phospMkster bonds. Ibe nucleotides of RNA, however, me 
ribonucleotides ( r i b ,  the sugar componm of each RNA nucM&, has a hydroxyl group 

(C) and thymi# 0. DNA m y  k ringk-stroaded (S in ctrtrin ~inglc-sapnded DNA viruses 

Y tk 2' pooition, whatrr deoxyribose, the  rug^ COmpOllCllt Of DNA, does not). Furd#- 
mare, mil 0 replpcer T in RNA mblaculer. RNA moleculer UT ururlly single-otrondad. 
dtbW@l thsre 

* - **  
be 8 @W dCd ofh@M@Uld bo# m. 

RNA occufs 8s one of three types ofmokcukr. In a process known as "- , 
RNA potymenre makes 8 canplcmcntmy copy of the genetic infomation (Le., the bue 
s e q u e a c e ) o f o n e s t M d o f D N A ( ~ e d t h e " r e n r e ~ * r t n a d ) w h i c h i s c r r l l e d ~  
RNA (mRNA). The mRNA carries 8equmce infamuioD rad sems as the template fortbe 
synthesis of poteinS by 8process known 8s "tnnslrtion". Mes#ngerRNA constitutes only 
rbout 5% oftbe tow en* RNA. 

mRNA rtMd rcco@cd by the second type of RNA molecule, the transkRNA (tRNA). 
Since any podtion on the mRNA strand may beoocupiodbyoneof fourbtseo, thue me 
9 1 6 4  possibk adom but only 20 amino rids. 'Ibrseof the codons UT tenninotioa signals. 
' I h e n m r i n i n g 6 1 ~ ~ c o d e f a r r r m i n O r i d o , ~ s u ~ t h e ~ o o d c i s c k ~ .  
TheaminorciQmethionine and trypophrn ae, far ejumple, clch tpecified by unique 
codons, whik Wine, mghiec, and serine may uchbe s p d f k d  by one of six codoar.' 

'Ibe iaformrtion spacifyino OIY 8d lOrc id  bconuiaed in 8"codon", 8 -00  the 

SimiMy, the other 15 amino 8cids UT erh coded far by any of two, thret, or folacodonr. 
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The third and most rbuadrrat type of RNA, comprising about 80% of rl) cellular RNA, 
is the ribosomal RNA (rRNA), an impartrnt Constituent of ribosomes. The precise W o n  
of rRNA is not known, altbougb evidence suggests that it is crucial in binding certain 
components of protein synthesis (such as tRNA 8nd mRNA) to the 

In 1977, powerful DNA Sequtacing techniques werr lMouIlctd by Gilbert and Sanger. 
me concumnt development of t&re two imponaut DNA sequencing techniques has fostmd 
the rapid rccumulrtioa of sequence drtp; currently, these ue rbout 20 million bases of 
idormation available for d y a s .  A greu deal of statistical d y s i s  has ban pufomd 
on these sequeacer; we describe lomt of thtm M y .  
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Codons arc used with unequal frequency in coding sequences. FickctP noted that oligo- 
nucleotides (espcciolly singk bases) tend to be repeated with a periodicity of thee in 8 
proteincoding sequence. Furthermorr, such periodicity is absent in nonding sequences. 
Coding regions may also be detected using vector Fourier mcthuds.21 Statistical metbods 
may also be uscd to dctumm the d i n g  fnmt of coding sequea~e.~ 

Until the development of sophisticated DNA sequencing techniques, only a limited amount 
of rrliabk sequence data existed. Among the fmt nucleic scid data analyzed, thmfare, 
were the base compositions of DNA from vuious sources. The four nuckddcs arc not 
evenly in any given sequence, md the base composition vuies within and 

Rdrpryotic and eukaryotic DNA sequences also displry distinct nearest neighbor pattans. 
The most basic d y s e s  of IIc(LIzs1 neighbor frequencies ut the observations of dinucleotide 
fkquencies. Distinct patterns, such as the rriatin rarity of the CG dinucleotide in 
~ t d m y o t e s ' ~ ~ '  and the preferrace for PuPu and PyPy pairs* over PuPy and PyPu pairs in 
eukaryotic DNAn have been observed. N u s s i n ~ P - ~  has sugpsted that this preference results 
from stnrcftval considerations. with the homopolymeric dinuclsotideJ (PuPu and PyPy) and 
otha doublets which cause little or no steric strain in the DNA molecult being p r c f d .  

Another example of nucleotide ordering is A clustering in sequences. NussinoP examined 
long (>I kb) RNA and DNA sequences for bomopolynucltotidcr. She found hat rll but 
one ofthe mqumccs (16s rRNA, whicb docs not code forpocein, but insted saves 8 
functioarl Fole in the ribosome) had fewer single and doubly clustered A than expected. 
Longerruns of A such as triplets were fwad m01c frequently than would beexpected from 
random occurm~x. G and C tended to cluster less frequently: single G and C md the 
doublets 00 and CC w e n  pnsent in the analyzed sequences more often than expected, 
while longer clusters of G and C were observed kss frequently than expected. Since a G- 
C bsse pair has more hydrogen bot@ and, consequently, 8 higher bard energy than an A- 
T pair, Nussinov suggested that this clustering may be involved in hcilitating the "unzip 
ping" of the DNA strands, expeditiag nplicatioa, tMIcripion, a d o r  transMan. 

Nussiaovmoji has plso exambed DNA mpcnccs near tMscriptioa inititation sites. Evi- 
dence suggeststhatcukaryotic aMsoriptionfpctarorrcognize radbindtocmrinpomoter 
regions, including the so-called "CCAAT" rad "TATA box" sequences located "up  
stream**** from tbe tmnscriptionai SUR site. Nussinov, however. has found other oligomers 
arguably aa significant as tbe CCAAT segucbcc. Eukaryotic scqucaces within 500 bP of 
mRNA W o n  sites wtn rarlyzed for reaming oligomers. TATIATA triplets and ATATI 
TATA quartus, for exampk, occur frequently about 275 bases upstream from the start site 
with a si@ strength twicc that of the CAAT mequcncc at -80." 

Stntisticpl evduations h v e  do0 been performed on singk-Etnnded nucleic acids. The 

than cxpctcd. Paihdromcs arc saqmccs which, if in dwbbsmnckd nucleic acid, would 
contain a twofold axis of symmetry, e+, A m ,  consequently, ruch sequences can fold 
up 00 them#lves. In one study, Jhggkbp  found improbrblr few four and six n u c i d d e  
paliadromeo in the single- DNA phage, aXl74. Other poliDdromes occumd with 
afrtsueacy rpproximrtely ascxpcctcd. Duggkby tbeaized that this paucity ofpalindromes 
might be 8luocbd with consmln & 011 tk 
virucleo. 

. 

between sequmas.u 

~ e q m  Oft& be-rtnnd DNA Virurer, for cxunple, -tab f e w  prrlladnwnic ~ g i ~  

Of Singk-Jtnnded DNA 
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III. MARKOV ANALYSIS OF DNA/RNA SEQUENCES 

A. Badrgrwnd 
The previous section illustrated many examples of the statistical analysis of nucleotide 

sequences. Many of these are “local” in MW; they use statistics from m s t  neighbor 
frequencies, codon counts, and so on. The very mechanism by w h i i  DNA sequences m 
produced - sequentially in long chains - suggests that the analysis of ouch sequences 
might profitably k Urried out within the fnmeworlr of Markov chin mahodology. From 
a statistical point of view, such analyses reem to fall nrturplly into two camps. 

The fmt might looscly k called “informational malysis”. This dnws on statistical 
machinery developed in the lae 1950s by Kullback et md others. Ehckson urd Altman” 
used these techniques to search for patkm in the MS2 genome. Rowe md Tninar,” Lipnun 
and Maitel,# and L m  and W i l W  use nlrted methods, ret rlso KoaopkPW for a 
discussion of the evolutionary implicuionS of infarmrtion content. Tbe second group cor- 
responds to (statistically) more classicll W o v  chain analysis. See Elton,u Almrgor,’p 
Blai~dell,“.‘~ and Garden,” for an example. 

We fvst give a brief synopsis of Markov chain terminology. Let X = {&, n = 0.1, 
2,. . .}denoteastochasticprocesswhoscrutesrepnscntthenuc~~inagiv~DNA 
(or RNA) sequence. For definiteness, we likl the bases in alphabetic order, IO that A = 
1,C = 2,G = 3 , m d T  = 4.XiscalledrMaflovchrinoforderkif 

for all n k - 1 md for dl choiccs,ofrutes bril, . . . from {1,2,3,4}.* Intuitively. 
this says t h t  the distribution of the next base in the sequence is determined by the previous 

bases.Whenk- 1 , w e m c o v e r t & d f ~ a d c r M a r k o v c h a i n c u e .  

ud the transition probabilities p(il,i2, . . . ,I; &+ I) given by 

kbam,mdnotbywlierones.Wheak=O.tkchrincompieesindgndartl ydistributed 

The behavior of the (time homogeaeow) placers X is detennured * by its initial distribution 
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be the number of transitions i p i p  . . .4, obmwd in the sequence. It is a stpndud 
~ W I P . ~  that tbe maximum likelihood estimrtor of p(i1,i2, . . . ,&; &+,I is 

whm 

Notice that in fitting a k-th order Markov chain with m states, thm are p=mL(m - 1) 
independent parameters to k estimated, in our case m = 4, so that 

This gives p = 3 (k = 01, p = 12 (k = I), p = 48 (k = 2), p = 192 (k = 3), p = 
768 (k = 41, and p = 3072 (k = 5). It is clear from this that very long DNA sequences 
a required fop "good" estimation of the transition probabilities under the fully parame- 
terized model of Equation 2. We will return to this problem later. 

'Ihere have been sever4 methods popored for estimating the order k of a Markov chain. 
Because we will later want to compan models whicb arc not nested, we will use information 
criteria rather than a multiple hypothesis testing framework. Among these is a standrvd 
information theory method," Akaikc's infornwion Criterion (AIC),U.*~* and the Bayesian 
information criterion (BIC).4s.47 To compute the BIC, we evaluate the log-likelihood L of 
thedata 

BIC(k) = -2L + p lnn  (5) 

whm n (SN) is the number of subsequences from which the counts n(.) wm formed. 'hat 
k which minimizes BIC(k) is taken as the estimator of the true order of the chain. We use 
BIC because (unlike AIC) it is a consistent estimuar of Mukov chain order,* and it chooses 
simpler models. 
As noted above, a full Markov drain analysis of high orderrsquins very long data 

sequences. Becruse of the inbennt htterogemity of the linear shucturc of DNA sequences, 
such long homogrnrous #~uences nther unusuaI. The data prevent us hwn performing 
precisely tbc type of d y s i s  that seems most interrsting. A class of Markov chain models 
thucombincshigb order dependence witb a s d l  number of pPnmeterscould prove useful. 

C. Modets for High-ordcr Markov chriar 

Raftmy.- The typical transition probabiity of tbe k-th order model is of the fonn 
The class of Markovian models we wiU use in the pwreat analysis was developed by 

w h  Q={q(ij), 1 5 i j  5 4) is a row-stochastic matrix whosc entries are to be estimated 
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Table 1 
FIVE BIOLOGICALLY INTERESTING 

REGIONS 

from the data, and A,,A2, . . . ,A, ue k puamders, summing to 1 ,  tat must also be 
estimated. This model may be viewad as a discrete state-space analog of the auto-qrcssivt 
time series models; one extra panmetcr is inaodu#d for each extra order after the first. 
Notice that when k = 1 ,  this model is identical to tbc usual fvst order Markov chain 

described earlier. The number ofprnmetm tobe estimated in the k-th order case is duced 
from @ution 3 to 

and so we should be able to look for high order dependence motc suocessfully. The price 
wc pay for this is that tht algebraic simplicity of Equation 2 no longer applies, md the 
maximum likelihood eftimrter of the ppnmeten must be found by numerically maximhg 
the log-likelihood 

using a constrained nonlincrropimiution algaithm. 
The BIC for this model is amputel uring Equnian 5; L i s  the value ofthe right-hmnd 

side of Equation 8 at the mutimum likelihood eStimrter. 

A IL the ~ourcc of our example. ?be A genome was 
D. E..mpkr 

s c q d  by S q e r c 2  al.‘ud is48u)2nuckotidcs in leagth. Ibe supencc was initially 
broken into fin b i o l g d y  intenoting rrgioao, given in Table 1. 
The BlC indcxcsgiveo by Equation 5 w c r r c & d a t c d f o r e r h ~ .  For Camprntive 

plrposes, we also iacludeavalucof k= - 1 whichcomrpordstothemodelof independeat 
bases, each with rrlrtive fmpmcy 114. In this case, tbae ~lt no pIIuaderr to ~I&IWC, 
md tbt BIC value is 

webvechooeDthcbrctaiophroe 

~ 1 q - 1 )  = -a en 4 

wben n is tbt effcctin numberofobsavotions in the data. In dl the ItoulEE pfmmtcd here, 
tbescqwacecomperirontmrebegunUthefthbrseoferch#quence,rothtn=N- 
6 may be calculated from Table 1. The results ofthis d y s i s  me pmaml in Table 2. 
The BIC criterion indicates firot order dependence for the regions Silent, Early 1, Early 

2, md control. we might expect the Silent region to have less “otluctun~’ than the Others, 

! c  

1 
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T8bk 2 
BIC(k) VALUES FOR BACTERIOPHAGE A 

squemce Late EulylEulyZColltrd SOIllt 

k * - 1  64036 #1667 18782 13125 . 22109 
0 63682 20566 18682 13025 21971 
1 63258 20472 18618' 12982 21- 
2 62349 20648 18743 13218 22026 
3 631S8 21706 I9771 14133 2-1 
4 67923 26149 uo40 18345 27580 

T8bk 3 
LOCATION OF UTE REGIONS 

a p r r c -  - L c 4 1 1 L , N  

Htd 1-8550 b R  8550 
Tal 8!JSO-l!WIO L-R I I050 
Lysis 4uwWw6430 L+R 1430 

Ifori*lttuon ' isR-.L.wquencehrudinrrvenccanpk- 
men( fam. 

since A can jmpagac without this regian.'* The Late region is clearly identifkd as having 

Models which arc so clearly described by first order chains as those hac will not typically 
be impoved by using the high order dependena (HOD) models of Equation 6. We therefore 
urrlyzed d y  the La& regia to dco#mme whether the HOD moQl gives a mocc p i -  
monious of the data. The BIC values uc 62927 (k = 2) and 62935 (k = 3), 
canpmd to t&c smallest vdw of 62349 Ot * 2)  forthe gmnl case (see Table 2). The 
HOD model of order 2 pv idcs  tbe second best dcrcription of the data. 'hat it is not the 
best means that the aecond d e r  trrnsition of the best model must have a morc 
cOmpIicUcd stmctm than is COIlEljllcd in Equation 6. The HOD models should provide 
betaer models for sequences such as +X174' that exhibit 8 h i g h  order of dependence 
thn A. 
Tbe low ordtrs of&pcndcncc iddfikd in there regions may be due in put to inho- 

mogeneity in the scquenccs. To examine thio further, we broke the late region into three 
subregions labeled H a d ,  T d ,  md Lysis. The loccltioas of thest regions a~ given in Tabk 
3Urdtbeco lqmdq ' BIC duet in Tabk 4. 

The wenll rppernnrr ofa second adersradel io maintakl. Remarkably enough, the 
Lysis region is rdequuely described by the "compktcly nndom" d l  in which bases 

R, and RZ." Rand S genes arc ncesary for lysing the bacterium after the production of 
progeny phage and so arc essential to the propagation of the phage in nature. Naively 
perhrpr, weexpectedthesmrctunoftheoegeaestobesimikuto~)rge~(i.e., sbowing 
some dependence). Individual gene scqucnas, however, show the same completely random 
s m  as the entire Lysis region. We conjecture that the variability in the estimated orders 
ofdepndenaofthese~regionscmbeuaibutedtodifferentputemsofcodonusage 
among the genes. 
We alsoexmined one ofthe open reading frpmes in the Early 2 q i o n ,  ORF290. Once 

again, a model of independent bases is adquate. It is tempting to conclude that ORF290 

an opder of d l q u m k e  of 2. 

aIe laiddownlrnifonnly udatnndom. The Lysis region is composed of three genes, s, 



Tabk 4 
BXCg) VALUES FOR 
BACTERiOPHAGE A 

1s 

Y 

E d  Tail Ly& 

k l - 1  23689 W620 3948' 
0 23532 30287 3%6 
I 23352 ml52 . 3997 
2 23113' 29670' 4193 
3 24114 30567 5017 
4 28439 35070 - 

has no coding function, but our experienn in the Lysis region (and that of 
Feplicppe gem Of MS2) demonstntcs that win coding regions may often (IPPW struc- 
turel~S. 

for the 

' IV. TRANSFORM ANALYSIS OF DNA/RNA SEQUENCES 

A* B.drgroond 
The pmvious &on of this article is devoted to stochastic models for the analysis of the 

primary structure of one or more stntchcs of DNA. Thesc methods arc useful for finding 
parsimonious dcrcripions of e' of KQWDC~ with little apparent structure. one in- 
mesting feature ofcukaryotic DNA is thc p#ence of tradem (or puiodic) repeats .ad 
i n ~ b a t e q u c n c c r e p e r t r t h r o l y h w t  thcgenomt. such- vtry in length from 
simple dinuckoride puiodicitics (far example, the dinucleotide AG [Fepeuea 28 times] 
found upstream from the mouse immuaoglobuiin G3 constant region gene'p) to very large 
tandem repeats; the GNOMIC d i c t i e  is an invaluable compilation of examples of this 
type. Nucleotide ~equeaces that -bit npetitive OtNCnpT cannot usefully be described by 
the earlier Markov chrin models; rhenutins are needed. 
The prescacc of puiodicities in DNA (or prorein) re~uences has led s c v d  authors to 

use what might broadly be crl)ed Fourier analysis methods to l w c h  for such ~t~chne. 
Kubota d al." md McLrhlrn md K m P  use comlptioa coefficients calculated from 
sequences when residues arc nplrced by d o u s  quantitative propaties of the Mino acids, 
ruch U) hydrophobicity. L i q d  d ~0-m'' h~e hadud l~vcnl Fourier-mrlyti~ 

adn FOIlfk*ySh Is 8 frrt- forCOfl4Whg thc friction Of mttchcs 
bchvem proteins of Merent species. FellBenstein methodsforradyingstgrrenctmmrlmmcr 

baweentwohgCmrlr;rrcid8UpaKXS.SilvanrraaadbSkl!PaadTrifolKlVaadSuSSmMU 
U S C r e l w e d l W b O d S t o d W 4 X ~ t i C S i n D N A ~ .  

bclnofonn, that is .Is0 rpplicrble to pmbluns imrolving S y m b 0 l - q ~  paiodicitics. 

. . .. 

In this scctkm we deocribe mother technique ofrequeacy analysis bascd 011 tbe Wdsh 

B. Tbc W.Lb Trrrndow 

We initialire the induction by &fining 
We first give an inductive dchitkn dtbe Walsb frmctions ~m(x)90sx<l}9 n = 0.1, . . . . 

Wdx) - 1, x E [0,1) 

1, x E [O,l/2) 

-1, x E [1/2.1) 
W,(X) - (9) 
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and then proceed ncursively for n = 1,2, . . . via 

and 

The Walsh functions me orthogontl and piecewise constant on [0, I).% The even numbmd 
Walsh functians arc symmetric about x = ' I ,  (and play the role of the cosine tenns in M e r  
series), while the odd-aumkrcd Walsb functions me antisymmetric about x - I/, (and so 
play the rok of the sine terms in Fourier series). These functions m y  be used to construct 
the discnte Walsh transform of the sequence x = ( ~ , x I ,  . . . *x,,-,). When N is a power 
of 2 (so tha! N - 2 for some positive integer p), the following recipe docs the trick. 

we d e b  fvst 

The Walsh transfonn of s is then given by 

Y- I .- - 
x, = 2 a&j. k), j = 0.1, ..., N - 1 

k-0 

'Ihen is an explicit formula for w(kj)." Ifj = 2 j,2', and k = 5 I@, then 
r-0 r-0 

(14) 

from which it rcodily follows that w&j) = w(i,k). 
We will use the dircnte Wplsh masform to hunt for puiudicitics in DNA sequences. 

hagincthtourosquenccoflengttrN = 21isliotedrs%~l, . . . ,~- , ,  where(rrsin 
Section ID) A, takes the value 1 if the i-tb base is an A2, if it is 8 C; 3, if it is G, aad4 
ifitisT.Wegenenuefourassociatedscquences{~j =O,l, ..., N -  1)ofindicrtars 
as follows. Fori = 1, . . . ,4, set 

1, ifh-i, j = O , I ,  ..., N - 1  
(16) 



Then fonn the associated Walsh transforms using Equation 13: 

Notice that a, is the fraction of base i in the sequence. 
The power specaum {c,,k = 0.1, . . . ,N - 1) of the sequence x 

4 

c . = C &  
i -  I 

I then defined by 

Notice that from a computational point of view, only thne of the transfnm sequences {a,ll, 
k = O,I,. . . ,N - 1)medtobecalculrted.Since 

4 C &j .I: 1, j = 0.1, ..., N - 1 
i -  I 

it follows that 

1, i f k = O  

0, i f k Z 0  

the last equality following fiom atbogoarlity. 

familiar Fourier power rpecrmm, f d  by replacing Equation 17 with 
we will now compuc the poptrtier ofthe walsh power rpectnun with the perbps more 

md the value ofc, in Equation 18 by 

c. Eumpkr 
Figures 1 thugb 3 display tbe spectra for a 128 bP consensus sequence h the AT- 
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FIGURE 2. Wdrh pomr rpscrmm for 128 krc wqucace 
fromX.brvfsooyCSSDNA. 

rich spacer region of the 5s DNA of Xenopus kv&.= Figure I illustrates the familiar 
symmehyoftheFdcrpowerspccmun.'Ibeprwouacedpmkatk = 16showsaptriodicity 
of length 8, comspoading to rbe rimplt quam repeat 8 bases in In contmst, 
the Walsh spectnrm (Figure 2) is not symmetric; now the peak near k = 32 is iadicative 
of a periodic component of length 8. Figure 3 give0 the graphs of both transforms, plotted 
on common axes for comprntive plrposes. Note that in the# plots (rad tbose that follow), 

'Ihe second example is 1 128-bP scqumcc froa! tbe human €-globin gmP; it stam at 
position 210, in Intron 1. There is a 14brserepert se~uence ACAGTGGGAGGGG rrpeating 
(with very little variation) through this region. Notice from Figures 4 md 5 that both power 
spectra uc considerably less well defined, despite the prr#nce of the repeat. ?hm arc 

the h - f n e c l u e n c y  infannrtion tht -POI& to k = 0 is Ilot plo&ed. 

i 
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0.05 1 I 

O.l0 1 
i 

in length, and it is not always easy to interpret the form of the power spectrum. Nevertheless, 
both tccbniques arc a useful augmentation to mart fraditional oligonuclaotide dictionary 
searches in the hunt for symbol panerns. 
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