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ABSTRACT 

This paper describes some methods for estimating the mean 

number of substitutions that have occured in two homologous 

nucleotide sequences since their divergence from a common 

ancestor. The novel ingredients allow for arbitrary ancestral 

composition and possibly different substitution matrices for the 

two species. The methods are illustrated by mitochondrial 

nucleotide sequences from mouse and man. Evidence of different 

substitution rates in the two species is found, although the 

estimates of the total number of substitutions are similar to 

those found by previous methods. 
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INTRODUCTION 

Several authors have considered the problem of estimating the 

mean number of substitutions per site since divergence of a pair 

of functionally homologous nucleotide sequences. For recent 

approaches see Tajima and Nei (19841, Lanave et al. (1984) ,  and 

the reviews of Kaplan (1983) and Tavare (1985).  The basic data 

used in such studies are as follows. Consider two functionally 

homologous nucleotide sequences of length n taken one from each of 

two species. The bases in the sequences are labelled 1, 2 ,  3, 4 

for A ,  T, C, G respectively. On the basis of the aligned 

sequences we calculate the numbers N defined by ij 

= number of times an aligned site has a base Ni j 
of type i in species 1 and a base of type j 

in species 2 .  

This results in a 4 x 4 matrix N = (N..) of observations. 
1J 

We assume that the species in question diverged from a common 

ancestor T years ago and behave independently after divergence. 

The bases in each sequence are changed through time by the effects 

of substitutions. Under these assumptions, the probability f ij 
that a site has a base of type i in species 1 and of type j in 

species 2 is given by 

1 2  4 

t = l  
fij = 2 nt Pci PZj t 

where llc is the probability that the ancestral base is of type C ,  

and p:i is the probability that in species r (r = 1 or 2 )  a base 

of type e at divergence is of type i a time T later. Most authors 
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have used (implicitly or explicitly) a Markov chain model to 

specify the probabilities pci. r That is we specify matrices 
n I Q, = (qij) and Q, = (q' ) that satisfy is 

and then 

where 
Qo 

n n  
n=O n! 

exp(QrT) := Z Qr E . 

(cf. Karlin and Taylor (19751, p. 150) Thc assumptions made by 

other authors include: 

p2 

= (Zl, Z2' Z3' 

Al. Q, - - Q2 =: Q, implying that PI = 

A2. E' Q = 0, implying that 

is the stationary distribution of Q, and then that the 

distribution of base composition in each species does 

not vary with time. 

Notice that assumption A 1  means that the matrix F = (f ) defined 

in ( 2 )  is symmetric; the data matrix N should reflect such 
ij 

symmetry. There is ampple evidence that this is not the case, 

particularly for data that arise from the third codon positions; 

cf. Tavare (1985). In this paper we will not assume that the rate 

matrices in the two species are equal, or that the ancestral 

frequencies are stationary. We will describe a method for 

estimating parameters of such asymmetric models, and use it to 

estimate the mean number of substitutions that have occurred (per 
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base) in each species since divergence. We will also investigate 

whether the mean number of substitutions in each species are 

equal. As a final application, we calculate the probability that 

a site has not changed, conditional on its having identical 

nucleotides. 
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THEORY 

The data matrix N is 15 dimensional, while a general Q-matrix 

satisfying (3) is 12-dimensional. Allowing for three 

probabilities for the ancestral composition, this gives us 

12 + 12 -+ 3 = 27 parameters to estimate for the general model 

described by (2) and ( 4 ) .  It follows that we must restrict our 

class of possible models in some way. We chose to analyse two 

cases. In the first, which we denote as model (K), each Q-matrix 

is of the form 

A T C  G 
A 

G 

Model (K) P l  
C P  

- P  

Q 

a -  

a 

a 2 
0 

A'. 
T = I  Model (TK) Q = 

1 
a 

=I B a a -  

a ea 

C B P P '  7 

G r p  ep 7 - 

P 
P 

a 

a 

P2 

This particular form was proposed by Kimura (1981). In the second 

model, denoted here as model (TK), the Q-matrices are of the form 

This example was suggested by Takahata and Kimura (1981). In both 

cases, the diagonal elements are found from the requirement that 

the rows sums be zero; see (3). 

The statistical problem can now be described as follows. We 

assume that sites evolve independently of one another, so that the 

data matrix N has the form of a multinomial trials experiment, in 
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which there are 16 cells, with underlying cell probabilities F = 

( f  ) given by ( 2 ) .  These cell probabilities are functions of p 

unknown variables, 11' ( x  l,...,xp), say, which are to be estimated 

from the data. For model (K), p = 15, while for model (TK). p = 

ij 

11. We can estimate these parameters by maximum likelihood or 

minimum chi-squared methods. Numerically, we obtained similar 

results in both cases; only the maximum likelihood results are 

described here. There are some difficult computational aspects 

associated with this problem, since closed-form solutions of the 

likelihood equations seem impossible to find. Details of the 

computational approach are given in the Appendix. We also 

computed the approximate variance-covariance matrix of the 

estimates &of Kfor large sequence length n. This matrix is then 
A 

used t o  compute variance estimates for quantities of interest 

later on. See appendix. The theory of maximum likelihood 

estimation in multinomial trials is well documented; a 

particularly accessible account is given in Cox (1984) for 

example. 

Primarily we are interested in estiaating the mean number K r 
of substitutions that have occurred in species r since divergence 

from the common ancestor. It can be shown that for models of the 

type considered here, we get 

= I n. I q': s;f [2rs] 
'r i 'j J ij 

ds, r = 1,2 . (5) 

r 
In equation (51, qr j :=  -q jj If indeed g'Qr = E ,  so that n - is 



the equilibrium distribution for species r ,  then ( 5 )  reduces to 

the more familiar 

K : = T I : Z Z  i qr i' 
i 

'e' denoting 'equilibrium'. It is this latter parameter that 

other authors have estimated; cf. equation (19 )  of Lanave et a l .  

(1984) ,  or equation ( 1 )  of Tajima and Nei (1984) .  It is important 

to note that the divergence time T itself is confounded with other 

parameters in ( 5 )  and ( 6 ) ,  and so cannot be separately estimated 

without additional information. In this paper, we have adopted 

the convention that T = 1, so the equation ( 6 )  becomes 

T)), for example. The estimated r Ke = z zIi q; ( f z zzi(Qi r 
Q-matrices given in Tables 1.2 and 7 are then estimates of Q T and 

Q2T and so on. 
1 

It appears to be very hard to prove that a unique solution to 

the likelihood equations exists. Further, the numerical analysis 

routine often found elements of the Q-matrices that were 

algorithmically zero. We therefore adopted the following 

approach. We started the optimisation algorithm from a variety of 

different starting points (for example, using different initial 

estimates of the ancestral frequencies), and compared the results. 

Any parameters in the Q-matrices that were computationally zero 

(say, less than were set t o  zero, and not used as 

parameters. This has the effect of reducing the dimension p of 

the problem, and thus increases the degrees of freedom for the 

goodness-of-fit of the model t o  the data. 
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AN E W P L E  

A 

T N =  
c 
G 

The data used for this example are taken from the EMBL 

sequence library. The sequences are from mouse (species 1 )  and 

human (species 2 )  mitochondrial genomes; the former is from Bibb 

et al. (1981).  the latter from Anderson et al. (1982).  As done by 

Lanave et al. (1984),  we considered the nucleotide sequence of the 

five mt genes coding for identified products, namely the three 

cytochrome oxidase subunits (COI, COII, COIII), the ATPase subunit 

'386 74 193 65 

83 104 216 6 

76 a i  265 9 

~ 24 3 12 4 J  

and the cytochrome b (cyt b) subunit. The total length of the 

resulting "super sequence" is 4803 nucleotides. The data 

discussed below comprises only the third codon position sequence, 

resulting in a length of n = 1601 nucleotides. The data matrix N 

is 

It is clear that the data matrix is not consistent with symmetry 

(as would be required if assumption A 1  were valid). A formal 

2 Chi-squared test of symmetry (cf. Bowker (1948))  had a value of I( 

= 133, with six degrees of freedom (d.f.) We then fitted models 

(K) and (TK) to the data. The estimated Q-matrices are given in 

Tables 1 and 2 .  

INSERT TABLE 1 HERE 
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IRSERT TABLE 2 

Qualitatively, these results are similar. The chi-squared 

statistics for goodness-of-fit were 20.78 (model(K); 6 d.f.) and 

12.94 (model (TK); 6 d.f.); model (TK) seems to be a better 

description of the data. One suprising point of our analysis 

involves the estimated ancestral frequencies, E ;  these are given 
in Table 3. 

INSERT TABLE 3 HERE 

The average nucleotide composition of the present day sequences is 

.402 ( A ) ,  .210(T,, . 3 4 8 ( C )  and .040(G).  The estimated ancestral 

frequencies suggest that nucleotide T started from very low 

frequency, and that the present observed frequency is due to 

non-stationarity in the substitution process, in contrast to the 

'usual' assumption. 

Table 4 records the observed present-day nucleotide 

frequencies obtained from the data matrix N, and the corresponding 

frequencies calculated from (2) for each of the models. 

INSERT TABLE 4 HERE 

From the results it is clear that the two marginal distributions 

are not equal (this is really a reflection of the asymmetry in the 

data, but can assessed statistically using a test of marginal 

homogeneity; cf . Tavarg (1985) ) . The predicted frequencies are in 

good agreement with those observed. 
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Next, we estimate the mean number of substitutions per base 

in each species since divergence. This is calculated from ( 5 ) ;  

the results are given in Table 5 .  

INSERT TABLE 5 HERE 
1 

The estimated standard error of the difference between K1 and K2 

is .036 (for model (K)) and .040 (for model (TK)). Both of these 

results suggest that there is a significant difference between the 

substitution processes in each species; the rates of substitution 

are different. 
1 1 

It is also worth comparing the estimates K = K + K2 of the 

average number of substitutions per site since divergence with 
1 

those based on previous models in which assumptions A 1  and A2 are 

iused. Some representative results are given in Table 6. Despite 

the different type of assumptions used in these models, the 

results are remarkably consistent. 

INSERT TABLE 6 HERE 

The data used here were based on alnalgamating five coding 

regions from the mitochondrial genomes. To assess possible 

inhomogeneity in the sequence, we analysed the third base sequence 

(of 512 nucleotides) of the Cytochrome Oxidase I subunit using the 

models described above. In Tables 7 and 8 the Q-matrices and 

ancestral frequencies for models (K) and (TK) are given. 

Qualitatively, these results are the same as for the combined 

sequence; further comparisons of the Q-matrices appear in the next 

section. 
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INSERT TABLE 7 & 8 HERE 

For C O I ,  the estinates of mean substitution number analogous to 

those of Table 5 are given in Table 9. 

INSERT TABLE 9 HERE 

A 

The estimated standard error of K1 - K2 is .08 for model (TK) and 

.07 for model (K); both these results are consistent with 

different substitution rates. + K2 for 

the number of substitutions per site are K = .88 .08 for model 

(K), and K = 1.03 2.08 for model (TK). 

A n 

The estimates of K = K 1 
n 

.. 
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THE NUHBER OF UXCHANGED SITES 

In this section we will estimate for sites which currently 

are identical the proportion which have never changed. That is, 

we estimate the probabilities q i = 1,2,3,4 defined by i' 
qi = Pr (a site has never been substituted, given that the 

site now has both nucleotides of type 1). 

Under our model, this may be calculated as 

1 

In Table 10, we give the values of 9 obtained by substituting 

estimates of the corresponding parameters into ( 7 ) .  It will be 
i 

observed that these probabilities vary widely among nucleotides, 

although they are fairly consistent between models, and between 

the COI subunit and the full data set. As a summary of this data, 

we also computed the probability q that, given a site is 

identical, no substitutions have occurred at it. This can be 

derived analogously to ( 7 )  to give 

i 

The estimated values of q are given in Table 11. 

INSERT TABLE 10 HERE 

INSERT TABLE 11 HERE 

The results indicate that about 80% of all sites showing 

identical nucleotides have never received a substitution since 
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divergence. Of course, this should not be taken as a measure of 

the fraction of sites that can never change, since under this 

model all sites rust eventually receive at least one substitution. 

It does provide one way of comparing the different Q-matrix 

estimates, though. 



SL'MMARY 

The methods presented here provide a class of models for 

estimating the mean number of substitutions per site that have 

occurred since divergence from a common ancestor. These methods 

are computational (rather than analytic) in style. They allow for 

arbitrary ancestral frequencies for the nucleotides; these may be 

estimated from the data (as was the case in the results presented 

here) or may be taken as fixed and known. We have not recorded 

the details of results for this latter case. Suffice it to say 

that if the ancestral composition is taken to be the average 

present-day composition (as is often the case in other studies of 

this problem) then no satisfactory fit to the data can be obtained 

for either model (K) or model (TK). For the particular data set 

used here, there was evidence that the substitution rates in the 

mouse and human mitochondrial genomes are different, although the 

estimated mean number of Substitutions per site agrees 

substantially with the results of previous methods. There was a 

significant non-homogeneity in the composition of the nucleotide 

frequencies over time; the estimated ancestral frequencies 

indicate that the G and T nucleotides have increased substantially 

in frequency since divergence. The data used here combined the 

five coding regions into one large sequence. In order to check 

the consistency of the results, we ran analogous algorithms on the 

COI subunit. The results were qualitatively similar to those 

obtained for the whole sequence. As a way to compare the 

estimated substitution schemes, we computed the probability that a 
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site now showing identical bases has never had a substitution; 

this probability was estimated at about 80%. 

The methods developed here were restricted to a small 

subclass of a set of possible models; this restriction was 

required by the number of data cells which could be used to 

estimate parameters. If the data consisted of (say) three 

species, then more general models can be fitted since restriction 

on parameter numbers vanish. What is important, though, is that 

precisely the same techniques apply to that problem as have been 

developed here. 

15 
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APPENDIX 

COMPUTATIONAL DETAILS 

The maximum likelihood estimators of the parameter &of the 

model are obtained 

where the f are 

functions must be 
ij 

by minimising the function L(xJ given by 

L(x_) = - Z N log fij(rr) 
ij i ,j 

defined by equations ( 2 ) .  (3) and ( 4 ) .  These 

minimised with several constraints operating; 

for example, the off-diagonal elements of the two Q-matrices must 

be positive (2 0 ) .  and the estimated ancestral frequencies must 

satisfy Hi 2 0 ,  i = 1 . 2 , 3 , 4  and Ill + XI + Il  + H = 1. Our 
2 3 4 

approach was to reparameterise the problem so as to produce a new 

model in which the parameter were unconstrained (for example, if 

the constraint x 2 0 is required, set x = ey or x = y ; y is now I 2 

unconstrained.) The new unconstrained problem was approached 

using the IMSL subroutine library program ZXMIN, and the answerrs 

rescaled to give a solution &of the original problem. We are 
- 

unable to establish analytically whether a unique solution of the 

likelihood equations exists. We started the optimisation 

algorithm from a variety of initial positions (typically, 5 due t o  

the computer-time required). In all cases reported here, the same 

final solution was obtained. For the data examined here. several 

parameter values were conputationally zero, and so occurred on the 

boundary of the parameter space. Our approach was to set any such 

parameter (say, with a value of less than 30 ) to zero, -6 

effectively reducing the number of parameters to be estimated by 

one. 
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Part of the algorithmic difficulty in this problem is the 

ievaluation of matrix exponentials of the type required by ( 2 )  and 

( 4 ) ;  c f .  Moler and Van Loan (1978). For the model (K). an 

explicit formula for exp(QT) is available from Gojobori et al. 

(1982): we used their method. For model (TK), we computed the 

matrix exponential by a diagonalisation method. If this failed, 

we resorted to an efficient series mehtod which converged rapidly. 

The asymptotic standard deviations quoted here relied on the 

computation of the variance-covariance matrix - Z of the estimated 

parameters i. The r-sth element of 2-l  is given by 

1 
n 

A A 

df (x) df (x) crs = z 1 ij - ij - 
L i,j fipJ dxs “r 

We evaluated all derivatives by high-order forward difference 

formulae, using the same step-size algorithm as IMSL’s ZXMIN. The 

joint asymptotic distribution of (K1, K2) = (K1(a9K2(LC)) is 

multivariate normal, with variance-covariance matrix V given by 

1 T  
n V = - D Z D  

A 

Once more, the derivatives required above were computed 

numerically. We would be happy to provide further details of the 

numerical methods to anyone who is interested. 
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TABLE 1 
Estimated Q-matrices for model (K) 

A T C G 
.076 .065 

Species 1 Q, = A T [ -:!!! -.129 .065 
(Mouse ) C .454 -.908 . 000 

.OOO - .go8 G f454 .454 

A T C G 

. 000 
.OOo -.464 

- .320 .056 .132 
Species 2 Q2 = i [ f%ip -.265 .132 
( Human ) .232 -.464 

G .232 



TABLE 2 
Estimated Q-matrices for model (TK) 

A T C G 
-. 135 . 000 .055 .080 

Species 1 Q, = T .OOO -.135 .080 .055 
C .592 - .999 . 000 (Mouse ) 
G [ .407 -000 - .999 

A T C G 
f 000 .122 

Species 2 Q, = A T [ -i%%i -.285 .163 
(Human) C .319 - .556 .ooo 

.OOO - .556 G .319 .237 

TABLE 3 
Estimated ancestral frequencies g 

Mode 1 Base : A T C G 

.353 .039 .607 .001 

.317 .013 .670 .OOO 



TABLE 4 
Observed present-day nucleotide frequencies, 
and their estimates from models (K) and (TK) 

Mouse 
A T C G 

Observed .448 .256 .269 .027 
Model (K) .460 .244 .270 .026 
Model (TK) .448 .255 .270 .027 

Human 
A T C G 

Observed .355 .164 .428 .053 
Model (K) .362 .157 .431 .050 
Model (TK) .355 .163 .429 .053 



TABLE 5 

species since divergence. Figure after t i s  one standard deviation 
Estimated mean number of substitutions per base in each 

Mouse 
- 

Human 

Model (K) 

Model (TK) 

K1 = . 4 9  % .03 

K1 = -52  t -03 

K2 = .39 .03 
L 

K2 = .44 5 .03 



Estimated mean number of substitutions K per site 
since divergence. Figure after t i s  one standard deviation 

Method K Lstd. dev. 
~ ~~ ~ 

Model (K) .88 t .04  
Model (TK) .96 5 .04 
JC(t 1 .91 +, .04 
KR(tt ) .99 5 .05 
F(ttt ) 1.03 5 .06 

t Jukes and Cantor (1969) 
t t  Kaplan and Risko (1982) 
t t t  Felsenstein (1981); Tavare (1985) 



TABLE 7 
Estimated Q-matrices for model (K) for COI subunit 

A T C G 

.ooo 
.OOO -.962 

.112 ,093 
.093 

A [ -.186 
C .481 -.962 
G .481 .481 

Species 1 
(Mouse ) Q, = T 

A T C G 

. 000 
.OOO -.366 

Species 2 -118 .113 
-113 ( Human ) 

.183 .183 -.366 Q2 = [ -:!:: -.226 G .183 

A T C G 
Ancestral Frequencies .404 .051 .545 . 000 



TABLE 8 
Estimated Q-matrices for model (TK) for COI subunit 

A T C G 

-000 
-000 -1 .137 

Species 1 Q, = A -.200 . 000 ,076 
(Mouse ) = T [ d:: -.200 .124 

C .705 -1.137 
G .705 .432 

A T C G 

. 000 
.OOO - . 551  

Species 2 Q2 = A - .262 .ooo . l o 2  
( Human ) = T [ A(3: -.262 .160 

C .336 - .551  
G .336 .215 

A T C G 
Ancestral Frequencies .328 .OlO .662 . 000 



TABLE 9 
Estimated mean number of substitutions per base in each species 

since divergence in COI. Figure after L i s  one standard deviation 

Mouse Human 

Model (K) 

Model (TK) 

il = .54 +, .05 

K1 = .61 5 .06 

A 

Kg = .34 5 .05 

K2 = . 4 2  5 . 05  



TABLE 10 
Estimated probabilities q i  that given a site has both 

nucleotides of type i, that site has never been substituted 
~ 

Sequence 

Whole Data set co I 

i Base Model (K) Model (TK) Model(K) Model (TK) 
I A  .85 .85 .87 .84 
2 T  .44  .15 .52  .09 
3 c  .93 .91  .91  .88 
4 G  .10 .04 . 00 . 00 



TABLE 11 
1 

Estimated probabilities g that, given a site has identical 
nucleotides, no substitutions have occurred at the site 

Sequence 
Whole Data Set co I 

Model (K) Model (TK) Model (K) Model (TK) 
rl .82 .77 .83 . 74  


