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SUMMARY

An international effort is now underway to obtain the DNA sequence for the entire human genome
(Watson and Jordan, 1989, Genomics S5, 654-656; Barnhart, 1989, Genomics 5, 657-660). This
Human Genome Initiative will generate sequence data from several species other than humans, and
will result in several copies per species of at least some regions of the genome. Although the project
has generated much interest, it is but one aspect of the widespread effort to generate DNA sequence
data. Published sequences are collected in common databases, and release 63 of GenBank in March
1990 contained 40,127,752 bases from 33,377 reported sequences (News from GenBank 3; Mountain
View, California: Intelligenetics, Inc., 1990). Large though this database is, it is only about 1% of the
number of bases in the human genome. Interpretations of data of such magnitude are going to require
the collaborative efforts of biometricians and molecular biologists, and an aim of this paper is to show
that there is also a role for readers of this journal in the design of surveys of DNA sequences.

Discussion here will center on the use of sequence data in evolutionary studies, where some region
of DNA is sequenced in several different species. The object is to infer the evolutionary history
of that particular region, or of the species themselves. Statistical issues in the very important
studies on sequences to locate and characterize regions responsible for human diseases will not be
addressed here.

We will discuss appropriate ways of measuring distances between DNA sequences and of predicting
the sampling properties of the distances. There are procedures for inferring evolutionary histories for
a set of elements that depend on a matrix of distances between each pair of elements, and the precision
of resulting trees must be influenced by the precision of the distances. We will show that account
needs to be taken of two sampling processes—the sampling of sequences by the investigator (“statistical
sampling”), and the sampling of genetic material involved in the formation of offspring from a
parental population (“genetic sampling”™).

1. Sequences and Trees

The genome is the set of heriditary material transmitted from one parent to an offspring,
and in the case of humans it consists of 23 chromosomes. These contain deoxyribonucleic
acid (DNA) molecules which, in turn, consist of sequences of nucleotides—each being
characterized by the nitrogenous base it carries. There are only four base types, A4, C, G, T.
Some specific regions of the genome code for proteins, the structure of the protein being
determined by the order of the bases in the DNA sequence, and such regions constitute the
genes. Other regions are involved in the process by which the coding information is
transmitted to sites of protein synthesis, some regions are noncoding intervals between the
coding units of a gene, and much of the genome has no known function. A description,
and further references, of the means by which DNA sequences are determined was given
by Weir (1984).
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Evolutionary studies make use of both coding and noncoding DNA. The use of coding
regions is perhaps the more obvious. A coding sequence such as that for « hemoglobin is
determined for representatives of several species. The common function of hemoglobin
suggests that this collection of sequences has a common ancestral source. Such sequences
are said to be homologous. Although the sequences have a common function, and a
common origin, they show differences resulting from mutations over time. A gene tree
(Tateno, Nei, and Tajima, 1982) shows the points at which branchings occurred, leading
to the present sequences, subsequent to the ancestral sequence for the group of sequences.
Such a tree is shown in Figure 1. Coding sequences are thought to be constrained in the
changes they may accept and still code for functional proteins. There is another class of
sequences, for pseudogenes, that are noncoding. Pseudogenes are nonfunctional genes
thought to have arisen from the “silencing” of duplicate genes (Nei, 1987). Such sequences
are presumably not under any constraint, and so the rate at which they incorporate changes
is higher than that for coding regions and more accurately reflects the rate at which
mutations occur. Whether coding or noncoding regions are used, tree building depends on
the idea that sequences showing a higher proportion of differences among their homologous
bases are further apart in evolutionary time. It is longer since they diverged from an
ancestral sequence.

human chimpanzee gorilla orangutan gibbon

Figure 1. Gene tree for mitochondrial data for human and apes (Weir, 1989).

There are also species trees that show the evolutionary history of species (Tateno et al.,
1982). Branchpoints in these trees indicate when two species became reproductively isolated
from each other. In Figure 2 (Nei, 1987) we show three possible relationships between
species trees and gene trees when there is polymorphism in the species. Polymorphism
refers to the existence of sequence variation within a species. This can result from mutation
since divergence from the last common ancestral species, or it may reflect polymorphism
within that ancestral species. The (gene) tree linking a sequence from each species will
depend on which sequences are drawn from the species. Information about divergence of
the species themselves is contained in the species tree, and these trees can be based on
distances that incorporate the variation within species. Gene trees can be constructed from
distances between the individual sequences.

As yet, there has been little activity in tree building with sequences from many different
regions of the genome, but we can anticipate a quickly growing use of information on
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X Y Z X Y Z

Figure 2. Possible relationships between gene and species trees [adapted from Nei (1987)]. Three

extant species, X, Y, Z, have descended from ancestral species 4. Species X, Y have an intermediate

ancestral species B. The solid lines indicate three possible gene trees; the dotted line is the
species tree.

several copies of the same sequence within one species. Such anticipation is in large part
due to the recent development of techniques using the polymerase chain reaction, PCR
(Wrischnik et al., 1987). This is a means of amplifying very small amounts of DNA in vitro
to attain the amount needed for sequencing. Otherwise sequencing requires that the amount
of DNA needed be produced in vivo by cloning—inserting the DNA in a vector such as a
plasmid and letting the plasmid replicate in a bacterium to produce many copies of the
inserted DNA. PCR is particularly powerful when one copy of the sequence is already
available because that copy can be used to identify the same sequence using all the DNA
from other individuals, in a process known as probing. _

We shall show that the existence of several copies of a sequence within one species
requires attention be paid to the possibility of these sequences being the same because they
(recently) descended from one individual, and not merely that they failed to undergo
mutation.

2. Distances Between Species

Evolutionary trees may be constructed from the information in DNA sequences by a
variety of methods [see minireview by Weir (1989)], including distance matrix, parsimony,
and likelihood methods. Although distance matrix methods have the disadvantage of
reducing the information in two sequences to a single measure of distance between them,
these methods are easy to implement and are the only ones treated here. In this paper it is
assumed that sequences become more distant as a result of change over time by the process
of base substitution. Other mechanisms of change, such as those causing alterations in
sequence length from insertions or deletions, will not be considered.

The first such distance was introduced by Jukes and Cantor (1969). These authors worked
with the sequences of amino acids constituting proteins rather than the DNA sequences of
bases, but the same arguments apply. Once a pair of sequences has been correctly aligned
[for review of methodology see Weir (1988a)], it is known which pairs of bases in those
sequences are homologous and so have descended from a single ancestral base. If the two
sequences are randomly sampled from different species, then there is a certain probability
g that a pair of homologous bases are the same. This probability changes over time only
because of mutation, and the simplest model supposes that mutation occurs at a rate u per
nucleotide per generation, and that each mutation is equally likely to change a base into
each of the other three types. This mutation model can be expressed in terms of the
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following matrix of rates from base i to base j:

J
i A C G T
A — u/3 u/3 u/3
Cc u/3 — u/3 /3
G w/3 w/3 — u/3
T w/3 u/3 u/3 —

Under this simple model only mutation can change base type at any position in a sequence,
so the probability of similarity changes according to

1 2
1 = (1 — N)ZQt + 2(1 — H)g‘(l -q)+ Hz[g% + 5(1 - CII)J-
This transition equation has solution
4u

2t
6]1=€?+(£]0—6A])<1_?> s

where gy and ¢ = .25 are the initial and final values, respectively. For two sequences that
have diverged for a time ¢ since a common ancestor, ¢, = 1 and the quantity K defined as

3 3
k=3 l“<4q, = 1)

K = 2ut.

has a value of

Although the mutation rate is generally unknown, K will be proportional to time since
divergence and so could serve as a measure of distance between two sequences that have
the same mutation rate as each other and the same rate at all positions. Of course it will
apply only for finite times, before g, has decreased to its final value of .25. The distance K
can be regarded as the expected number of base substitutions during the total of 2¢
generations that have separated the two sequences (¢ generations along each path from a
sequence to the ancestral sequence) and serves as a linearizing transformation of the
quantity g. Values for ¢ and K are plotted in Figure 3, showing behavior as a function of
scaled time, 2ut. Evidently the utility of ¢ as a measure of discrimination between
populations has disappeared by the time the expected number of mutations has reached
2ut = 3. The linearity of K disguises this problem.

Modifications to the mutation model have been proposed, with the first being that of
Kimura (1980), who allowed different rates for transitions (4 < G, C « T) and trans-
versions (4, G < C, T) as in
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An appropriate distance measure in this case is K = (« + 26)t.
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Figure 3. Behavior over time of the between-species similarity ¢ and the Jukes—Cantor distance K.
Time is measured as numbers of base substitutions, 2ut.

3. Methods of Inference

When s of m nucleotide pairs in two sequences have the same base, the estimated similarity
measure is
L
1=
We wish to determine the sampling properties of this estimator so that we can describe the
properties of the sample distance
. 3 3
K=-1n .
4 <4é - 1>

We employ a general methodology based on the use of indicator variables x;;-; defined
for the two bases at position / in sequences i and i’ as

o = j 1, the bases are the same;
. 10 the bases are different.

The number s;- and the sample proportion §;- of similar bases for the two sequences
[ # i’ are, therefore

m

m
Sir = X Xiigy Giir = % Xiir .
I=1 m =

Taking expectations over sites from the two sequences, and over all pairs of sequences
with the same time since divergence from the same ancestral sequence, requires the
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introduction of one- and two-site (/ # /’) measures of similarity, ¢, and g, :
E(xir1) = q,
E(x71) = a,
E(xii- 1 X 0r) = qu-.

These quantities allow the variance of the sample proportion of similar bases to be
written as

. 1 1
var(gi ) = e ; q(l — q) + e ; /E/ (g — arqr)

Although it is usually reasonable to assume equal base similarities along short regions of a
sequence (g; = g, all /), it is not so clear that a common value can be assumed for the two-
site similarities. We will make this assumption, however, and write the common value
as g*. Then

1
var(gr) = (¢* — ¢°) + pi Ul q*).

Now there is ample empirical evidence (e.g., Nussinov, 1987) that neighboring bases in
a sequence cannot be regarded as the outcomes of independent events. The frequency of
any pair of bases XY in adjacent positions, for example, can differ quite markedly from the
product of the frequencies of X and Y. There is also empirical evidence (Tavaré and
Giddings, 1989), however, that such dependencies may not extend beyond three to four
positions. For sequences of moderate length, most pairs of positions within the sequence
are sufficiently far apart to be regarded as having independent similarity probabilities and
these dominate the variance expression. If mutations at different sites are independent,
then under the same mutation model as before, ignoring squares of u,

m 16u
qh = St <l - —>q,*.

This has solution

1 6 8u\ 9 161\
* oo _— - - — =
d ~16+16<1 3) +16<l 3)
(QI)Z’

confirming the independence of similarity probabilities at different sites. The variance of
the proportion of similar sites reduces to

Q

N 1
var(g;-) = Eq(l - q).

The variance can be made arbitrarily small by increasing the sequence length m. This
result, originally given by Jukes and Cantor (1969), shows that the similarities along a pair
of sequences can be regarded as the outcomes of independent Bernoulli trials (of a mutation
process). The number of similarities can be assumed to be binomially distributed

s ~ B(m, q).
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Returning to the estimated distance measure, use of the delta method gives the following
variance expression:

S\ 2

var(K ) = (‘Z—Iq{) var(q)
_ %4 - q)

m(4q — 1)*°

4. Similarity Within Species

When more than one sequence is available for a species, it is possible to measure similarity
within the species and to use this to calibrate the similarity between species. For any two
sequences within a species, let Q be the probability that homologous positions have the
same base. To express this in terms of the indicator variables introduced in the previous
section, it is necessary to have an additional subscript j for sequences within species,
and then

Q= E(Xij,ij',l)-

There will generally be no need to specify the site, so that subscript / may be dropped.

With the same simple model of base substitution, in a population of N diploids Q
changes over time .because of mutation and drift. Two bases may be similar because
of their mutation history, or because they have both descended from the same base in
the previous generation:

~ (] — 1 U 73 P
Q1+l ~ (1 2#)Qt + [2N+ <1 ZN) 3 ](1 Qt)

Writing initial and final values as Qp and QO leads to a solution
A A 1 Su !
0 = Q+(Qo—Q)<1 — N 3).

The final value can be expressed in terms of the single quantity 6§ = 4Ny, provided the
mutation rate is much smaller than one:

3+0
34+46°

0=

This final value is for the situation where the amount of variation being introduced by
mutation balances that being lost by drift.

Nei (1972) uses the ratio of between- to within-species similarities as a measure of
distance for gene frequency data. For two populations, 1 and 2, Nei’s genetic identity in
parametric form can be written in terms of the similarity g,» between species 1 and 2, and
the similarities, Q,, Q,, within the two species:

di2 .
V0,0,

I, =

and his standard distance, D,,, is

D12 = —In Il2-
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For DNA sequence data Nei (1987) employs the Jukes-Cantor distances between
sequences from within or between populations. In our notation, his distance has a sample
value of

3, | Yo - nao, - 1
4 44, — 1

We have considered an alternative way of comparing within- and between-species
similarities to measure distance, based on concepts from analysis of variance. If n sequences
are available for analysis from each of two species, there is a frequency p;,., of base type u

at site / in the sample from population i. Summing over the four base types provides
estimates of Q and ¢, as can be seen from the ANOVA format of Table 1.

Table 1
Analysis of variance format for base frequencies
Source d.f. Sum of squares Expected mean square
2 x 5 2
Between 1 P Y (P — D) (I1=-9n+n@Q:—a)

Within =~ 2(n—1) n ¥ [pu.(l — Pu) (1 —Q))
+ [32[,1((1 - ﬁZI,u)]

Notice that @, is the common expected similarity within each of the two popula-
tions. They are assumed to have been the same size since divergence. Evidently we can
identify components of variance within and between populations, and we could set up
a distance as the ratio of the component o between populations to the sum of the
between- and within-population components, o2 + ¢2. We write this distance as 8
(Cockerham and Weir, 1987):

6= o _Q-4q

i+ 1-gq°

Although both 8 and D increase monotonically with time, in general neither of them is
directly proportional to time with the base substitution model. There does not appear to
be an analogue of the quantity K when variation within species is taken into account that
is proportional to time for arbitrary initial conditions. The situation is better if we make
the reasonable assumption that the initial values of Q and g are the same, since both refer
to the same ancestral species. If, further, we assume that the ancestral population is in
equilibrium,

3446
3+40°

o= Qo = Q =
we have

QI=Q’

Nei’s distance then acts as
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which is directly proportional to time. This approximation holds for early times. As time
becomes very large, however, D tends to the finite limit of

A 3+ 40
D““Qa+a)
and @ tends to

3
3+ 49°

B =

so these measures could not be used to discriminate among species that have diverged a
very long time previously. There can be no discrimination among a set of species for which
the equilibrium value of ¢ has been attained. The same problem obtains when 6 becomes
very large, as then the range of possible values of D or 3 becomes very small.

In the special case of the ancestral population being in drift/mutation equilibrium, it is
possible to modify the Jukes—Cantor distance to accommodate within-species variation.

The distance
K =2 m(&:_fl)
4 \a—q
does change linearly with time,
Kw = 2/1,[,

and it has been discussed previously by Takahata (1982) and Cockerham ( 198f1). If
the ancestral polymorphism is estimated by the average extant value (O, + ()/2,
setting ¢ to :'; gives the sample value

3
KW=Zln

@Q+@w—v
4&12 - 1 ’

which is virtually the same as Nei’s distance d.

The behavior over time of the four distances, D, 8, K, and Ky, is shown in Figure 4. A
typical parameter value was used in that figure: 4Nu = .01. In this case, the distance 8 loses
its utility after about 10N generations while D remains useful for about SON generations.

3.00 T —p
--D
,,,,, K ..;’.'
- W R -
2.00 ¢ Sete
® s
3 ‘ot
G e
> Ftid .
1.00+ A e
0.00 £-Z : , ,

Time in generations

Figure 4. Behavior over time of three measures of distance between sequences that incorporate
within-species variation. All curves are for § = .01.
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5. Variance of Distances

This paper is concerned with sampling strategies to meet desired levels of precision for
measures of distance. The object is to specify sampling parameters, the numbers and lengths
of sequences, needed to meet precision levels for specific values of the genetic parameters
of population size, mutation rate, and recombination rate under a specific genetic model.
Because the exact constitution of a population to be sampled in a future study is not
known, the sampling variances we derive account for the genetic sampling that causes
replicate populations to differ even when subjected to the same forces.

5.1 Higher-Order Similarities

Whichever distance measure is used, there is a need to characterize the sampling properties
of estimates of both Q and ¢ as a preliminary to finding properties of the distance. Since
the similarities are each defined for pairs of bases, their variances will involve up to four
bases and we now introduce additional probabilities of similarity. They are shown in
Figure 5, and defined in Table 2 in terms of the indicator variables. We drop the site
subscript for single-site measures, and use an asterisk for measures defined at a pair of sites.

5.2 Variances and Covariances of Similarities

For populations i, i’, observed values of the two principal similarities for any site, sample
values for Qy, gy, can be expressed as sums of indicator variables over the n sequences

Measures Within Populations Measures Between Populations
*~— —O *~— ~— *—oO —oO
Q e Q* o q 7
*~— *—O
~— *~— *— *— *— *—oO
T e T —o0 t - t* —o0
—O —O0
o ®
*~—— *o—
*— *~— *— °o— - *~—
G o— G —0 g o— o g —0 —0
o0— —0
o— o— —0 —o0
h *—. h* *—
*— *—
-~ o— - —o0
s ~— o— & ~— —0

Figure 5. Similarity measures. The circles indicate the sites of interest. Two solid circles indicate

that the bases are the same. Open circles are for another pair of similar sites, but they may be different

from the solid circles. In the left column are the within-population measures; the right column shows
the between-population measures.
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Table 2
Definitions of probabilities of similarity in terms of indicator variables®
Number of
Sequences Sites Within populations Between populations
2 1 Q = E(xu ij’, I) qg = E(xij,i’j',l)
2 Q* E(Xi,ij7,0 X100 q* = E(Xijirjr1Xijiyrrr)
3 1 = E(xij,ij ,[xij,ij”,l) t = E(xij,i'j',lxij,i’j",l)
2 * = E(xij,ij’,lxij.ij",l') t* = E(xlj,i’j’,lxij.i’j”,/')
3 2 u* = E(Xij,ij',/xij,i'j",l’)
4 1 G = E(xi. 1 Ximi,1) 8 = E(XiijraXipmirjm)
2 * = E(xiji0 X0 j700) 8% = E(XxyirjriXijrirjm1)
4 1 h = EQey e aXij,irim1)
2 * = B0 1 Xijm, it 5700 )
4 1 0 = EQxiijraXivjm,irjm.1)
2 * = E(Xy,ijr 1 Xirjm, 057,10

2 The variable x;;,-;; is 1 if site / in sequence j from population i has the same base as sequence j’ from
population i’, and is zero otherwise. In the table primes denote distinct values.

observed in each of the two populations:

Qi! Z Z ‘XUU I,

n(n =17 %
. 1 .o
dirt =5 > 2 Xijitjra, 1 # L
j

It is a trivial matter to allow for different numbers of sequences in the two samples. Taking
the squares of each expression, and the product of the two, and then finding the expectations
in terms of the measures defined in Table 2 and Figure 5, leads to the variances and the
covariance of the two similarities:

(G—-0%+ (T G) + n )(Q 2T + G)

Val’(Qﬂ)
= var(Qi);

N 2 1
var(g;1) = (& — q°) + e—g) +-5(g -2+ 8);

cow(Qu, ) = (h = Q) +5(t = ). (1)

Even for populations that have remained distinct since divergence, the within-population
similarities will be slightly correlated because of their common origin. The covariance is

COV(Q:‘/, Qr’/) = (6 — Q).
The average within-population similarity
Qi = ‘%(Qil + 0i1)
has variance

var(Qii/) = <G+;6—Q>+ —(T — G)+( )(Q 2T - G) 2)
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and covariance with the between-population measure of
~ N |
cov(Qiirs Girr) = (h — Qq) + ;(l — h). (3)

Since similarities are calculated as averages over sites, we also need the covariances
between sites. These are

2

~ ~ * 2 f‘. * _ (G* —_—
cov(Qy, Qi) = (G* = Q) +(T* = G*) +

(Q* - 2T* + G*);
. ~ 2 1
cov(Girrt, i) = (8% — ¢°) + ;(t* -g%) + ;(q* = 2t* + g*);

cov(Qu, Girrr) = (h* — Qq) + -:;(u* — h*);

cov(Qu, Qi) = (8% — Q2).

Putting all these together leads to the required variances and covariance. The lack of an /
subscript on the sample similarities now indicates an averaging over m sites:

Var(Qi,v) = <%5* + _I.G* _ Q2> + %(T* - G*) + . 1 (Q* = 2T* — G*)

2 (n—=1)

1 2
+ — — 5% — (% = - — T* *
2(6+G 1 G)+n (T—-G—-T*+ G*)

F T @~ 2T+ G = Q¥+ 2T* = G*); 4)

2
var(gi) = (g* — ¢°) + p (t* —g*) + #(q* — 2t* + g*)

1 2
+_ —_— * 4 — —_ —_ * *
m(g g%*) nm(t g—t*+g%)

1

+
n’m

(g—2t+g—q*+2t* = g*%) ‘ ()
oV = _ l * _ L%k i bk
cov(Qiir,Gir) = (h* — Qq) + n(u h*) + m(h h*)

+ L(z = h—u*+ h*). (6)
mn

For a single sequence per population, n = 1, the within-population similarities are not
calculated and the variance of the between-population similarity reduces to that given
earlier. For a single site per sequence, m = 1, equations (4)-(6) reduce to equations (1)—(3).
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Making use of the delta method for calculating variances of ratios, the approximate
sampling variances of the distance measures are

var(Rw) = G = Tras = plée — DPvari)
— 2(4q - D(EQ — Deov(Dy, dur) + (4Q — Divar(@e)] (7)
= var(d),
var(@) = = ol(1 = aPvar@) = 21 = Q1 = )eov(Qur, &)
+ (1= QPvar(@)l ®
var(D) = 33 [Q*var () = 200 cowQurs aw) + a*var( Qi) ©)

since
var(Qir) = §[var(Qi) + 2 cov(Q;, Qi) + var(Qi)],
cov(Qiir, Girr) = cov(Qs, Girr)
= cov(Qi', Giir).
Equations (7)-(9) allow the prediction of sampling variances in future populations, and
hence an assessment of the effects of various combinations of sequence lengths and numbers

of sequences. To allow numerical values to be found, it is necessary to evaluate the various
similarity measures, and this will now be addressed.

5.3 Transition Equations

The similarity measures change over time under the actions of mutation, drift, and
recombination. We always assume that mutation and drift are weak forces, so that second-
order terms in u or 1/N can be ignored. This was illustrated above for the transitions
of O and ¢. The remaining equations are based on the methods of Cockerham and
Weir (1983) and extend those reported by Weir (1988b, 1990).

The recombination fraction r is the probability that bases at a pair of sites on one
sequence have descended from bases on different sequences in that population in the
previous generation. For sites from the same region of the genome,  will be small enough
to ignore second-order terms involving r, u, and 1/N. For sites from different regions,
r may be as large as .5, and then squares and products of recombination terms will need
to be retained. In the former case, the forces of mutation, drift, and recombination
act additively (second-order terms in r being ignored), and the transition equations may
be derived easily. '

Within populations at one site:

_ 2w 1 _ L 8wy,

Q’+'_3+2N+<l N 3>Q”
3 3

T = </4 + ZN)QI + <1 TN 4/4>Tz,

4 1 2 3 16
G’*'=<?M+N>Q’+NT’+<1 ————”)G,.
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Within populations at two sites:

1 4u 1 16u
Qhi=sy+t30+ <1 T 2V—T>Qt* + 21T

1 4u 1 3 16
T’tl=<_+?>Q[+fV[*+<1_5V_V_Tﬂ>Tt*+rGt*;
du 1 2 3 16u
z"-‘+1=<—3 +N>Q1+NT,*+<1———-—>G,*.

Between two populations at one site:

2 8
qiv1 = ?ﬂ + <1 - ?ﬂ)%;

1 2 1
tie = %Q, + <§V+ ?“)q, + <l — E\’ - 4#)1,;

4 1 1 16
&8r+1 =?ﬂqt+ﬁtl+ <1 _N—’?P‘L)gt;

2 1 2 1 3 16
h1+1=<?ﬂ+5v>Qt+?ﬂQt +]_v[t+<1__—_”>hl;

2N 3
4 1 1 16
5l+l B <?”+]_\,)Qt+ <1 _]_\[_T”>5t'

Between two populations at two sites:

qh = 4?“(1, + <1 —-2r— %)qt’" + 2t}

r= Mg g (1—i—r—‘6—“)zr+rg:*;

34T N 2N 3
uX, =2?”Q,+<%V+2—;>q,+<l —%v—r—i:;“)u,*+rh,*;
gk =4?"qt+]ivt,*+<l —]%—%‘i)g,*;
bl =2?#Q,+<%V+2?#>q,+l]vu,"‘+<l —%—%)h,*;

4 1 1 16
5;’:., = <?#+N>Q,+<l —]—V—Tﬂ>5,*.

When recombination is not a very weak force, the transition equations are derived in
two stages. First mutation is allowed to act, and then the joint effects of drift and
recombination act on the measures after mutation. Details are given in the Appendix.

5.4 Equilibrium and Initial Similarities

From the transition equations for small recombination fractions, final values (denoted by
carets) of the similarity probabilities can be found. They are expressed most simply in terms
of # = 4Nu and T = 4Nr and are displayed in Table 3. Compact expressions cannot be
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Equilibrium values of simila'ig?;/) l;ze:sasures for low recombination
Within populations Between populations
A_3+90 =1
3440 *

6+ 0)3 +0)

7 f = h =% = h* = N5

=6 +200 + 40) t=h=ut=h=0q
2 26+ 027 + 120 + 26°) . _9+60+ 40

9 + 46)(6 + 40)(3 + 49) §7 743 + a0y

found for the two-site measures within populations, although it is a simple matter to find
them numerically from the following equations:

(3 + 3T +80)Q* — 3T T* = 3 + 200;
—60* + (18 + 3T + 160)T* — 37G* = 4(3 + 6)0;
—6T* + (9 + 40)G* = (3 + 0)0.

6. Numerical Results

To investigate the temporal behavior of the distances and their sampling variances, we
make the usual assumption that the ancestral population was in equilibrium for the
opposing forces of drift, which decreases variation, and mutation, which increases variation.
We set the within-population values equal to their equilibrium values, and the between-
population initial values can all be expressed in terms of the constant within-population
values:

q0=Qa q(’)k:Q*a
l0=Ta l6k=u6k=T*,
g =ho=28=0, g = hE = 6% = G*.

We concentrate here on a single region of the DNA. There is very little recombination
between adjacent sites, r, ~ 1078 (Vogel and Motulsky, 1986). At such low levels, recom-
bination is taken to be directly proportional to physical distance. In other words, the
recombination fraction r, between sites d apart is r;, = dr;. To reduce computation, we
evaluate two-site measures for a region of m sites at the average recombination fraction of
(m + 1)r/3.

The theory presented above shows that the behavior of the similarities is determined
mainly by the products § = 4Nu and T' = 4Nr. We wish to investigate a “typical” natural
population of size N = 10° ~ 10° recombination between adjacent sites of the order
r, ~ 107® and mutation also of the order u ~ 107 These are consistent with § = .01,
I' = .01. For computational convenience, we iterated the similarity measure transition
equations with N = 103 and scaled the other parameters to preserve the  and I' values.
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Table 4
Coefficients of variation for sequence distances when § = .01 and T = .01. At equilibrium, K and Kw
are infinite, 3 = 9868, and D = 1.3764.

n=1 n=>5 n=10 n=oo
m K Kw B D Kw I§] D Kw I¢] D

t=N/10, K=.0l, Kw=0, 8=.05, D=0

100 bp? 1.30 8.90 8.65 8.90 5.78 5.59 5.78 8.32 1.16 1.40

1 kb .58 4.08 398 4.08 2.58 2.50 2.58 1.79 .59 .68

10 kb 13 1.17 1.15 1.17 71 .69 71 3.05 .16 18

t=N, K=.01, Ky=.0l, 8=.33, D=.0l1

100 bp 1.00 1.58 1.13 1.57 1.36 .92 1.36 2.96 72 1.15

1 kb .36 .64 49 .64 .56 .40 .56 1.18 .32 48

10 kb .09 .16 .13 .16 13 .10 .13 .30 .07 11
t=5N, K=.03, Ky=.03, 8=.71, D=.03

100 bp .59 .69 27 75 .67 24 73 .66 22 72

1 kb .19 24 A1 25 23 .10 .24 22 .09 .24

10 kb .05 .05 .03 .06 .05 .02 .05 .04 .02 .05
t=10N, K=.06, Kw=.05 pg=.83, D=.05

100 bp 44 48 .14 48 47 12 47 .52 11 46

1 kb .14 .16 .06 .16 .16 .05 .16 17 .05 15

10 kb .04 .05 .02 .05 .05 .01 .04 .05 .01 .04

t=100N, K= .51, Kw=.50, 8=.97, D= 45

100 bp .19 .19 .02 17 .19 .02 17 .19 .01 17

1 kb .06 .06 .01 .05 .06 .01 .05 .06 .01 .05

10 kb .02 .02 .00 .02 .02 .00 .02 .02 .00 .02

t = 1,000N, K=501, Ky =500, 8=.99, D=1.37

100 bp 6.89 6.83 .01 12 6.82 .01 12 6.81 .01 12

1 kb 2.18 2.16 .00 .04 2.16 .00 .04 2.15 .00 .04

10 kb .69 .68 .00 .01 .68 .00 .01 .68 .00 .01

2 bp: base pair, kb: 1,000 bp.

Coefficients of variation for the three distances K, 8, and D are shown in Table 4, and the
same values were found with higher N values, but the same 6 and T.

The values shown in Table 4 for the Jukes-Cantor distance K are not quite directly
proportional to time since divergence. Recall that K was defined for gene trees, and applies
for species trees only when the ancestral species was monomorphic. For the polymorphic
ancestral case envisaged here, K changes over time according to

3 3
k=4 ‘“<4q, = 1)
3, (3%
4 3

.05<]iv> +.0939, for Table 4.

2ut +

Q

Although the distance was defined for the case of one sequence from each of two species,
the between-sequence similarity can be defined as above when there are several sequences
available. As time increases, the value of K increases without bound, and so too does its
expected coefficient of variation.
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The two distances 8 and D have substantially equal coefficients of variation, with those
for 8 generally being lower. For both measures, the effects of increasing sequence length
are much greater than those of increasing the numbers of sequences. It seems likely that
evolutionary studies will be confined to cases in which no more than 10 sequences will be
available per species. In this case, the coefficient of variation of distance is as low as it
would be with a much larger number of sequences, provided the sequences are of length
1,000 bases (1 kb). Even then, inference is going to be difficult in early generations, t < N
say. On the other hand, there does not seem to be much need to increase the sequence
length beyond 1 kb.

There have not yet been many empirical studies of DNA sequence variation both within
and between species. The most extensive published work refers to the region containing
the Alcohol dehydrogenase gene in species of Drosophila. The estimated similarities in
Table 5, from Stephens and Nei (1985), refer to three species: D. melanogaster
(11 sequences), D. simulans, and D. mauritiana (4 sequences each). Each sequence was
822 nucleotides in length. The estimated values within the three species are consistent
with 6 values of the order of .01, while the total map length and DNA content of
Drosophila (Fincham, 1983) are also consistent with T' values of .01. In other words,
values shown in Table 4 may be appropriate for such studies. In particular, values shown
for t = SN, n =5, and m = 1 kb are close to those needed for the data in Table 5, and
illustrate that coefficients of variation of 20% are to be expected for such studies.

. Table 5
Observed similarities for three Drosophila species
D. melanogaster D. simulans D. mauritiana
1 2 3
D. melanogaster 1 0, = .9930 g1z = 9759 a3 =.9710
D. simulans 2 0, = .9927 G2 = .9854
D. mauritiana 3 05 =.9951

Source: Stephens and Nei (1985).

7. Discussion

Evolutionary reconstructions can be based on measures of distance between DNA se-
quences. Such distances are based on the fact that mutational changes between sequences
accumulate over time. The number of differences observed between two sequences needs
to be modified to accommodate the chance of further mutations restoring similarities
between them, and an early distance was proposed by Jukes and Cantor (1969). Their
distance was appropriate for gene trees that link single sequences per species.

With information becoming available on within-species variation, it is timely to consider
how variation within species may be used to calibrate that between species, and how the
two sources may jointly be used in assessing evolutionary distances. Species trees can then
be constructed. It may be sufficient simply to modify the Jukes-Cantor distance from
K to Kw. For species in which there is little variation, Q will be close to 1 and there will be
little difference between K and K.

The standard genetic distance D of Nei (1972) was designed to accommodate within-
species variation, and it is directly proportional to divergence time for the infinite-alleles
mutation model, in which every mutation results in a new form. Like K, D is then
unbounded. For the mutation model considered here between four bases, Table 4 and
Figure 4 indicate that D is approximately linearly related to time for early generations,
maybe as many as SON generations. There is a finite upper bound to D, and the utility of
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the distance will decrease as time becomes large. It becomes less easy to discriminate
distances between pairs of species that have diverged a very long time ago. The same
statements hold for the variance component measure 83, although this appears to act linearly
for less than N generations. The three quantities K, d, Kw increase without bound.

The number of distinct sequences used in the construction of distances between species
has relatively little effect on the predicted variance of these distances. The effects of drift
impose a dependency among sequences to the point that, after a certain sample size has
been reached, little information is available in further sequences. Another way of saying
this is that drift leads to differences between replicate populations, and this between-
population variance cannot be reduced indefinitely by further sampling within populations.
For the parameter values used in Table 4, there is little point in sampling more than 10
sequences, and a case could be made for using only 5. The effects of increasing sequence
length, however, are substantial. Although sampling variance cannot be eliminated (because
of genetic sampling) by increasing m indefinitely, it can be made very small. The mutational
process has been supposed to act independently at different sites, so that more sites provide
more information.

Our treatment of the sampling variance for the quantities Q and ¢ is exact, at least for
small mutation rates and large population sizes. Our use of the delta method for obtaining
the variances of ratios and logarithms of these quantities can only be approximate of course.
As a check on our procedure, we simulated the process described here and compared
predicted and simulated variances. The results are not shown here but they indicated good
agreement between predicted and actual variances.

This treatment has been fairly simple, but illustrates how biometrical ideas may be of
assistance in molecular evolutionary studies. There is room for extensions in the direction
of greater biological realism. Nei (1987) has given a comprehensive discussion of other
distance measures. He points out the need to allow for varying mutation rates along a
sequence, and for distinguishing between those mutations that cause changes in encoded
proteins and those that do not.

As a final comment, we stress that this paper has given a methodology for predicting
sampling properties of sequence statistics. Questions of estimating variances from single
data sets have not been addressed.
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RESUME

Un important effort international a été entrepris pour obtenir la séquence d’ADN du génome humain
dans son intégralité (Watson et Jordan, 1989, Genomics 5, 654-656; Barnhart, 1989, Genomics 5,
657-660). Cette “Initiative pour le génome Humain” fournira des données sur les séquences de
beaucoup d’autres espéces que 1’espéce humaine, et 'on pourra disposer, au moins pour certaines
régions du génome, de nombreuses copies par espéces. Bien que ce projet ait suscité un grand intérét,
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il ne s’agit 1a que de 'un des aspects de I’effort entrepris de par le monde pour obtenir des séquences
d’ADN. Les séquences publiées sont réunies dans des bases de données, et la version n° 63 de
“GenBank” contenait en mars 1990 40,127,752 bases pour 33,377 séquences répertoriées (News from
GenBank, Vol. 3, n° 1; Mountain View, California: Intelligenetics). Malgré la taille de cette banque
de données, elle ne contient qu’un pour cent environ de la quantité totale de bases du génome
humain! L’interprétation d’une telle quantité de données exigera la collaboration assidue des biomé-
triciens et des biologistes moléculaires, et I'un des objectifs de cet article est également de montrer
aux lecteurs de cette revue qu’ils ont eux-mémes un role a jouer dans la planification des études sur
les séquences de ’ADN.

Nous focaliserons notre discussion sur I'utilisation de ces données dans les études portant sur
I’évolution, lorsqu’une méme région de I’ADN est séquencée chez plusieurs espéces différentes.
L’objectif est d’analyser I’évolution dans le temps de cette région particuliere, ou de comprendre
I’évolution des espéces elle-mémes. Nous ne nous intéresserons pas ici aux considérations statistiques
portant sur les études de séquences ayant pour objectif de localiser et de caractériser les régions
responsables de maladies humaines.

Nous discuterons les méthodes adaptées a la mesure de distances entre séquences d’ADN et a
précision de distribution d’enchantillonnage de ces distances. Pour déduire I’histoire de I’évolution
d’un ensemble d’éléments, il existe des procédures dépendant de la matrice des distances entre paires
d’éléments. La précision des arbres qui en résultent est fonction de la précision des distances. Nous
montrerons qu’il faut considérer avec attention les deux procédures d’echantillonnage: I’échantillon-
nage des séquences par l’expérimentateur (“échantillonnage statisique”) et 1’échantillonnage du
matériel génétique dans la descendance d’une population (“échantillonnage génétique”).
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APPENDIX

A.1 Mutation Transition Equations

If an m subscript indicates the results of mutation, the mutation-only transitions are as follows.
Within populations at one site:

Within populations at two sites:

Between populations at one site:
2u 8u
m= "3 + 1 - 5 ;
4., 3 < 3 >CI1

2
Lm = %Q{ + ?'u% + (1 —4u)t;

_ 4w 1_6n_> :
8,m = 3ql+<1 3 815

_2u _lou),

hl,m - 3 (QI + ql) + <1 3 >h19
4u 16u>

i = o i - 61.

-t (1o
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Between populations at two sites:

4 16
qi‘m=7”qz+ 1 ——3—“ ar;
4u 16u
tom = 3 + (1 - T)h*;
1
u;,km = Z3E(Qt + 61:) + <1 - %)M,*;

A.2 Drift and Recombination Transition Equations

The drift and recombination transitions make use of the probabilities of obtaining sequences within
a population from a specified number of parental sequences in the previous generation. For diploid
populations of size N, i.e., 2N copies of each sequence in each generation, the assumptions of random
mating, including a random amount of selfing, lead to the following expressions for these probabilities.
Two sequences descend from one or two parental sequences with probabilities P2 and P!, where

1 2N -1
2 1 —
P 2N’ P 2N

Three sequences descend from one, two, or three sequences with probabilities P3, P?', and P''!,
where

1 32N - 1) (2N — D2N - 2)
3 21 — &t ) [ 5 I Sl SPA S 4
P=u 7 w0 4N? '

Four sequences descend from one, three, or four sequences with probabilities P4, P?!! and P''''.
They descend two from each of two sequences with probability P?, and three from one sequence
and the fourth from another with probability P*'. These quantities are

pt— 1 pai = 6(2N — 1)(2N — 2) pin — (2N — 1)(2N — 2)(2N - 3)
8N?’ 8N ’ 8N? ’
4(2N - 1) 32N -1)
31 ALY ) 22 _ &Y T )
F 8N? F 8N*

With these probabilities, the transitions equations are as follows.
Within populations at one site:
Q1 = P>+ P"Q, s
Ty =P+ P*Q .+ P T, s
Gt = P* + ¢PM(2Q,, + 4TF,) + PG, + P Q. + P21 + 20,,).
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Within populations at two sites:
Q% = P[(1 = 1 + 2r(1 = 1)Q2Qum — T,) + r*(1 + O, — G,)]
+ PU[(1 — r)?QF, + 2r(1 — NTE, + G
Thi=P[(1 = 1) + rQunl + 3P [200m + (1 = O, + 1T7,
+ P = T, + rGE
G%i = P'+ cP (Qun + 5T + PV GE,
+ P Qun + 3P2(1 + 20%,).
Between populations at one site:
Qiv1 = Gums
lier = P2 qum + P lim;
&1 = (P2Yqum + 2P Pty + (P Y i
Bisi = PG + 3P (G + 2t,m) + PV s
81 = (P2 + 2P?P"'Q,,, + (P50, .
Between populations at two sites:
afi = (L= ryql, + 2r(1 = i, + gl
thy = P[(1 = g, + rgh,] + PUI(L = il + rgluls
Ul = Pqun + PUI(1 — rul, + rhl,];
gl = (P2l + 2P*PU 1], + (P')gl,;
hi, = Pqun + 5P (qun + 2ul,) + P hY,;

61”-:—1 = (1)2)2 + 2P2P11Q1.m + (P”)zafm'

DISCUSSION ON THE PAPER BY B. S. WEIR AND C. J. BASTEN

J. Arnold (Department of Genetics, Biological Science Building, The University of Georgia,
Athens, Georgia 30602, U.S.A.)

The similarity (descent) measures, which Weir and Basten introduce to study sequence
variation, fall into two classes. One class of measures (Q, T, Q*, T*, etc.) decay to their
equilibrium values extremely quickly (on the order of 1/N for-a decay rate) and are
associated with the within-species component of sequence variation. These measures will
be extremely useful in distinguishing historical processes such as drift and mutation from
the varying kinds of natural selection operating on sequence variation at the molecular
level. The second class of measures (g, ¢, ¢*, t*, etc.), on the other hand, decay to their
equilibrium values extremely slowly (on the order of u for a decay rate) and are associated
with the between-species component of sequence variation. These measures will be ex-
tremely useful in phylogenetic tree reconstruction. For many cases, the time scales for the
dynamics of these two classes of measures are nonoverlapping, although there are some
interesting cases such as hybrid zones in which both suites of measures need to be considered
simultaneously.
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As an example of the difference in time scales, iterating the recursions for the similarity
measures between two species initially identical for N = 1,000, u = r =108, and n =5 is
instructive. These parameter choices might be typical of mitochondrial RFLPs in a mouse
population. The equilibrium value for Q is achieved almost immediately (4/V) but g reaches
its equilibrium of % only after 190,000N generations. While Q will be extremely useful in
identifying selective constraints on genes in mtDNA within the lifetime of species, the
measure g can be very useful in reconstructing a phylogeny of closely related species. Some
of the clock-like properties of the other between-species measures need to be examined
in addition to monotone transformations of ¢ for phylogenetic tree reconstruction (i.e.,
g* and ¢ *).

One of the limitations of the Weir and Basten formulation is that it oversimplifies how
natural selection operates on sequences. Treating the state space in the mutation model as
the possible nucleotides 4, G, C, and T is inadequate for most empirical studies. One
implication of the Jukes—-Cantor model is that the steady-state frequencies of 4, G, C, and
T under mutation should all be 5, which is incorrect for virtually all organisms with the
exception of E. coli. Each species has a characteristic pattern of codon usage, which is not
predicted from the Jukes-Cantor mutation model. Substitution rates vary with codon
context (silent vs replacement), with position (active site vs side chain) along a sequence,
and by codon (tRNA abundance). Minimally, the state space in the mutation model needs
to be all 256 tetranucleotides (Arnold et al., 1988), if we are to explain the oligonucleotide
composition of genomes by a mutation/recombination/drift balance with some purifying
selection. Within this richer state space, a realistic mutation model could be formulated to
study the similarity measures.

Lastly, while the focus of this paper is on the use of similarity measures in phylogenetic
reconstruction, the between-species measures involving multiple sites will prove extremely
useful in genomic mapping. For example, with pulsed field electrophoresis, extremely large
fragments of DNA can be run out on a gel with the potential for picking up more than one
RFLP per fragment. These so-called class II polymorphisms (Meagher, McLean, and
Arnold, 1988) can be utilized to estimate how many bases there are in a centimorgan. This
information is necessary in exploiting the RFLP map to walk to an interesting locus.
Breeders can routinely generate class II RFLPs from interspecies crosses in plants, provided
the species are sufficiently diverged. The variable (1 — x;;;-;-.,)(1 — x;;,+;-,-) indicates a class
II RFLP. The expectation of this indicator variable in terms of the similarity measures is
1 — 2q + g*. For the mouse population above, we will have to wait 16,000V generations
before the chance of a class II polymorphism (7%) is sufficiently high to be useful. Utilizing
the first estimate of silent substitution rate for plant nuclear DNA (Meagher, Berry-Lowe,
and Rice, 1989) of u = 6.6 X 107° and leaving the remaining parameters unchanged in the
mouse example, we will need to wait 25,000V generations for the appearance of a usable
species frequency of class II polymorphisms.
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Norman Kaplan (National Institute of Environmental Health Sciences, P.O. Box 12233,
Research Triangle Park, North Carolina 27709, U.S.A.)

I want to elaborate on the theoretical model underlying much of the statistical analysis in
the paper by Weir and Basten. In particular, I hope to shed more light on the role of
(a) recombination, (b) the model describing the mutational process for an individual base,
and (c) intrapopulation sequence data. In what follows I will be as general as possible.

Suppose we randomly sample from each of two closely related populations, a DNA
sequence in a region of the genome that contains m nucleotides. As a result of “genetical
sampling,” the two sequences have a “genealogical history” (Hudson, 1983). This history
consists of m ancestral trees, one for each nucleotide. The ancestral tree traces the genealogy
of the sample back to the most recent common ancestor of the nucleotide. For two
sequences the ancestral tree of a nucleotide is particularly simple and is described in
Figure 1.

Past

To
Sequence 1 Sequence 2 Present

Figure 1. An ancestral tree.

The T, ancestral generation is when the two populations split, and 7}, + 7 is the ancestral
generation when the common ancestor of the two sequences occurred. The ancestral tree
is important because only mutations occurring since the time of the common ancestor of
the two sequences can segregate in the sample. T is the same for all m bases, but 7 is
random and can vary from nucleotide to nucleotide, depending on the rate of recombination
for the region. To allow for this we let 7, denote the value of = for the /th nucleotide,
1 </ < m. The {r,} are identically distributed and their common distribution depends
on the population genetics model that governs the evolution of the population. If the
region is completely linked, then the ancestral tree is the same for all m bases and all
the {r,} are equal. As the rate of recombination increases, the correlation between the
{7/} decreases (Hudson, 1983).

Variation is assumed to be selectively neutral in the sense that no mutation affects the
genetical sampling. Furthermore, it is assumed that the mutational process is the same for
each nucleotide, and that the probability of a particular nucleotide undergoing mutation

per chromosome, per generation depends only on the state of the nucleotide and is
independent of all else. For 1 < /< m, let

__J1 if the /th base in the two sequences is different,
"7 10 if the /th base is the same.
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It follows from the assumptions that conditional on the genealogical history of the two
sequences, the { y;, 1 < /< m} are independent random variables and
4

4
EplTo+m)=1-3 X pi(To+ 1)Pi(To+ 7)), 1<sl<m,
j=1 k=1
where { pi(To + 7/), 1 < j < 4} are the population frequencies of the four bases in the
To + 7, ancestral generatlon and P,k(To + 7,) is the probability that the /th base is cur-
rently in state k, given it was in state j in the T, + 7, ancestral generation, 1 < j, k < 4.
It is commonly assumed that for 1 <j, k<4, and ¢t > 0,

Pi(t) = P(X(1) = k| X(0) = ),

where X is a four-state Markov chain. Also it is assumed that the ancestral population is in
equilibrium, and so

pj(To+7'1)=pj, 1$]$4,

where { p; | are the stationary probabilities associated with the Markov chain X. The various
models in the literature (e.g., Jukes and Cantor, 1969; Kimura, 1980, 1981; Takahata and
Kimura, 1981; Gojobori, Ishii, and Nei, 1982) differ only in their assumptions about the
parameters of the X process.

Since the two populations are closely related, it is assumed that mutation is rare. Thus,
if A; is the rate of mutation per genome per generation for a nucleotide in state j, then

4
1 _ 2 pj(l - e—)\j(T0+-r,))2

J=1

E(y[| To + 7'[)

ll

Q

2(;1 pj>\j>(TO + T[).

For some of the models (e.g., Jukes and Cantor, 1969), explicit expressions can be obtained
for E(y;| To + 7,), but this requires specific assumptions about the X process. My goal here

is to keep the discussion general.
4
= 2( > D >‘j>To
j=1

The quantity
is one measure of distance that has been considered (Nei, 1987). D is interpreted as the
expected number of mutations per nucleotide between two random DNA sequences
obtained from different populatlons that diverged T, generations in the past. For the Jukes
and Cantor model, p; = +and A=u(lsj<4),andso D= 2yTo

We next consider how to estimate D. Let

S = average number of segregating
bases between two sequences

3=

Yi.

I 3

Since the {y;} are conditionally independent, the conditional variance of S is small and so
S can be approximated by its conditional expectation. Thus

m 4
> EwlTo+7)=D+ 2( > Pﬁ‘j)T_,
=1 j=1

§I~

1
m
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where

M3

T = T/

1
m =1

So to estimate D, we need to estimate

4
A= 2( ¥ pj>\,>r‘.
j=1

If we have intrapopulation data, say n, sequences from population 1 and n, sequences
from population 2, then all pairwise comparisons between the two populations should be
considered. Thus

S

_ 1 n om 1 m _
S=——23 z(—Zy,-,-/,,>zD+A,
m =1

1M2 =1 i'=1

_ 4 1 ny ny ( 1 7 >
A= 2 PN - Tii’ .
(jgl b j)”llnz igl i'§1 m El !

The quantities ;- ,and 7+, are for the ith sequence from population 1 and the ith sequence
from population 2 (1 < i< n;, 1 <i’ < n,). Since the {r;,} are identically distributed,

where

E@) = 2< z ijj)E(r),

where E(7) is the mean of 7;-,. The variance of A is more difficult to calculate and one
must use arguments similar to those used by Weir and Basten.

To estimate A we use the intrapopulation data. If S; is the average number of pairwise
differences among the n; sequences in population i (i = 1, 2), then, using the same
arguments as above, we can show that E(S;) = E(A). Thus, an unbiased estimate of A is

S+ S,
—2 .

The accuracy of the estimate depends on the variances of A and A. Three things influence
these variances: the within-population sample sizes, the rate of recombination in the region,
and the size of the region. Increasing the sample sizes does not drive the variance of & and
A to zero as one might expect (Hudson, 1983), aiid so taking larger samples does not
continue to improve the estimate. The highet the rate of recombination in the region, the
less correlated the m ancestral trees and the better the estimate. The worst case is if the
region is completely linked. Increasing the size of the region sequenced improves the
estimate because the more distant two nucleotides are, the less correlated are their ancestral
trees. Thus small samples of large regions of DNA are more informative than large samples
of small regions of DNA. This observation was also made by Weir and Basten.

A:
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1. Introduction

The authors have made a timely contribution to the statistical literature on the analysis of
samples of DNA sequences. Their analysis focuses on the role of ancestry in the generation
of data, and as such falls under the umbrella of what might be called “coalescent methods.”
Our comments are intended to be a brief introduction to this extraordinarily powerful
technique that has played and will continue to play an important role in the analysis of
neutral population genetics models, both from a theoretical point of view and a more
statistical one.

2. Coalescents

We will assume that our populations are large, and that time has been rescaled to units of
2N generations, N being the (effective) population size (which may differ in the two
populations). Given these assumptions, the genealogy of a sample of n genes from one of
the populations is adequately described by the coalescent [Kingman (1982); see Tavaré
(1984) for a review]. Under this model, the time during which the sample has j distinct
ancestors has an exponential distribution with mean 2/[j(j — 1)], these times being
independent for different j. Think of the ancestry of the sample as going through periods
T,, T,—\, ... with n, n — 1, ... distinct ancestors, eventually tracing back to a single
common ancestor (or perhaps to a random number of ancestors if the time-depth in the
sample is known).

It is often convenient to think of the coalescent as producing a collection of inverted
binary trees, each tree corresponding to a group of individuals who share a common
ancestor. The order in which nodes coalesce in these trees is random reflecting the
reproductive symmetry inherent in the model.

The coalescent may be used to describe the ancestry of the sample. The effects of
mutation are modelled by superimposing a mutation mechanism on the branches of the
coalescent trees. This mutation mechanism can be extremely general, but for the present
purpose it is sufficient to focus on the case in which only substitutions of one base for
another are allowed. We think of the DNA sequences as comprising s completely linked
sites. At each site, substitutions occur at the points of a Poisson process of rate 6/2. (6 is a
compound parameter. If u is the probability of a substitution at a given base in a given
generation then 6 = limy_,.4Nu.) It is convenient to label the bases 4, C, G, T as 1, 2, 3,
and 4 respectively. When a substitution occurs at a base of type i, it is replaced by a base
of type j with probability p;;; p; > 0 is allowed here. At a given site, the substitution
processes in different parts of the tree are independent of one another. Conditional on the
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branch lengths of the coalescent, the substitution processes at different sites are also
independent.

Denote by P the stochastic matrix with elements { p;;}. The model may be rephrased by
saying that the substitution process in a single branch (of, say, length ¢) is a continuous-
time Markov process with generator Q = (§/2)(P — I), I being the identity matrix. The
probability that a site of type i/ at the beginning of the branch is of type j at time ¢ is then
pi; (1), the ij th element of e?'. A special case familiar to population geneticists (cf. Griffiths,
1980a; Felsenstein, 1981) is that in which P is the independent trials process with identical
rows « = (m,, m, T3, m4), say. In this case,

pij(t) = 8_61/25,‘]' + (1 - e"‘”/z)rj. (21)

The substitution process here allows “dummy substitutions,” the replacement of a given
type by itself. The actual number of substitutions in the branch of length ¢ is the number
of changes of state made by the substitution process, and (for either large ¢ or a stationary
initial distribution, ) the mean of this number is « = (0¢/2) ¥; m;(1 — p;;). For the model
(2.1), this reduces to

o1 ,
x=5<1 —;w,>. 2.2)

Weir and Basten’s model may be obtained from (2.1) by setting = = (3, %, 3, 3), and

then using (2.2) to match up the time scales. In what follows, 6 should be replaced by 46/3
to correspond to their scaling.

3. The Divergence of Two Populations

The data comprise samples of DNA sequences from two populations that have been isolated
for a time ¢. (Time is measured in the coalescent time scale. In practice, if the generation
length and population sizes of the two populations are sufficiently different, it might be
necessary to have different elapsed times for the two populations. We do not consider this
compiication further here.) Interest focuses on assessing sequence similarity between and
within the populations.

It should be clear that in'any analysis of this question, an important role is played by the
assumptions made about the population at the time of isolation. Consider, for example, a
sample of one sequence taken from each population, and focus attention on a given
homologous site in those sequences. If we assume, as do Weir and Basten, that the ancestors
of the sample are distinct and that the types of those ancestors may be assigned indepen-
dently with probability x; of type i, then the probability ¢, that the two individuals are
identical at that site is

@ =2 X XmXiDii(t) Pmi(t).

i Im
For the model (2.1), this reduces to
G=3 (™ + (1 — ")), (3.1)

a result that gives some indication of the relative importance of the initial frequencies x
and stationary frequencies .

On the other hand, the ancestors may themselves be related by descent (cf. Watterson,
1985). If we assume that these ancestors form a stationary sample of size 2 from their
population then the coalescent method gives the probability x(/, m) of their being type
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[ and m respectively as

x(l, m) = J; e™* X mipu(s) Pim(s) ds. (3.2)

This is obtained by conditioning on exponential (mean 1) length(s) of the time back to
their common ancestor, and superimposing the effects of substitutions. For model (2.1),
this reduces to

_ J(@m)(0r)/[0(1 + 60)], [#m
x(l, m) = {(ﬁwlm)wwm + D)/ + 0), 1= m, (3.3)

a classical result that can be derived in several other ways. The probability g, is then
given by

a = 2 IZ X(l, m)pli(t)pmi(l)s

or

1= 7%
= 12 + e—f?t ——-———-( ! 3.4
a: ‘IZJ ™ 1 +0 (3.4)
for the model (2.1).
In contrast, we may calculate the probability Q, that two individuals chosen at random
from one population are identical at a given site. For Weir and Basten’s ancestral regime,
this may be calculated in terms of the quantities Sy = ¥ X2, Ser = 3 Ximi, Ser = X 72, aS

Qt - 1 + 0.5',,,, + e_ot/z 20(Sx7r - Smr) + e_(g+1)1

1+46 2+46
< 02(Sx — 28ur + Ser) + 0(3Six — 285r — 1) + 2(Si — 1)

(1+60)@2+06) (3.3
When = and x are identical, this reduces to
1+ 6S,, _ (Ser — 1)
— - Vmm @+ \Orm — 7)
Q="T1y *e¢ 1+0 (3.6)
On the other hand, for the identity-by-descent regime we obtain
1+ 68,
= ™ .7
0= (3.7)

A comparison of (3.1) and (3.5) with (3.4) and (3.7) shows that the two ancestral models
are qualitatively quite different. Further analysis of the role of the founding population
seems both interesting and important.

4. Lines of Descent

The derivation of analogues of Weir and Basten’s quantities 7; and G, for more general
substitution processes is not straightforward. For the independent substitution model (2.1),
progress may be made by making use of a line-of-descent process closely related to the
coalescent. A sample of individuals taken at time ¢ from the population may be divided
into new and old classes (Griffiths, 1980b; Watterson, 1984). A group of individuals is in
the same old class if they can be traced back to a common ancestor at time 0, with no
intervening mutations. The genetic type of such a group is that of the ancestor. A group of
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individuals is in the same new class if they have a most recent common ancestor at or

before time 0, that ancestor himself being a mutant. The distribution of the number of

lines of descent in a sample of size # is known (cf. Griffiths, 1980b; Tavaré, 1984) explicitly.
The probability 4,.(¢) that there are k lines of descent is

Cn e (=R + 0 = Dk + 0y
hl0) = 3 ki — ln + 0) ’

4.1)

where k=0, 1,...,n,agq1=a@a—1)---(a—i+ 1), ap=a@+1)---(a+i—1)
and d; = i(i + 6 — 1)/2. Watterson (1984) analyses the joint distribution of the number of
genes belonging to different old and new classes. We may exploit Watterson’s results for
our purposes by observing that individuals in a given new class have the same type (that
base being type i with probability «;, i = 1, 2, 3, 4) and that different new classes are given
a type independently of each other. For example, this allows us to compute the probability
T, that three randomly chosen individuals have identical bases at a given site in the form

3
T, = 20 hs;(t)v;, 4.2)
j=
where

o« 07O, + DO + 2)
Yo= 2 96 + D@ +2)

NS erne+ (4.3)
"= T )
v =2 xi.

Similar but more involved combinatorial arguments may be used to derive an analogous
formula for G,, the probability that a random sample of 4 genes has two identical pairs. G,
may be computed from expressions such as

4
Pr(sample of 4 has 2 4, 2 C bases) = Y, h4,(t)é;,
j=0

where

_ 6(0m,)(0my) (0, + 1)y + 1)

1)
0 96 + 1)(0 + 2)(0 + 3) °
5 = 3(1 + 07"])(1 + 07!'2)()(1071’2 + .Xze’ﬂ'])
: (0 + 1)@ + 2)(©6 + 3) ’
5 = 4X1X2(1 + 07!'])(1 + 07!’2) + xf07r2(1 + 07!'2) + X%a’ﬂ'l(l + 071'1)
2 60+ 2)@ + 3) ’
5e = 3X1X2[X1(1 + 07!'2) + Xz(l + 071’1)]
} 9+ 3 ’

64 = 6X%X%,
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and
4
Pr(sample of 4 has 4 4 bases) = Y, h4;(¢)e;,
j=0

where

_ 07!'1(07!'1 + 1)(07!’1 + 2)(071'1 + 3)
CT TR0+ DB+ 20 +3)

.Xl(l + 07!'1)(2 + 07!'1)(3 + 07!'1)
@+ 1)@ + 2)@0 + 3) ’

_ x%(Z + 071'1)(3 + 071'1)

T T 0+20+3)
_X?(3+07l’1)

8T 53

64=X‘11.

Related aspects of such sampling probabilities appear in Lundstrom (unpublished Ph.D.
thesis, University of Utah, 1990).

5. Discussion

The feature of Weir and Basten’s model that makes it tractable is its simplicity; of course,
this is precisely the feature that makes it rather unrealistic. As they point out, “there is
room for extensions in the direction of greater biological realism.” We believe that the
coalescent machinery described briefly here provides a very flexible and general method
for such extensions. The method, which separates the reproductive process from the
mutation mechanism, allows a great variety of mutation schemes to be studied easily. For
example, it is possible to allow for different mutation structure in different regions of the
sequence, dependence between different sites in the sequence, and invariable regions. The
theory we have described here is quite general. However, explicit results for even the
simplest generalisations of the Jukes—Cantor model, as typified by the independent trials
model described earlier, lead to rather intractable algebraic problems. It seems unrealistic
to expect analytical solutions for such complicated problems. However, the coalescent
technique can be adapted to generate either recursive systems for probabilities of interest,
or simulation results; cf. Lundstrom’s unpublished Ph.D. thesis cited previously. Both these
areas will be important as we strive for more biological realism. These methods can also be
extended to account for recombination (which generates correlated trees for different sites)
and for some forms of selection. A very nice review of these aspects appears in Hudson
(1990).
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