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1 Introduction

The human colon contains about 15 million crypts, each otiviziontains about 2,000 cells.
Some of these are stem cells that maintain their populaizenghen they divide, and some are
transit amplifying (TA) cells that divide and differentgtto become the cells that repopulate the
colon. It is of some interest to understand the behaviorerhstells in a typical crypt.

Since stem cells and TA cells cannot be readily distinguldihem each other, inference
about numbers of stem cells (for example) has to be indir€ete approach is to develop a
stochastic model for the evolution of a crypt and infer thenber of stem cells from molecular
markers in a sample of cells taken from the crypt. One pdggiis to type single nucleotide
polymorphisms (SNPs) at a number of loci in these cells ardausomparison of the observed
patterns of polymorphism as the basis for inference. Thetesjy, akin to those developed
by population geneticists to study molecular variation atunal populations (cf. Nordborg
2001), does not work on the time scales of mitotic divisioowese there will be essentially no
variation found at each SNP. Instead, we use a marker thigisvapidly enough in mitosis to
leave a signal — we follow CpG methylation patterns througfiotic division. The methylation
status of each C in a CpG marker can change during mitosisgtinytated Cs may become
methylated, and methylated Cs may become demethylatedpditieular CpG islands to be
studied need to be chosen in regions around genes that aegpressed in the colon, so that
the markers are effectively evolving neutrally. All islanare taken to be unmethylated initially.

We followed methylation in a CpG-rich region in the BGN gemgloe X chromosome. This
region of 77 basepairs contains 9 CpGs. Bisulfite treatmietisoDNA from a crypt followed
by PCR amplification, cloning and sequencing gives the nation patterns at the 9 CpGs
from a number of cells (Yatabe et al. 2001). Figure 1 illustsahese data.

2 Inferringthe number of stem cellsin acrypt

We sampled BGN methylation patterns from 7 male patientge$ &etween 40 and 87, taking
7 — 9 crypts per individual and 8 — 24 molecules per crypt. €ldeda are described in detail in
Nicolas et al. (2007).

The next stage of the analysis is a stochastic model for thieton of the stem cells and the
TA cells within a crypt, then across crypts in an individuadidinally across individuals. There
are two features of such a model: a description of the ancestihne cells, and the superposition
on that ancestry of the effects of methylation and demetioylaWithin a given individual each
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Figure 1. Methylation patterns at the BGN locus in a singtiviidual. Each block corresponds
to a different crypt. Within each block, each row representsll, each circle a CpG site. Filled
circles denote methylated Cs, open circles unmethylated Cs

crypt has gone through the same number of mitotic divisitims number varying with the age
of the individual. We ignore the possibility of crypt deathdareplacement. Stem cells divide
asymmetrically to produce a single stem cell and a single TA cellsygnmetrically to produce
either two stem cells or two TA cells. (A mathematician migliinder why the asymmetrical
case really is called asymmetrical!) Each TA cell dividesrals number of times before being
lost from the crypt. We also allow for the possibility of médls of the methylation status in an
island.

Space limitations preclude a detailed description of thel@have have used; the reader is
referred to Nicolas et al. (2007) for more information. Impie terms, the evolution of the
stem cells within a crypt follows a coalescent-like proc@ésrdborg, 2001, provides a useful
introduction to coalescents). We suppose that the cellecwrdf the crypt is composed of
equal-sized sub-populations, each one corresponding fortdgeny of one of th&/ stem cells.
The genealogy of the cells sampled from the same sub-papulist modelled back in time
until its ancestral stem cell lineage. A number of differergthylation processes were studied,
including independent methylation events within a CpGndlaand dependent methylation,
in which methylation/demethylation rates can depend orcthieent methylation status of the
whole island.

A Bayesian approach to model fitting and testing was implgetensing Markov chain
Monte Carlo. The non-stationarity of the process (numbedsuisions varying with age of the
individuals), the replication over crypts and individuaad the nature of the methylation pro-
cess make this a challenging problem, our approach to whigiven in Nicolas et al. (2007).
One of the key steps is avoidance of peeling calculationsach eoalescent tree, achieved by
a variant of the ideas in Wilson and Balding (1998). Softwemd data can be downloaded at
http://genome.jouy.inra.fr/"pnicolas/mcmcniche/ .

Predictive assessment of model fithess based on compaeingf¢n-crypt average and stan-
dard deviation of a number of within-crypt statistics siated from the posterior with those
observed in the data revealed that one individual seemshaviedifferently from the rest.
Once this individual is removed, adequate fits to the datalata@ined.

For the present purposes we focus on the paramatetise number of stem cells per crypt,
andv, the rate of the methylation process relative to the deptheofoalescent genealogy. Their
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Figure 2: Posterior distribution @¥ andv. Results are obtained using the model with context-
dependent methylation rate. Left panel gives posteridy gfhe number of stem cells per crypt.
Right panel gives the posterior of the scaled methylation rate. Lines show median (plain
lines), first and third quartiles (dashed lines), and 95%libte interval (dotted lines) of both
the methylation rate (bold dark line) and demethylatioe (aght thin line) as a function of the
number of methylated sites.

posterior distributions are shown in Figure 2. The postddp N reaches its mode between 15
and 20, and provides no evidence for numbers of stem cefishas 6. The parametereveals
dependent methylation/demethylation across the sitdseoBGN locus. The methylation rate
is found to be highly dependent on the number of sites alreaethrylated. The rate is very low
when no sites are methylated and shows a more than fivefalease when one site is already
methylated. It is then relatively constant up to 7 methylaiges and then increases again. In
contrast, demethylation dynamics do not seem to dependeocutinent level of methylation.

3 Discussion

We have used methylation patterns to track cell divisionmumber of other tissues, including
endometrium, small intestine, hair and blood (Shibata améie, 2006). Methylation clocks
appear to work well, in that the average methylation frationcrease with age, allowing mi-
totic history to be inferred from methylation patterns. fiednare however a number of drawbacks
with our approach, not the least being that modelling oft{ia tase) crypt dynamics is required,
and we are certainly not clear about all aspects of this ggodeéor example, our current models
in colon crypts do not exploit the spatial structure of thgotr

Another drawback is the apparent paucity of data. It woultdagely be advantageous to
have substantially more sequences from each crypt, andkodbmore CpG islands. In this



regard, the new sequencing technologies offer the opptytt;ngenerate data on a far larger
scale. At the time of writing, 454 sequencing should be abprdduce 400,000 single molecule
sequences from CpG islands in a collection of crypts in alsingh. Whether this is feasible in
terms of cost and time remains to be seen. If large numberss&freations were available from
each crypt, the theory sketched earlier will need to be iwgulo Instead of digital read outs
of methylation patterns from a few cells in a crypt, we willedketo exploit accurate estimates
of the proportion of each methylation haplotype in each tryihis will doubtless provide a
computational challenge.

Recently we have begun similar work on the analysis of turaor@es. The aim is to pin
down the behavior of the elusive cancer stem cell — which megde a cancerous stem cell,
but rather a cell that leads to the cancer. As such, the aeaysancer stem cells is really
about common ancestry of cells. The genealogical appreatderribed in this paper may well
turn out to be useful in this endeavor.
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