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The stochastic complexity of a data base of 365 proteincoding regions is analysed. When the 
primary sequence is modeled as a spatially homogeneous Markov source, the fit to observed 
codon preference is very poor. The situation improves substantially when a non-homogeneous 
model is used. Some implications for the estimation of species phylogeny and substitution rates 
are discussed. 

1.  Introduction. One of the central problems in evolutionary theory is the 
reconstruction of species trees (or gene trees), and the estimation of 
substitution rate and divergence times, using data from DNA or RNA 
sequences (Kimura, 1983; Nei, 1987). Statistical methods for doing this take as 
their starting point a model for the evolution of sequence structure through 
time, and then use the model to estimate phylogeny and substitution rates. 
Felsenstein (1983) reviews some of these methods. 

When the data comprise homologous sequences from coding regions, it is 
usual to break the data into three constituent sequences, X i  (i= 1 , 2 , 3 )  say, the 
bases in X i  comprising all the bases that occur in the ith codon positions in the 
sequence. It is usual to assume that each X i  is a sequence of independent trials, 
and to analyse each of the X i  separately. As might be anticipated, the highest 
substitution rates occur in X3, the next highest in X', and X2 is the least variable 
across homologous sequences. This method of analysis leads to a gene tree and 
a set of substitution rates for each of the X i .  It is certainly not clear how to 
combine the separate results into a single tree. 

What is really needed is a model for sequence evolution that describes with 
reasonable fidelity the key biological features of a coding region X, without 
breaking it into its constituent subsequences X', X2, X3. The features we 
considered important are: (a) amino acid usage; (b) codon preference bias. 

We are currently developing a time-dependent model for the evolution of X 
through time. Of course, our choice of model has to be based on the 
(observable) present day sequence. With this in mind, we have analysed a 
collection of coding regions, with a view to assessing the type of dependencies 
that arise in the structure of X and the X i .  In section 3, we describe some simple 

95 



t 

96 S. TAVARk AND B. SONG 

codon-usage and amino acid usage statistics for our data. Section 4 discusses 
homogeneous Markov models for the primary sequence of X, and in section 5 
we analyse a spatially inhomogeneous process. 

2 .  The Data. We chose our coding regions from Release 10 of the EMBL 
(European Molecular Biology Laboratory) Nucleotide Sequence Data 
Library. A summary of the organisms and number of sequences from each is 

-given in Table I. 

TABLE I 
Summary of Data Used in the Analysis 

- 

Number of 
Organism Length coding regions 

(EMBL file) (bases) used 

Epstein-Barr virus 
(EBV) sv40 
(SV40XX) 

Yellow fever virus 
(FLYF 17DG) 
arv-2 
(AIARV2) 

Bacteriophage 1 
(LAMBDA) 
4x174 
(PHIX 174) 
ms2 
(LEMS2X) 
Escherichia coli* 

172282 

5243 

10862 

9737 

48502 

5386 

3569 

a4.704 x 106 

75 

6 

12 

5 

64 

11 

4 

188 
~~ ~ 

*Data taken from 142 files in EC* 

Altogether, there are 365 sequences, ranging in length from 45 codons (the 
rpmH gene coding for ribosomal protein L34 in E. coli) to 1381 codons (the 
BcLFl reading frame of EBV). The sequences were selected only if they were 
complete genes (or unidentified/open reading frames), starting with an 
initiation codon, ending with one of the stop codons, and having length an 
integral multiple of 3. In the analyses that follow, the initiation codon and the 
stop codon were not used. 

The sample of genes from E. coli contains sequences that code for structural 
proteins, for enzymes and for regulatory proteins. They may be viewed as 
representative of the whole genome. 

3 .  Codon Usage. Since the pioneering work of Grantham et al. (1980a; 1980b; 
1981), it has been realized that DNA coding sequences do not use synonymous 
codons with equal frequency. A substantial amount of codon preference data 
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has now been compiled (e.g. Maruyama et al., 1986), from which several 
observations have been drawn. 

Firstly, genes within a species usually adopt codon usage strategies that are 
closer to each other than to those adopted by genes from different taxonomic 
groups. For example, Ikemura (1985) showed that E. coli and S. typhirnurium 
show similar codon usage patterns, but those in the unrelated B. subtilis are 
very different (Ogasawara, 1985). Secondly, there remain considerable 
differences in codon preference between genes in the same species. 

Several explanations for these observations have been suggested. Gouy and 
Gautier (1982) demonstrate that among Bacteria, highly expressed genes 
exhibit more bias than do lowly expressed genes. Bernardi et al. (1985) showed 
that mammalian genomes seem to comprise very long stretches of rather 
homogeneous base composition, the regions being distinguished by different 
G + C  content. Bernardi and Bernardi (1985) and Ikemura (1985) go on to 
correlate codon preference with the local G + C  content. Ikemura (1981) and 
Ikemura and Ozeki (1982) correlate codon usage with abundance of tRHAs, 
and Grosjean and Fiers (1982) attribute it to the theoretical advantage of 
intermediate bond strength between tRNA and mRNA. Finally, Wilbur (1985) 
and Sharp and Li (1986) provide a more evolutionary perspective on the issue. 

Codon usage statistics. To summarize different codon usage patterns in 
our data set, we have used several measures of entropy. For a given sequence, 
let pi denote the observed fraction of amino acid i in the sequence. Since we are 
not counting the stop codons, there are 20 amino acids. The between amino 
acid or sequence entropy, S, is defined by: 

where In denotes log,. S achieves its maximum value of In (20)=2.996 when 
each amino acid used is with equal frequency. S has minimum value of 0, 
attained when the sequence is a polypeptide like poly-Ser, presumably having 
no significant biological role. Small values of S therefore correspond to biased 
amino acid usage. 

The more interesting measure of entropy is one that assesses non-random 
synonymous codon usage. If we now let p i j  be the relative frequency of the jth 
of k, possible synonymous codons for the ith amino acid, then: 

ki 

j =  1 
pij=pi, i = I , .  . . ,2O. 

The total entropy, T, of the sequence is defined by: 
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20 k. 

T =  - 2 pijlnpij. 
i = 1  j = l  

cf. Subba-Rao et al. (1982), Konopka (1985). If we define pjli=pij/pi to be the 
conditional relative frequency of synonymous codon j in the ith amino acid, 
then: 

=s+ w, 
where: 

is the entropy within the ith amino acid, and: 

20 

w =  pisi. 
i =  1 

(3) 

The term W is a natural measure of codon usage bias, or within-amino-acid 
entropy. We have also considered two other such measures. These are: 

20 1- 

W, = C 2 si, 
i =  1 

and: 

W, is a measure that is independent of the amino acid frequencies in the 
sequence; the maximum value of W, is FZ 1.242. W2 is a weighted sum of 
standardized entropy measures; O< Si/ln(ki)< 1 for all i, and so O< W2 < 1. 
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Data analysis. We calculated the values of S, and W for the sequences in 
our data base. Codon usage bias is demonstrated in Fig. 1, a scatter plot of W 
versus sequence length. In the E. coli set, there is essentially no correlation 
between W and sequence length (r  = 0.26), whereas for MS2, r = 0.60. 
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Figure 1. Within-amino-acid entropy W (from equation (3)) versus length of 
sequence. 

MS2 exhibits the most unbiased codon usage, with an average value of 
W =  1.04, whereas 4x174 showed the most biased pattern, with W averaging 
0.82. The overall average was 0.89. Using W, or W, as measures of usage bias 
gave qualitatively similar conclusions, so no detailed results are given here. 

In contrast to within-amino-acid entropy, sequence entropy varies little over 
the genomes we considered (it is in any event a less interesting biological 
quantity!). The overall average value of S was 2.65, ranging from an average of 
2.59 for 4x174 to an average of 2.68 for rv2. Shorter sequences might be 
expected to have somewhat smaller values of S (just from the way it is 
calculated). Figure 2 gives a scatter plot of Sversus sequence length to illustrate 
the relationship. 

In Fig. 3 the relationship between Wand S is shown. There is essentially no 
overall correlation between these variables (r=0.19), as is evident from the 
scatter plot. 

4 .  Models for Primary Sequence Structure. The base-sequence structure of 
DNA or RNA sequences has often been modeled as the output of a Markov 
source. This provides a way to summarize the complexity of the sequence, to 
assess the local dependence of bases on their neighbors (e.g. Blaisdell, 1985; 
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Figure 2. Sequence entropy S (from equation (1)) versus length of sequence. 
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Figure 3. Sequence entropy S versus within-amino-acid entropy W. 

Almagor, 1983; Phillips et al., 1987a,b), to search for coding function (Shulman 
et al., 1981), and to compare sequences from different groups (Erickson and 
Altman, 1979), perhaps with a view toward reconstructing gene trees (Blaisdell, 
1986). 
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Estimating the order of dependence. For convenience, we number the bases 
in alphabetical order: A(1), C(2),  G(3) and T(4).  Let X={X,, n = l ,  2 , .  . .} 
denote the sequence of bases in the gene of interest. X is called a (time- 
homogeneous) Markov chain of order k if 

Pr{X,,+ = in+ , Jx, = i, , . . . , X ,  = i l}  

=fi(Xn+l=in+llXn=in, * * * 9 X n - k + l = i n - k + l } ,  

for all n >/ k, and for all possible choices of states i, , . . . , in+ , . A Markov chain 
of order 0 is a sequence of independent trials, and (by convention) a chain will 
be said to have order - 1 if it corresponds to equally-likely independent trials. 

Estimating the order of dependence, k, may be accomplished in several ways. 
One is a classical hypothesis-testing framework that tests whether the chain is 
of order 1, within the hypothesis that it is of order m > l ;  Billingsley (1961), 
Chatfield (1973). Here we will compare two Bayesian methods: AIC, the 
Akaike Information Criterion (Tong, 1975; Garden, 1980); BIC, the Bayesian 
Information Criterion (Katz, 1981). For a sequence of N nucleotides, let 
n(i, , i,, . . . , i,) denote the number of times the r-tuple (il , . . . , i,) occurs in the 
sequence X. For a kth order chain, the natural estimator of the probability 
P( i , ,  . . . , ik; ir+ ,) of a transition from ( i l ,  . . . , ir) to ik+ , is: 

n(il,.  . . , i , ,  i k + l )  

n( i , ,  . . . , ik, +) ' 
P ( i , , . . . , i k ; i k + l ) =  

where: 

The log-likelihood Lk is defined by: 

Lk = Cn(i,, . . . , ik+ ,)ln P(i,, . . . , ik; ik+ 1), (4) 

the summation being over all i , ,  . . . , i,,, for which n(il, . . . , i k + l ) > O .  
The AIC for order k is defined by: 

AIC(k) = -2Lk+2pk, k=O, 1, . . . 

BIC(k) = -2&+pk In n, k=O,  1, . . . 

( 5 )  

while BIC is defined by: 

(6) 

and AIC( - 1) = BIC( - 1) = n In 4. In equations (5) and (6), pk is the number of 
independent parameters in the model (pk = 3 x 4k in the present case), and n is 
the number of (overlapping) subsequences used to compute the transition 
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counts. In all the examples analysed here, the transition counts start from the 
7th base in the sequence, so that n = N- 6 for all values of k considered. The 
order estimated by AIC (or BIC) is that value k at which the minimum in 
equation (5) (respectively, equation (6)) occurs. Garden (1980) and Fuchs 
(1980) used AIC in their comparison of several genomes. 

We estimated the order of dependence for the sequences in our database. 
Table 11, a cross-classification of the results, shows the interplay between 
orders estimated by AIC and BIC. Notice that 100 of the 166 sequences 
classified by AIC as being of order 2 are classified as order - 1 by BIC. BIC 
certainly favors simpler models. 

TABLE I1 
Cross-Tabulation AIC and BIC 

~ 

Estimated order BIC 
AIC - 1  0 1 2 Total 

-1  1 9 0 0 0  19 
0 2 0 8 0 0  28 
1 85 39 23 0 147 
2 100 25 40 1 166 
3 0 0 4 1  5 

Total 224 72 67 2 365 

It has been observed that AIC estimates are highly correlated with sequence 
length (Fuchs, 1980). In Table 111, we give the mean sequence length (in bases) 
for each estimated order for both AIC and BIC. These data confirm Fuchs' 
observation in both cases. 

TABLE I11 
Dependence of Estimated Order on Length of Sequence 

~ ~ ~~ 

AIC - 1  0 1 2 3 
Mean length 444.3 381.4 817.5 1400.6 2356.2 
Number of sequences 19 28 147 166 5 

BIC -1  0 1 2 
Mean length 787.6 1050.8 1873.8 3000.0 
Number of sequences 224 72 67 2 

If we use the order estimated by AIC as a measure of sequence complexity, 
then the highest average complexity is the E. coli set (averaging 1.54), followed 
by EBV (1.28). The least complex sequence is ms2, averaging - 0.75. There is 
no evidence, however, of systematic differences in codon usage (as measured by 
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W) among the different organisms. Using the order as estimated by BIC 
changes the picture somewhat. Now sv40 and rv 2 are the most complex, and 
there is some evidence that codon usage entropy increases with BIC order. 

There seem to be no simple criteria for relating AIC and BIC results. For 
example, the 100 sequences that have order 2 (by AIC) and - 1 (by BIC) appear 
in terms ofentropies and lengths to be similar to the other observations. A more 
detailed analysis of some examples is necessary. 

Residual analysis. To assess further the differences between the order 
estimated by AIC and that estimated by BIC, some form of residual analysis is 
appropriate (cf. Fuchs, 1980; Blaisdell, 1985; Phillips et al., 1987a,b). Of 
course, the type of residuals to be analysed depend somewhat on the key 
biological features that the model is supposed to recover. For example, if the 
estimated order is k = 1, then the second-order counts (or triplet frequencies) 
may be estimated by: 

f i ( i l  i2 9 i3 )  n(i, 7 i2)n(i2 9 i3)/n(i2, + 1, (7) 

and these may be compared to the observed counts n(i,, i,, i3). (Formal 
hypothesis testing in this context is not straightforward, as the asymptotic 
distribution of the natural “x’” goodness-of-fit statistic is not x2 (see Chatfield, 
1973 for example). 

The features of particular biological importance here are firstly codon-usage 
and secondly amino acid usage. Under the stationarity assumption, the 
estimator fic(il , i,, i 3 )  of the frequency of the codon ( i l  , i,, i3)  is: 

fic(il, i, , i3)  = fi(i, , i, , i3)/3, (8 1 
while the estimated number of a particular amino acid may be found by 
summing equation (8) over synonymous codons. 

Example. To illustrate, we chose the carB gene that encodes the 
carbomylphosphate synthetase large sub-unit in E. coli (Nyunoya and Lusty, 
1983). This gene is 1072 codons in length (excluding initiation and termination 
codons). The order of dependence is estimated at 1 by BIC and 3 by AIC. We 
therefore used k =  1 to estimate codon frequencies. The results are given in 
Table IV. 

The column headed “Pearson residual” in Table IV gives the values of 

Residual = (Observed - E x p e c t e d ) / J w ,  

as a quick way to locate bad fits. Negative residuals correspond to 
overprediction, while positive residuals correspond to underprediction. It is 
clear from Table IV that the first order model is not a good predictor of codon 
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TABLE IV, continued 
~~ ~ 

Observed Expected Pearson 
Amino acid Codon frequency. frequency? residual3 

Asn 

Phe 

TYr 

Gln 

His 

Glu 

CYS 

Trp 
Met 
stop 

AAU 
AAC 
uuu 
uuc 
UAU 
UAC 
CAA 
CAG 
CAU 
CAC 
GAA 
GAG 
AAA 
AAG 
GAU 
GAC 
UGU 
UGC 
UGG 
AUG 
UAA 
UGA 
UAG 

4 
32 
8 

26 

9 
22 

6 
29 
4 

11 

66 
25 

46 
9 

22 
42 

6 
8 

4 

30 

0 
0 
0 

17.27 
22.01 

7.85 
10.51 

6.76 
8.61 

17.39 
10.03 

10.51 
13.40 

27.21 
15.70 

28.56 
16.48 

16.45 
20.97 

18.59 
27.52 

19.70 

20.62 

11.18 
22.18 
6.45 

- 3.2 
2.1 

0.1 
4.8 

0.9 
4.6 

- 2.7 
6.0 

- 2.0 
-0.7 

7.4 
2.3 

3.5 
- 1.8 

1.4 
4.6 

- 2.9 
-3.7 

3.5 

2.1 

- 3.3 
-4.7 
-2.5 

*Total is 1070 amino acids. First two are removed by estimation procedure. 
tCalculated from equations (8) and (7). 
$(Obs-exp)/&. 

usage in carB. Aside from obvious problems with stop codons, there are several 
amino acids poorly represented, for example Lle and Arg. We used a goodness- 
of-fit statistic: 

F= sum of squares of Pearson residuals, (9) 

to compare model fits, For codon-usage, the data in Table IV gives a value 
F= 834. 

If the model is not a good predictor of codon-usage, how well does it recover 
amino acid composition? The comparison of observed and expected frequen- 
cies are presented in TableV. Notice that the stop codon is not the most 
inaccurately represented “codon”; Glu and Lle are highly under-represented 
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by the model. The F statistic (equation (9)) for amino acid usage has value 

While the first order model may not fit these important aspects of the 
sequence very well, the situation is not much improved by the third order 
model suggested by the AIC criterion. The predicted codon-usage frequencies 
will be (approximately) one third of the observed triplet frequencies. The 
resulting F-statistic for codon usage is F= 583, while the F-statistic for amino 
acid usage is F=282. 

F= 310. 

Comments. AIC and BIC provide useful criteria with which to assess 
stochastic complexity. We noted, as have others, that the estimated order 
increases with sequence length. This is not surprising as there is a trade-off in 
these criteria between the number of parameters fitted and the length of the 
sequence. 

Using BIC, a substantial fraction of the sequences appeared to be described 
by independent, identically distributed trials. In practice, BIC seems to be 
estimating orders too low. Perhaps a correction factor for use with small 
sample sizes should be used. This rather disconcerting observation prompted a 
more detailed analysis of the fits. 

To assess whether the models describe key biological features of the regions 
faithfully, we used residual analysis to compare observed and expected codon- 
usage and amino acid frequencies. In the example cited here (and in many 
others not reported in detail here) it is clear that even high-order models do not 
do well, and fits to short sequences are not very good either. One of the reasons 
for this is to be found in the non-homogeneous structure of coding regions: 
there are local dependencies that vary in different positions in the codon. This 
lack of structural homogeneity mitigates against the use of homogeneous 
Markov chains for the analysis of patterns and structure within coding regions. 
In the next section, we investigate a class of models which make some 
allowance for the observed heterogeneity. 

5 .  Non-Homogeneous Models. Several authors have noted that, in coding 
regions, transitions from the third base position of a codon to the first base of 
the following codon often appear to be random (cf. Shulman et al., 1981; 
Erickson and Altman, 1979; Lipman and Wilbur, 1983; Lipman and Maizel, 
1982; Smith et al., 1983), while transitions from first position to second 
position, and second position to third position are often markedly non- 
random. Dependencies such as these induce dependencies of different types in, 
for example, the sequence of bases from successive first (or second or third) 
codon positions. In this section, we describe a stochastic model of sequence 
structure in which the transition matrix governing successive transitions 
depends on codon position. 
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TABLE V 
Predicted Amino Acid Counts for CarB Gene 

of E. coli 
(First-Order Markov Model) 

Amino Observed Expected Pearson 
acid frequency* frequency residual? 

Leu 
‘4% 
Ser 
GlY 
Thr 
Pro 
Val 
Ala 
Lle 
Gln 
Asn 
Phe 
His 
Glu 
TYr 
LYS 
ASP 
CYS 
TrP 

stop 
Met 

83 
69 
46 
83 
60 
43 
94 

112 
71 
35 
36 
34 
15 
91 
31 
55 
64 
14 
4 

30 
0 

80.97 
133.82 
80.83 
71.33 
64.99 
64.67 
67.34 
99.67 
30.37 
27.42 
39.28 
18.36 
23.91 
42.91 
15.37 
45.04 
37.42 
46.1 1 
19.70 
20.62 
39.81 

0.2 
- 5.6 
-3.9 

1.4 
- 0.6 
- 2.7 

3.2 
1.2 
7.4 
1.4 

-0.5 
3.7 

- 1.8 
7.3 

-4.0 
1.5 
4.3 

-4.7 
- 3.5 

2.1 
-6.3 

*Total is 1070 amino acids. First two are removed by estimation 

t(Obs-exp)/fi.  
procedure. 

Structure of model. The process is a non-homogeneous Markov chain in 
which transitions from a first codon position to a second position are governed 
by transition matrix PI, from a second codon position to a third codon position 
by P2, and from a third codon position to the following first codon position by 
P3. In this model, the sequence Xi of bases in the ith position in the codon 
’(i= 1,2,  3) form (first-order) Markov chains with transition matrices P, P2 P3 
if i =  1, P2 P3 P, if i =  2 and P3 P, P2 if i =  3. By contrast, for the homogeneous 
first-order model with transition matrix Peach of the sequences Xi is a Markov 
chain with transition matrix P3. 

In the special case in which “transitions from position 3 to the following 
position 1 seem independent”, we set: 

P3 = 12,  (10) 
where 1 is a vector of l’s, and aT = (al, a2, a3, a4) is a probability vector. P3 is a 
matrix with identical rows. If equation (10) holds, then P, P2 P3 = PI P2 laT = 
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Pl laT = laT.  Similarly, P2 P3 Pl = l(aT P l )  and P3 Pl P2 = l(aT Pl Pz). It 
follows that (with the possible exception of the first observation) each of X', Xz 
and X3 are independent trials processes. Of course, X', Xz and X3 are not (in 
general) mutually independent. 

Estimation of parameters. Denote the elements of P, by llpr;i,J, and let 
nr(i , j)  denote the number of times in the sequence X of bases that base i in the rth 
codon position is followed by base j .  The maximum likelihood estimators are 
given by: 

where nr(i, + ) = zjnr(i,j). 

are given. 
In Table VI the estimated transition matrices p, for the carB gene of E. coli 

TABLE VI 
Estimated Transition Matrices* p ,  for 

CarB Gene of E. coli 

A C G T 
A 0.35 0.23 0.03 0.39 
C 0.21 0.18 0.29 0.32 

'l G 0.35 0.25 0.19 0.21 
T 0.24 0.29 0.14 0.33 

A 0.36 0.33 0.19 0.12 
C 0.09 0.31 0.45 0.15 '' G 0.01 0.53 0.04 0.42 
T 0.06 0.27 0.48 0.20 

A 0.27 0.18 0.47 0.08 
C 0.23 0.20 0.41 0.17 

'3 G 0.25 0.28 0.37 0.10 
T 0.24 0.21 0.45 0.10 

*Estimates based on transition counts starting from 61b 
base position in sequence to allow comparison with 
earlier models. 

The marked heterogeneity in base position is clearly evident from these 
results. Notice also that the matrix p3 has approximately constant rows, as 
might be expected on biological grounds. 

The results of Billingsley (1961) can be used to establish a statistical test for 
the hypothesis that P3 = laT for this non-homogeneous Markov chain. The test 
turns out to be equivalent to the usual test for homogeneity in a contingency 
table. For the example of the carB gene, the test statistic has a value of 22.1, 
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with 9 degrees of freedom, suggesting that the distribution of first-position 
bases in carB is not seriously influenced by the preceeding base. 

Comp~rison with homogeneous models. Included with the “3-matrix modeln 
are the homogeneous Markov models of order 1 (in which PI = P2 = P3 = P, 
say), the Oth order case of independent trials (P= laT), and the order - 1 model, 
in which aT=$(l, 1, 1, 1). In particular, Billingsley’s (1961) results may once 
more be used to test whether, within the “3-matrix model”, any of these 
homogeneous sub-models is appropriate. For the carB gene of E. coli, the log- 
likelihood for the 3-matrix model is -4044.9, while the likelihood for the first- 
order Markov model is -4331.7. The log-likelihood-ratio statistic has a value 
of - 2( -4331.7 + 4044.9) = 573.6, which should be compared to a x2 random 
variable with 24( = 36 - 12) degrees of freedom. In this example, the 3-matrix 
model provides a far superior description of the data, emphasizing once more 
the heterogeneity shown in Table VI. 

In order to compare the fit of the 3-matrix model to the Markov models of 
section 4, we again use AIC and BIC. For each sequence in our database, we 
calculate the log-likelihood L* for this model, and then compute 
AIC* = - 2L* + 72 and BIC* = - 2L* + 36 In n. The values of AIC* are then 
compared to the optimal AIC value in equation (5) .  The “best” model is the one 
that corresponds to the minimum of these two values. The same comparison is 
also made using the BIC criterion. The results are shown in Table VII. 

TABLE VI1 
Comparison of “3-Matrix” Model 

and Homogeneous Models 

Number Number 
in which in which 
3-matrix homogeneous 
model is model is 

better better 

- 1  8 11 
0 11 17 
1 122 25 

6 

AIC 
order 160 

3 3  2 
-1  24 200 

BIC 0 11 61 
order 1 35 32 

2 1  1 
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Using AIC, 304 of the 365 sequences are better modelled by the 3-matrix 
model, whereas by BIC it is only 71 sequences. (49 of these are from the E. coli 
set, and 15 from EBV.) 

Residual analysis. We will examine how well the 3-matrix model describes 
codon-usage and amino acid usage. Let N(i ,  , i, , i3) be the (random) number of 
times the codon (il , i, , i3) appears in a sequence X of length m = 3r bases. Then 
the expected value of N(il, i , ,  i3) is: 

Since X' is itself a Markov chain with transition matrix Pl P, P3 it follows that: 

as r+ cy;), where (nl, n2, n3 ,  n4) is the stationary distribution for Pl P2 P 3 .  (We 
are assuming that Pl P, P3 is irreducible.) For large r ,  it follows that: 

EN(i1, i29 i 3 ) ~ r n i , ~ l ; i l , i z ~ , ; i Z , i 3 .  (13) 

The right side in equation (13) may be estimated by: 

fic(il , i, , i 3 )  w nlOl , i2)n2(i2 , i3)/n2(i2 , + ). (14) 

Compare with equation (8). As in the homogeneous case, the amino acid 
counts may be estimated by grouping the appropriate codon frequencies from 
equation (14). 

For the sequence carB from E. coli, the fitted codon frequencies are given in 
Table VIII. Notice that in contrast with the first order results in Table IV, the 
3-matrix model provides a rather accurate description of codon-usage for Arg. 
This difference is due almost entirely to the very low frequency of G - A  and 
G-G transitions from the second codon position. The homogeneous model 
predicts relative frequencies of about 25% for each of these transitions, 
compared to the observed frequencies of 1 % and 4% respectively (Table VI). 
Notwithstanding this case, neither model can adequately describe the observed 
codon usage bias for Leu. The goodness-of-fit statistic equation (9) is, from 
Table VIII, F= 360, compared to F= 831 (first-order model) and F= 583 
(third-order model). 
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TABLE VI11 
Observed and Expected Codon-Usage for carB Gene of E. coli 

(3-Matrix Model) 

Observed Expected Pearson 
Amino acid Codon frequency* frequency? residual$ 

Ser 

Leu UUA 
UUG 
cuu 
CUC 
CUA 
CUG 
ucu 
ucc 
UCA 
UCG 
AGU 
AGC 
CGU 
CGC 
CGA 
CGG 
AGA 
AGG 

GlY GGU 
GGC 
GGA 
GGG 

Thr ACU 
ACC 
ACA 
ACG 

Ala GCU 
GCC 
GCA 
GCG 

Lle AUU 
AUC 
AUA 

Pro ccu 
ccc 
CCA 
CCG 

Val GUU 
GUC 
GUA 
GUG 

3 
5 
2 
5 
0 

68 
10 
18 
1 
9 
3 
5 

37 
31 
0 
1 
0 
0 

28 
51 
2 
2 

12 
40 

1 
7 

15 
21 
13 
63 
31 
39 

1 
1 
0 
7 

35 
20 
13 
14 
47 

2.42 
20.19 
14.66 
19.95 
4.33 

36.06 
5.71 

11.87 
3.30 

17.12 
3.33 
4.27 

28.69 
36.83 
0.78 
2.71 
0.09 
0.32 

34.51 
44.30 
0.93 
3.26 
9.01 

18.74 
5.22 

27.04 
16.82 
34.97 
9.74 

50.47 
19.75 
26.87 
5.83 
6.46 

13.43 
3.74 

19.38 
18.39 
25.01 
5.42 

45.19 

0.4 
- 3.4 
-3.3 
- 3.3 
-2.1 
-5.3 

1.8 
1.8 

- 1.3 
- 2.0 
- 0.2 

0.4 
1.6 

- 1.0 
- 0.9 
- 1.0 
-0.3 
-0.6 
- 1.1 

1 .o 
1.1 

-0.7 
1 .o 
4.9 

- 1.8 
-3.9 
- 0.4 
- 2.4 

1 .o 
1.8 
2.5 
2.3 

- 2.0 
-2.1 
-3.7 

1.7 
3.5 
0.4 

- 2.4 
3.7 
0.3 
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TABLE VIII, continued 

Observed Expected Pearson 
Amino acid Codon frequency* frequencyt residual1 

Asn 

Phe 

TYr 

Gln 

His 

Glu 

LYS 

CYS 

TrP 

stop 
Met 

AAU 
AAC 
uuu 
uuc 
UAU 
UAC 
CAA 
CAG 
CAU 
CAC 
GAA 
GAG 
AAA 
AAG 
GAU 
GAC 
UGU 
UGC 
UGG 
AUG 
UAA 
UGA 
UAG 

4 
32 

8 
26 

9 
22 

6 
29 

4 
11 

66 
25 

46 
9 

22 
42 

6 
8 
4 

30 
0 
0 
0 

10.85 
29.78 

8.21 
11.17 

3.70 
10.14 

18.04 
9.63 

5.96 
16.36 

55.93 
29.86 

32.84 
17.53 

18.49 
50.72 

7.48 
9.61 

0.71 

48.56 
11.19 
0.20 
5.97 

-2.1 
0.4 

-0.1 
4.4 

2.8 
3.7 

-2.8 
6.2 

-0.8 
- 1.3 

1.3 
-0.9 

2.3 
- 2.0 

0.8 
- 1.2 

-0.5 
-0.5 

3.9 

- 2.7 

- 3.3 - 0.4 
2.4 

*Total is 1070 amino acids. First two arc removed by estimation procedure. 
vculated from equation (13). 
t(OkXP)/VG. 

The corresponding results for amino acid usage are shown in Table IX. 
Qualitatively, this provides a much more accurate representation than that 
shown in Table V. The F-statistic is F= 88, compared to F= 310 for the first- 
order model, and F=282 for the third order case. 

Comments. The non-homogeneous process provides a better model for the 
generation of coding regions. However, it does not recover all the details of 
codon usage accurately; some averaging is taking place. For example, in 
constructing Pz (the matrix governing the choice of degenerate base) for carB, 
the amino acid Threonine has codon usage ACA(l), ACC(40), ACG(7), and 
ACU(12). In contrast, the frequencies for Alanine are GCA(13), GCC(21), 



CODON PREFERENCE AND PRIMARY SEQUENCE STRUCTURE 113 

TABLE IX 
Predicted Amino Acid Counts for CarB Gene 

of E. coli 
(3-Matrix Model) 

Amino Observed Expected Pearson 
acid frequency* frequency residual? 

Leu 
Arg 
Ser 
GlY 
Thr 
Pro 
Val 
Ala 
Lle 
Gln 
Asn 
Phe 
His 
Glu 
TYr 
LYS 
ASP 
CYS 
Trp 

stop 
Met 

83 
69 
46 
83 
60 
43 
94 

112 
71 
35 
36 
34 
15 
91 
31 
55 
64 
14 
4 

30 
0 

97.61 
69.42 
45.60 
83.00 
60.01 
43 .O 1 
94.01 

112.00 
52.45 
27.67 
40.63 
19.38 
22.32 
85.79 
13.84 
50.37 
69.21 
17.09 
0.71 

48.56 
17.36 

- 1.5 
-0.1 

0.1 
0.0 

- 0.0 
- 0.0 
- 0.0 

0.0 
2.6 
1.4 

-0.7 
3.3 

- 1.5 
0.6 
4.6 
0.7 

- 0.6 
-0.7 

3.9 
-2.7 
-4.2 

*Total is 1070 amino acids. First two are removed by estimation 
proccdure. 

t (ObS-eXP)/JG. 

GCG(63) and GCU(15). We are currently analysing a model that also makes 
allowance for this type of inhomogeneity. The 3-matrix model should work 
well for sequences whose degenerate base choices are similar. 

6.  Summary and Conclusions. Spatially homogeneous Markov chains are an 
attractive (and often used) model for the primary sequence structure of a 
coding region. We have seen, however, that such models often do not do an 
adequate job of describing the key biological features of the region: codon 
preference, and amino acid usage. The evident spatial heterogeneity in such 
sequences invalidates much of this Markov chain theory. 

We presented a simple spatially heterogeneous Markov model 'that reflects 
more accurately the coding features of the regions. Several alternative models 
exist in the literature (Lipman and Wilbur, 1983). We are currently studying 
two other models, one described at the end of section 5,  the other being a simple 
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nearest-neighbor interacting particle system. This latter model allows a 
particular base in the sequence to be determined by its “nearest” neighbors in 
both directions, rather than just its neighbors to the left. We are also analysing 
a much more extensive set of E. coli sequences, with a view to assessing which 
types of models apply best within classes of genes that code for regulatory 
proteins, for enzymes and for structural proteins. 

While there is perhaps “too much bio1ogy”in these sequences for such simple 
models to reconstruct accurately, the search for better and more detailed 
models with which to estimate phylogeny seems well worthwhile. 

Simon Tavark was supported in part by National Science Foundation grants 
DMS 86-08857 and DMS 88-03284. We would like to thank Ron Lundstrom 
for helpful discussions on some statistical aspects of the model in Section 5. 
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