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INTRODUCTION13.1 

Over the last decade, microarrays have become a fundamental tool in biological research laboratories 

throughout the world. During this time, methods for performing microarray experiments have improved 

and expanded rapidly, creating an enormous demand for evaluation and comparison of emerging and 

existing technologies. Importantly, the responsibility for doing this lies as much with the data analyst 

as the data generator. Such evaluations are diffi cult since they are infl uenced by many factors, both 

fi nancial and scientifi c. They require a good understanding of both the biological underpinnings of 

new array technologies and their applications, as well as the statistical issues involved when analyzing 

the resulting data. To date, there have been many empirical comparisons of technologies for expression 

array profi ling, but newer applications are still lagging in this respect. With the recent growth in inter-

est in applying microarrays to study a different aspect of the genome, namely the epigenome, this 

problem has again come to the fore. While there are many publications exploring the biology of DNA 

methylation and the epigenome, and a large number of articles describing the development of approaches 

for studying DNA methylation, there are few articles that address the analytic issues involved in these 

new experiments. This chapter aims to address this problem. It is aimed at the biologist who wants to 

understand the limitations in analyzing data obtained from different DNA methylation arrays, and the 

computational biologist wanting an entry point into this new and exciting area.

MAMMALIAN DNA METHYLATION13.2 

Mammalian DNA methylation describes a chemical modifi cation that predominantly affects the 

cytosine base of CG dinucleotides (Figure 13.1a) [1,2], commonly represented as CpG (the p indi-

cates the phosphodiester bond that forms the backbone of the DNA strand). A CpG found on the 

sense strand of the DNA duplex will have a CpG in the reverse sense on the opposite strand 

(Figure 13.1b). DNA methylation of a CpG covalently adds a methyl group to the 5th carbon position 

on the cytosine base. In lower organisms, such as plants and Escherichia coli, methylation can also 

target other bases, including adenine [3]. CpGs are statistically underrepresented in the human 

genome [4] and are associated with repetitive DNA sequences including centromeric repeats, 

 retroviral elements, and retrotransposons [5,6].

Methylation in promoter regions and other regulatory sequences can prevent transcription and 

these regions are often heavily methylated, suggesting that CpG methylation may have evolved as a 

defense mechanism to silence viral DNA [2]. However, CpG-rich sequences in actively transcribed 

gene-rich regions are mostly unmethylated and resistant to changes in methylation [6–8]. By con-

vention, these regions are known as CpG islands and are often associated with gene promoters and 

regulatory regions [6,9]. CpG islands are defi ned by criteria including the length of the region, GC 

content, and CpG density [4,10].

Methylation patterns in the genome can be maintained through cell division and replication 

[2,11]. However, methylation may be dynamic, and the pattern and density of methylation in areas 

of active transcription may change during development to control key genes in a temporal or tissue-

specifi c manner [2]. Regions that are normally methylated and become less methylated are referred 

to as hypomethylated and those that become methylated are called hypermethylated. The regulation 

of DNA methylation is closely associated with other covalent modifi cations of the histone proteins 

on which DNA is assembled to form chromatin [2]. These protein modifi cations include acetylation 

Q1
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(transcriptionally activating) and methylation (transcriptionally repressive). It remains unclear 

whether DNA methylation is a consequence or a cause of histone modifi cation [2,11]. As there 

are known mechanisms for maintenance of methylated DNA during replication, it is plausible that 

histone methylation is maintained secondarily to DNA methylation [2].

Another generally accepted notion of DNA methylation is that it will spread locally [12,13] 

that is, once a region starts to become methylated, all CpGs within the region will become meth-

ylated (Figure 13.2a). This is consistent with the concept of a CpG island with boundaries defi ned 

by some signal in the DNA sequence. Using this principle, regions where a minority of CpGs are 

methylated would be called unmethylated since the region’s methylation status is judged as a 

whole (see Figure 13.2b). Despite this, it is possible that small blocks of methylated (or unmethy-

lated) regions may exist within a given CpG island. Furthermore, it is believed that certain CpGs 

within a region may be more important than others (i.e., some CpGs may be held under tighter 

evolutionary control [4]). Indeed, because mutational repair of methylated CpGs is harder than 

for nonmethylated CpGs, CpGs would tend to be lost through selection. This perhaps explains the 

lower than expected number of CpGs found throughout the mammalian genome.

Methylation of CpG islands within the promoters and body of a gene can lead to transcriptional 

silencing, while a lack of methylation may permit active transcription of the associated gene [14]. 

This regulation of gene expression is thought to occur as a result of conformational changes in the 

chromatin structure, altered binding capacity of transcription factors to methylated motifs in the 

promoter, and other effects altering regulatory elements such as enhancer and  repressor sites [15].

A historical role for epigenetics has been in cancer research, especially in the search for abnor-

mally hypomethylated oncogenes or hypermethylated tumor suppressor genes (i.e., genes  promoting 

cancer that have become activated through hypomethylation, and genes suppressing cancer that 

have been deactivated through hypermethylation) [11,16,17]. Most CpG islands are usually 

 unmethylated but, in cancer, promoter-associated CpG islands of certain genes can be hypermethy-

lated [19]. Many of these hypermethylated genes are specifi c to certain cancers, suggesting that their 

aberrant methylation may be important [11,18]. Consequently, understanding the epigenome will 

FIGURE 13.1 Illustration of (a) a methylated CpG dinucleotide. The cytosine and guanine bases are joined 

by a phosphodiester bond and a methyl group has been added to the cytosine. (b) gives a detailed illustration 

of double-stranded DNA with methylated CpGs in positive and negative strands.

(b)

Methylated CpG dinucleotide(a)

Methyl group

Phosphodiester
bond

G

G

C

C

Mammalian CpG methylation

C G C T C A G C G T

ACGCTGAGCG
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allow the control mechanisms of gene transcription to be better modeled, and, as a result, this area 

of research is growing rapidly. Moreover, DNA methylation is a potentially reversible modifi cation 

and demethylating chemotherapies are being developed and considered for cancer treatment [6,11]. 

Further, sites of differential methylation between cell types are not limited to promoter regions. 

They have been found in exons, introns, enhancer sites, and intergenic regions—suggesting they 

might regulate miRNAs, reverse strand transcripts, or alternative splicing [2].

Unlike aberrant hypermethylation, cancer-related hypomethylation occurs on a more global scale 

[11]. Seemingly, indiscriminant hypomethylation occurs throughout the genome of cancer cells, 

affecting vast amounts of non-CpG island DNA that is normally methylated. Moreover, pervasive 

hypomethylation is also found in premalignant neoplastic cells, implying that epigenetic changes 

may constitute the earliest steps of tumorigenesis [19]. While the mechanism and role of global 

hypomethylation is not well understood, it is observed widely and undoubtedly plays a role in cancer 

initiation [2]. One hypothesis proposes that it unlocks normally silent repetitive elements, activating 

transposons that promote genomic rearrangements or interfere with normal transcriptional regula-

tion in the tissue [20].

Of course, to study epigenetic changes in cancer, a basic understanding of DNA methylation in 

normal tissue is also required. It had been assumed that DNA methylation played a key role in gene 

switching events during development, but this view is currently being questioned and many 

 classical notions of the epigenome are being scrutinized. Much of the controversy stems from 

inconsistent results from experiments involving knockout mouse models of genes that encode DNA 

methylation maintenance proteins [2]. Problems arise since changes in growth conditions and other 

environmental factors can directly alter epigenetic states [21,22]; experiments with cell lines have 

also encountered this limitation. Therefore, studies investigating epigenetic mechanisms must be 

highly controlled, carefully planned, and cautiously interpreted.

MEASURING DNA METHYLATION13.2.1 

The ability to measure the extent of methylation at every CpG would mostly improve our under-

standing of the effects of DNA methylation. However, such precise measurements are currently 

FIGURE 13.2  Two double-stranded DNA fragments that are both (a) methylated and (b) unmethylated. 

Filled circles represent methylated CpGs, whereas open circles represent unmethylated CpG sites. Two 

hemimethylated CpG sites are shown in the lower fragment in (b).

Methylated(a)

(b) Unmethylated
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DNA Methylation Arrays: Methods and Analysis 177

possible only with low-throughput technologies and are therefore limited to small portions of the 

genome. Despite this, these methods have been employed extensively in molecular biology research 

and DNA methylation patterns associated with some genes (typically candidate genes identifi ed by 

other studies) have been studied extensively.

In recent years, efforts have been made to develop high-throughput, whole-genome approaches 

for measuring DNA methylation [23]. These have emerged in light of the continued evolution of 

microarray technologies for expression [24], copy number [25], SNP, and ChIP profi ling [33]. 

Current approaches for DNA methylation arrays rely on one of the following principles:

Enrichment• : Beginning with fragmented genomic DNA, the fi rst approach enriches or 

separates fragments that are methylated from those that are not; one or both fractions are 

then hybridized to an array. Methods for enriching methylated sequences typically employ 

either methylation-sensitive restriction enzyme digestion or methyl-cytosine antibody 

 precipitation.

Bisulfi te conversion• : The second approach is much like SNP detection with microarrays. 

Probes are designed to discriminate target sequences containing methylated CpGs from 

those with unmethylated CpGs. This discrimination is possible because of the base conver-

sion of unmethylated cytosine to uracil that occurs after bisulfi te treatment of the DNA.

There are many variations on both approaches, all with specifi c advantages and disadvantages. 

Signifi cant limitations of each approach are related to the quality and type of arrays used, including 

probe design and density across the genome. The data obtained inherit all biases, sources of 

 variability, and limitations associated with a given approach. Since technologies and approaches for 

measuring DNA methylation are varied and still evolving, there is no consensus for statistical 

 analyses. However, common themes arise, such as normalization issues, the effect of CpG and GC 

content of probes and genomic regions of interest, amplifi cation biases, and enzyme and enrichment 

method effi ciencies. Finally, we note that short-read resequencing of bisulfi te-treated DNA provides 

another approach to measuring DNA methylation on a genome-wide scale (e.g., [26]).

CHAPTER AIMS13.2.2 

Lately, the fi eld of epigenetics has been growing at a phenomenal rate due principally to advances 

in technology that are enabling high-resolution, high-throughput quantitation of DNA methylation; 

the rest of this chapter reviews the microarray approaches that have been adapted for this purpose. 

Emphasis is given to the design of array-based DNA methylation experiments and their ability to 

answer different types of epigenetic questions, as well as the normalization and analysis consider-

ations involved. The chapter will consider the main approaches to array-based DNA methylation 

assays including the platform, array, and probe design choices for each. Finally, a review of methods 

for validating array-based results will be given.

EXPERIMENTAL DESIGN CONSIDERATIONS13.3 

When designing microarray experiments, many factors need to be considered to ensure that the 

biological question of interest has the greatest chance of being answered. For DNA methylation 

arrays, the most important factors to acknowledge are the limitations a given approach has on the 

user’s ability to answer this question.

WHAT SAMPLES TO HYBRIDIZE?13.3.1 

DNA methylation array experiments are typically 2-color hybridizations. However, while design issues 

for two-color array-based experiments performed using other technologies typically revolve around 

Q2
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which mRNA or DNA samples to compare on an array, DNA methylation experiments are much more 

involved. The fi rst decision to be made is the number of samples to hybridize to an array.

For a given sample, three fractions can be obtained (Figure 13.3a). The fi rst is simply the non-

enriched input sample, the second is the fraction enriched for methylated sequences, and the third 

is the  fraction enriched for unmethylated sequences. Methods of enriching for methylated or 

un methylated sequences are described in Section 13.4.

For within-array comparisons between samples (Figure 13.3b), either (i) methylated fractions or (ii) 

unmethylated fractions can be compared (direct comparison). Alternatively (Figure 13.3c),  methylated 

or unmethylated fractions from two samples may each be compared to a common reference fraction 

(indirect comparison). This design choice is used in the method of differential  methylation hybridiza-

tion (DMH) (see Section 13.4 [27–32]). Two limitations of this approach are that the methylation status 

of the reference sample is usually unknown and, when comparing methylation between samples, it is 

often hard to fi nd an appropriate common reference. This makes interpretation diffi cult, particularly 

when the extent, rather than simply the direction, of change in methylation is of interest.

Single-sample approaches (Figure 13.3d) comparing the (i) methylated or (ii) unmethylated 

enriched fraction to the unenriched input fraction avoid the problems associated with two-sample 

approaches [33,34]. Additionally, the log-ratio data obtained from such experiments are potentially 

easier to interpret. However, it has been shown that methylated and unmethylated sequences are not 

equally detectable for this design (Figure 13.4b)—the dynamic range of the log-ratios is restricted, 

and (theoretically) positive values are not possible since there is no enrichment for both methylated 

and unmethylated fractions in the hybridization.

In contrast, when the methylated and unmethylated fractions from a single sample are compared 

within an array (Figure 13.3e), a wider range of log-ratio values is possible. In the MA-plot shown 

in Figure 13.4a, methylated sequences have positive (log-ratio, or M) values and unmethylated 

sequences have negative values. Sequences with values close to zero have ambiguous methylation 

status, something that can occur for a number of reasons: they may only be methylated in some of 

the sample (possibly due to tissue heterogeneity) or may not be fully methylated, and so can be 

enriched in both fractions hybridized to the array.

A limitation of this approach is that by enriching methylated and unmethylated fractions from a 

single sample, different systematic errors may be introduced in each channel. Such errors are diffi -

cult to identify and hard to account for in the analysis step since they are typically confounded with 

dye-biases and real methylation differences. Enzyme approaches are particularly susceptible to this 

since differing enzyme effi ciencies occur. Additionally, the presence and frequency of enzyme rec-

ognition sites varies between sequences, which can introduce biases into the enrichment process. 

Thus, it is important to use bioinformatic methods to predict sequences that may be subject to such 

bias (i.e., those with few or no restriction sites for a given digestion enzyme) and toaccount for this 

in the analysis step.

OTHER EXPERIMENTAL DESIGN ISSUES13.3.2 

In addition to the classical statistical notions that have been applied to microarray experimental 

design [35,36], appropriate experimental planning is equally critical to ensure that high-quality 

experiments are achieved, designs are robust, and all aspects of the experiment are meticulously 

recorded for quality assessment purposes. This is particularly important for DNA methylation 

arrays since they tend to be more complicated (i.e., involving multiple digestion or enrichment steps, 

purifi cation, and amplifi cation), which can lead to the introduction of systematic errors. Moreover, 

despite their high-throughput status, microarray experiments are expensive and time-consuming—

consequently, these errors can be extremely costly. Another important factor to consider relates to 

the acquisition of samples. In particular, since tissue samples can be extremely heterogeneous, the 

investigator must be aware that the resulting data are based on averaging over cells that might 

 possess quite different levels of methylation.
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FIGURE 13.3  Fundamental design choices for two-color DNA methylation array experiments. Solid arrows 

indicate that target samples are cohybridized to an array. Shown in (a) are the three possible target fractions 

that can be obtained from a single genomic DNA sample; the input sample itself, a fraction enriched for 

methylated sequences from the input sample, or a fraction enriched for unmethylated sequences from the input 

sample. Given either the methylated or unmethylated fractions from two different samples, (b) illustrates the 

two-sample within-array designs. In (b), (i) compares methylated fractions from two samples and (ii)  compares 

unmethylated fractions from two samples. These correspond to direct two-sample comparisons, whereas (c) is 

a two-sample between-array indirect comparison, commonly referred to as a reference design. Shown in 

(d) are single-sample within-array designs where the (i) methylated or (ii) unmethylated fraction is  cohybridized 

to the input fraction from the same genomic sample. (e) shows the single-sample within-array design that 

directly compares the methylated and unmethylated fractions from a given sample.

Enrichment fractions(a)

(b)

(c)

(d)

(e)
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(input)

Two-sample within-array
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DNA METHYLATION ARRAY APPROACHES13.4 

As described in Section 13.2.1, there are two main approaches for detecting DNA methylation using 

array technology: enrichment-based methods and schemes that rely on bisulfi te conversion. The 

following sections give an overview of various methods that exploit these techniques to measure 

DNA methylation.

RESTRICTION ENDONUCLEASE ENZYMES13.4.1 

Restriction endonucleases cut double-stranded DNA by utilizing specifi c recognition sequences in 

the DNA (see Figure 13.5a–d for a description of the distinct cutting properties of different 

enzymes). Some restriction enzymes are methylation-sensitive: if their recognition sequence con-

tains a CpG, methylation at this site can prevent endonuclease activity [37,38]. Similarly, other 

enzymes are methylation-dependent (Figure 13.5d). Additionally, many methylation-sensitive 

restriction enzymes (e.g., HpaII and MspI ) also have nonsensitive isochizomers; these cut the same 

sequence and are therefore useful in control experiments. As a result of their ability to detect 

methylated or unmethylated DNA sequences, several low- and high-throughput techniques for 

assessing DNA methylation are based on methylation-sensitive restriction endonucleases.*

METHYLATION-SENSITIVE/DEPENDENT DIGESTION WITH PCR ENRICHMENT13.4.2 

A popular enzyme-based approach for DNA methylation arrays combines the following steps 

(Figure 13.6). The genomic DNA sample is fi rst digested with a frequent cutting methylation-sensitive/ 

dependent enzyme (Figure 13.6a). Since this enzyme’s recognition site is small enough to be found 

regularly throughout the genome and does not contain a CpG, the resulting fragments are usually 

small enough to be subjected to polymerase chain reaction (PCR) amplifi cation. The digested DNA 

* A list of the canonical recognition sequences of methylation-sensitive enzymes is available at http://rebase.neb.com/

rebase/rebms.html.

Methylated versus unmethylated Unmethylated versus input

More often
methylated

More often
unmethylated

More often
unmethylated

M

M
A

More often
methylated

(a) (b)

A

FIGURE 13.4 (See color insert following page XXX.) Illustrations of MA-plots for DNA methylation array data 

for experiments where (a) the methylated and unmethylated fractions from a single sample are cohybridized 

and (b) the unmethylated fraction from a single sample is cohybridized with the input (unenriched)  fraction. M 

represents the log-ratio of the Cy5 and Cy3 channel intensities and A represents the log geometric mean of the Cy5 and 

Cy3 channel intensities. Dots represent M and A values for probes on a microarray. Methylation status is based 

on an average over the genomic DNA from all cells in the sample. Blue dots correspond to sequences that are mostly 

methylated in the sample, whereas red dots correspond to sequences that are mostly unmethylated in the sample. 

Unfi lled circles correspond to sequences whose methylation status is ambiguous. Methylated and unmethylated 

sequences are more easily distinguished in (a) than (b). Theoretically, there should be no positive M values in (b).
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fragments are then ligated with linkers (Figure 13.5e); subsequent steps depend on the experiment’s 

design (see Section 13.3).

If the design in Figure 13b(i) is employed, a methylation-sensitive enzyme is used and the  process 

is repeated independently for a second sample (Figure 13.6b). During linker-mediated PCR the 

uncut fragments are amplifi ed, leading to an enrichment of methylated sequences. The enriched 

fractions from each sample are then cohybridized to a microarray.

This method is generally known as DMH [27–32] and was developed to compare the methylation 

status of CpG islands in a test and reference sample. For the initial cutting step DMA uses MseI 
digestion; MseI’s recognition sequence (TTAA) is found frequently within bulk DNA, but rarely in 

CpG islands that therefore remain intact [10] after digestion. For the digestion step, DMH uses a 

combination of the methylation-sensitive enzymes, BstUI, HhaI, and HpaII. However, these enzymes 

are active under different conditions, which result in two separate digestion steps.

The next two methods start by splitting the fragmented sample into two. If the design described 

in Figure 13.3d is used, half the sample is set aside while the other half is digested using either a 

methylation-sensitive or methylation-dependent enzyme (Figures 13.6b,d or Figures 13.6c,d, 

 respectively). The two fractions are then amplifi ed separately using linker-mediated PCR before 

being cohybridized. This method is a modifi cation of DMH that allows a sample’s methylation 

 status to be measured without using reference DNA [39]. Nouzova et al. [39] applied this method, 

using MseI for the initial digestion step, before creating the unmethylated fragment by digesting half 

the sample with McrBC, an enzyme that restricts methylated sequences and has a recognition 

sequence that is very frequent within CpG islands.

Finally, if the design in Figure 13.3e is used, one half of the sample is digested using a 

 methylation-sensitive restriction enzyme while the other is digested with a methylation-dependent 

enzyme (Figures 13.6b,c). The two fractions are then amplifi ed (using linker-mediated PCR) before 

being cohybridized. This approach was adopted by [33,34] and was motivated by a desire to  compare 

methylated and unmethylated sequences within a single sample on an array. Like DMH and the 

method of Nouzova et al. [39], they begin by digesting genomic DNA with a frequent cutter, before 

digesting unmethylated sequences using a bioinformatically derived set of methylation-sensitive 

FIGURE 13.5  (See color insert following page XXX.) Restriction endonuclease enzymes cut double-stranded 

DNA at given recognition sites. These enzymes have different properties and activities, including (a) blunt cut-

ting enzymes that leave no overhanging ends; (b) sticky cutters that leave overhanging ends; (c) methylation-

sensitive enzymes (that only cut if their recognition site is unmethylated); and (d) methylation-dependent enzyme 

cutters. Linkers can be ligated to sticky or blunt ends and used to prime PCR amplifi cation (e).

Blunt cutter(a)

(b) (d)

(c) (e)

Sticky cutter

5Cm sensitive cutter

5Cm cutter

Linker amplification
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enzymes that provide the maximum number of restriction sites within the predicted target fragments. 

In contrast, methylation-dependent digestion is performed using only a single enzyme.

STICKY ENZYME APPROACHES13.4.3 

Another method takes advantage of sticky cutting enzymes (Figure 13.5b) to separate methylated 

and unmethylated DNA; two variations on this approach are described in the following sections.

Enrichment of Consecutive Methylated Sites13.4.3.1 
Genomic DNA is digested with a methylation-sensitive blunt cutting enzyme [Figure 13.7b(i)] before 

a sticky cutting enzyme with the same recognition sequence is applied [Figure 13.7b(ii)]. If the 

recognition sequence for these enzymes is unmethylated, the DNA will be cut with blunt ends; the 

situation is reversed if the recognition sequence is methylated. Linkers are then ligated to the sticky 

ends [Figure 13.7b(iii)] and only fragments with sticky cuts at both ends are amplifi ed [Figure 

13.7b(iv)]. The amplifi ed fragments correspond to sequences that contain consecutive methylated 

recognition sites.

FIGURE 13.6  (See color insert following page XXX.) Enzyme approaches for obtaining methylated (b), 

unmethylated (c), and input (d) fractions from a single sample. Genomic DNA is cut with a frequent sticky 

cutter (a), linkers are ligated and the sample is split. Then separate fractions can be subjected to (b) unmethy-

lated sites are digested such that intact sequences are amplifi ed; (c) methylated sites are digested such that 

intact unmethylated sequences are amplifi ed; and (d) the input sample (with ligated linkers) is amplifi ed. 

Linker PCR amplifi cation involves denaturation step to make single-stranded DNA that is used as a template 

for amplifi cation. Any of the fractions from (b), (c) or (d) can then be cohybridized to an array.

Frequent cutter and linker ligation
(could be a sticky or blunt cutter)

Split sample

(a)

(b) (c) (d)

Split sample

Linker PCR amplification Linker PCR amplification Linker PCR amplification

Unenriched (input) sequencesEnriched for unmethylated sequencesEnriched for methylated sequences

Digest unmethylated CpG Digest unmethylated CpG
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The method of methylated CpG island amplifi cation (MCA) [40] uses this approach. It compares 

two samples by applying the methylation-sensitive blunt cutting restriction enzyme SmaI followed 

by the sticky cutting enzyme XmaI, both of which have the same recognition sequence. Historically, 

MCA was combined with a low-throughput method called representational difference analysis 

(RDA) [41]. One disadvantage of this approach is its dependence on an amplifi cation step to enrich 

for sequences with consecutively methylated recognition sites. However, its biggest limitation is its 

reliance on the recognition sites (of the enzymes chosen) occurring frequently throughout the 

genome. If the gap between recognition sites is large compared to the size of a methylated region, 

the methylated sequence may not be detected. Hence, this method is only useful for detecting meth-

ylation in regions with closely spaced recognition sites.

FIGURE 13.7  (See color insert following page XXX.) Enzyme approaches (a) that do not require amplifi -

cation and (b) that require consecutive methylated recognition site for enrichment. In (a), genomic DNA is 

digested with a blunt cutter (i) and the sample is split (ii). One half is further digested with a methylation-

sensitive sticky cutter (iii), the sticky ends are fi lled with biotin-labeled nucleotides and strong binding 

 streptavidin-coated magnetic beads are added. Sequences bound to the beads are extracted (using a magnet) 

(iv) and a decoupling reaction is used to release the bound sequences (v). In (b), a methylation-sensitive blunt 

cutter digests the genomic DNA (i) and the sample is split (ii). One half is further digested with an enzyme 

[with the same recognition sequence as in (i)] whose activity is not inhibited by methylation (ii). After linker 

ligation (iii), only sequences with both 3¢ and 5¢ linkers are amplifi ed (iv).
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Methylation-Sensitive Sticky Cut Enrichment13.4.3.2 
For this method, genomic DNA is digested with a frequent cutting blunt DNA restriction enzyme such 

as EcoRV (Figure 13.7a), along with a methylation-sensitive restriction enzyme (e.g., NotI or BssHII) 
that leaves sticky ends, resulting in an overhang on one strand of DNA. Consequently, unmethylated 

fragments of DNA (including those contained in unmethylated CpG islands) have the characteristic 

overhang seen in Figure 13.5b. The cleaved ends of these fragments are then fi lled with modifi ed 

complementary nucleic acids [Figure 13.7a(iii)] that have been altered by labeling one of the nucle-

otides with a chemical, such as biotin-dNTP, that is used as a reporter. Biotin compounds form a 

strong ionic bond with streptavidin particles and hence, by coating magnetic beads with streptavidin, 

unmethylated fragments can be extracted from the digested DNA. Subsequently, the unmethylated 

fragments are removed from the magnetic beads using affi nity purifi cation before being cohybridized 

with reference genomic DNA. Ching et al. [42] applied this method using the enzyme, NotI.
An advantage of this approach is that the extracted unmethylated DNA does not have to be 

amplifi ed before hybridization. However, blunt double-stranded cutting enzymes cut at a hexamer 

located randomly throughout the genome and, consequently, they are unable to discriminate between 

methylated and unmethylated regions. This could lead to small methylated sequences being included 

in the (supposedly) unmethylated DNA fragment. It is possible to use bioinformatic techniques to 

determine exactly where the enzyme will cut and so, in theory, this situation could be modeled. 

Another problem is that the ionic bond formed between biotin and streptavidin is extremely strong. 

To break this bond and extract the unmethylated fragment, the affi nity purifi cation requires the use 

of a low pH, a high temperature, and a strong denaturing agent (such as formamide). The subsequent 

purifi cation of the extracted DNA prior to hybridization can result in a loss of yield.

LIMITATIONS OF ENZYME-BASED APPROACHES13.4.4 

Methylation-sensitive restriction-based approach have several advantages. In particular, no base mod-

ifi cation is required (unlike bisulfi te modifi cation methods) and they are relatively straightforward, 

specifi c, rapid, and inexpensive (certainly compared to HPLC/mass spectrometry). Furthermore, 

sequence data from the Human Genome Project makes it possible to identify recognition sequences 

of methylation-sensitive restriction enzymes, allowing the prediction of restricted fragment sizes 

which enables identifi cation of the best combination of enzymes for a particular assay. The main 

disadvantage of using a methylation-sensitive restriction method is the enzyme’s inherent inability to 

digest completely the methylated sequences within the sample. For this reason, combined enzyme 

and antibody approaches have been suggested (Figure 13.8b). Additionally, the number of CpGs a 

single enzyme can assess depends upon its recognition sequence (Figure 13.9d), and the size of 

resulting fragments relative to the regions of methylated and unmethylated DNA (Figure 13.10b). We 

note that human sequence information, in conjunction with bioinformatics tools, allows the identifi -

cation of restriction enzymes that can assess the methylation status of a particular CpG. Bioinformatic 

techniques can also be used to identify the best combination of enzymes for a particular method so 

that methylation levels for the largest number of loci possible can be assessed.

METHYL ANTIBODY APPROACH13.4.5 

An alternative way of measuring DNA methylation on a genome-wide basis is to use a methyl 

 antibody approach known as methylated DNA immunoprecipitation (MeDIP) [43]. As shown in 

Figure 13.8a, methylation-specifi c antibodies are used to enrich methylated fragments of the genome 

[43–45] and, by cohybridizing these with a reference sample, it is possible to identify methylated 

regions of the genome.

The method used to enrich the methylated fragment is analogous to the immunoprecipitation step 

in ChIP-chip experiments. After shearing the DNA (Figure 13.9a), a mouse monoclonal antibody 

against methylated cytosine is used to enrich for methylated fragments. DNA that has been sheared, 

Q1
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but not treated with the antibody, is used as the reference sample. After labeling the two samples with 

fl uorescent dyes, they are hybridized to an array, and the data generated can be used to fi nd methylated 

regions. The principle difference between ChIP-chip and MeDIP is that, in ChIP-chip experiments, 

the regions enriched for a particular protein tend to be symmetrical (Figure 13.10b) but, when MeDIP 

is performed, the level of methylation across a region can vary nonsymmetrically (Figure 13.10c). For 

example, a CpG island might display more methylation at the 5¢ end relative to the level observed 

across the rest of the island. This means that analysis methods for ChIP-chip experiments may not be 

directly applied to data obtained using MeDIP; for more discussion of this, see Section 13.6.

MeDIP approach(a) (b)
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FIGURE 13.8 (See color insert following page XXX.) Approaches using (a) MeDIP antibodies and (b) 

enzyme digestion and antibodies. In (a), genomic DNA is sheared (i) and the sample is split (ii). Antibody 

proteins that bind to methylated CpGs are added to one half (iii) and sequences with bound antibodies are pre-

cipitated and this enriched sample is purifi ed. PCR amplifi cation may be used (iv) depending on the amount of 

sample required for hybridization. In (b), genomic DNA is digested with a sticky cutter (i), linkers are ligated 

and the sample is split (ii). One half is further digested with a methylation-sensitive enzyme leaving methylated 

sequences intact. Any unmethylated sequences that remain intact (escaping digestion) are subsequently removed 

using the MeDIP appraoch (iv). Finally, the sample is purifi ed and (v) amplifi cation may be used.
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Antibody enrichment is known to be ineffi cient but importantly (and unlike restriction enzyme-

based approaches) it is very specifi c. This means there is limited bias in the MeDIP enrichment but, 

if the amount of starting material is small, amplifi cation may be required. Moreover, it is dose- 

dependent—the level of enrichment is positively correlated with the number of methylated  cytosines 

(Figure 13.10c). However, there are also a number of drawbacks. In particular, the dose-dependency 

means that the CpG density of a region has to be considered in the analysis step to avoid the methy-

lation of regions with low CpG content being underestimated. Additionally, it has been shown 

empirically that regions with a CpG density of <2% are not enriched effi ciently. Notwithstanding 

these problems, MeDIP is a promising strategy for genome-wide methylation analysis as evidenced 

by a recent publication that used it to elucidate the genome-wide DNA methylation profi le of 

Arabidopsis, the fi rst high-density methylation profi le of any genome [46].

FIGURE 13.9  (See color insert following page XXX.) (a) Genomic DNA shearing; depicted are three genomes 

(i) which (after shearing) results in random overlapping fragments (cyan segments) (ii) of varying size depending 

on the amount of shearing applied. The overall size of the fragments should be confi rmed by running the sample on 

an electrophoresis gel (iii). Bearing in mind the overlapping fragments resulting from genomic shearing, data 

obtained from consecutive probes along the genome (c) will be correlated. The extent of correlation between neigh-

boring probes depends on the size of the average target fragments (cyan segments) relative to the probe resolution 

(spacing). In (c) where there is a high relative probe resolution, a single fragment may potentially bind to fi ve neigh-

boring probes, but where there is a low relative probe resolution, a given fragment may only bind to one probe. 

(b) If enzyme digestion is used to fragment the genome, infrequent cutting (ii) results in regions of altered methyla-

tion status (R1–R3) with ambiguous methylation. In contrast, where restriction sites are just as frequent as regions 

with altered methylation status (i), target fragments will be informative for methylation. (d) Often a combination of 

enzymes (i) is required for effective and informative digestion of DNA. For a given fragment, enzyme 1 has three 

recognition sites, (ii), enzyme 2 has two recognition sites (ii) and enzyme 3 has three recognition sites (iii). The 

combination of enzymes 1 and 2 results in fi ve of the nine CpGs being included in a recognition site (ii).
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DETECTING METHYLATED DNA BY METHYL-CPG BINDING DOMAIN 13.4.6 
PROTEINS AFFINITY PURIFICATION

As described in Section 13.2, the methylation of CpG islands associated with genes can have a 

direct effect on gene expression by inhibiting the recruitment of certain transcription factors that are 

essential for gene expression [47]. However, accumulating evidence suggests that DNA methylation 

changes are associated with alterations in chromatin structure through post-translational modifi ca-

tion of histones, or physical remodeling of chromatin structure [48,49]. Moreover, a functional link 

has been established between DNA methylation and chromatin structure, including a cumulative 

effect of both DNA methylation and chromatin modifi cations (e.g., histone deacetylation) on gene 

expression, implying a cooperative function [48]. A further link between DNA methylation and 

functional histone modifi cations is the family of DNA methyl-CpG binding domain proteins (MBD 

or MeCP) [31]. Certain members of this protein family bind specifi cally to symmetrically  methylated 

CpGs and interact with large transcriptional repressor complexes that switch off gene expression 

FIGURE 13.10  (See color insert following page XXX.) Log-ratio data for probes along the genome illus-

trating typical changes that are observed in (a) array CGH experiments, (b) ChIP-chip experiments, and (c) 

MeDIP methylation array experiments. Changes in log-ratio data are expected to appear like (a) gained or lost 

segments, (b) positive symmetric peaks, and (c) variably peaked regions (positive or negative, after normaliza-

tion). In (c), the variable peak heights of a methylated region depend on the density of methylated CpGs. In 

addition to CpG density effects in MeDIP data, there will be (d) probe effects. Real changes in methylation 

(sample 3, blue data points) can be distinguished from changes due to probe effects when there are multiple 

samples. Similar probe effects are observed in samples 1, 2, and 3. However, sample 3 is differentially methy-

lated across a fi ve-probe region compared to the other samples.
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[49,50]. Therefore, the MBD family of proteins is thought to provide a functional link between DNA 

methylation and chromatin modifi cations that result in altered gene expression.

The specifi city of certain MBD family members for methylated CpGs has been utilized in an 

alternative approach for identifying methylated regions. This technique, recently termed methy-

lated-CpG island recovery assay (MIRA), involves the use of an immobilized MBD protein on a 

solid matrix over which the fragmented DNA sample of interest is passed, resulting in the affi nity 

purifi cation of methylated regions and the elution of unmethylated regions [10,51–54]. The isolated 

methylated DNA fragments can then be applied to genomic microarrays or analyzed by quantitative 

PCR. Several variations of this approach have been published using either the full-length MeCP2 

protein, full-length MBD2, the MBD2/MBD3L1 complex, or the core MBD domain of MBD2 for 

affi nity purifi cation of methylated DNA [10,51–54]. Since full-length MBD proteins may have 

 preference for certain sequences [55], it is likely that the use of the core MBD domain of MBD2 

would provide the least biased approach. An alternative reagent has been recently described which 

may provide increased sensitivity and specifi city of MIRA-like approaches, using an engineered 

poly-MBD protein [56].

MIRA has several advantages over other global methylation screening techniques. The MBD 

domains utilized in MIRA bind specifi cally to heavily methylated DNA, compared to restriction 

enzyme or methyl-cytosine antibody techniques which may also identify sites of single methylated 

CpGs. Further, the MBD proteins link DNA methylation, histone modifi cation, and gene expres-

sion. Therefore, MBD purifi cation approaches may isolate functionally relevant regions of the 

genome that are associated with the control of gene expression. However, these advantages also 

limit the types of sequences that can be isolated by MIRA—if a sequence is not suffi ciently methy-

lated, it may be missed by this technique.

A recent approach (COMPARE-MS) combined a restriction enzyme-based approach and MIRA 

to isolate methylated sequences [57]. This was reported to have increased sensitivity and to be appli-

cable for high-throughput screening, suggesting that it may allow DNA methylation screening in the 

clinical setting.

ARRAYS FOR BISULFITE-TREATED DNA13.4.7 

Most of the high-throughput methods discussed thus far have used enrichment-based approaches. 

An alternative is to apply bisulfi te conversion in conjunction with arrays that look for converted 

unmethylated loci and unconverted methylated loci. Previously, this approach has been limited by 

diffi culties in designing probes for converted DNA where there are effectively only three bases—

this can lead to nonspecifi c hybridization. However, a SNP detection approach using beadarrays has 

been developed recently to detect specifi cally bisulfi te converted loci [58].

For a particular locus of interest, four oligonucleotides (two allele-specifi c and two locus- specifi c) 

are used. The 3¢ end of the allele-specifi c oligos are designed to hybridize with the bisulfi te- modifi ed 

DNA—one oligo will hybridize if the cytosine base has been converted to uracil, whereas the other 

will hybridize if no conversion has occurred. Moreover, a different PCR priming site is attached to 

the 5¢ end of each oligo and these sites are fl uorescently labeled with different dyes. The locus-

specifi c oligos are designed so that the 5¢ end has a locus-specifi c sequence, the 3¢ end is a universal 

PCR priming site, and in the middle is an address that identifi es the oligo with a genomic location. 

The sequences differ between the locus-specifi c oligos; for one oligo it is assumed that the CpG 

of interest is methylated and consequently all CpGs in the locus-specifi c sequence will also be 

 methylated and vice versa. Subsequently, where there is allele-specifi c hybridization, a one-step 

primer extension is performed to ensure that perfect matching has occurred at the allele-specifi c 

methylation site. Next, the locus-specifi c oligos are ligated to their appropriate partner and the 

 subsequent products amplifi ed using PCR before being hybridized to a beadarray using standard 

techniques [59]. The methylation level can be measured by observing the amount of fl uorescence 

emitted by the dyes attached to the primers of the allele-specifi c oligos.
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The principal advantage and drawback of this method are related to the (very strong) assumption 

that all CpGs around the locus of interest share the same methylation status. While this means it is 

possible to have high confi dence that any observed differences in methylation will be genuine, it 

is also known that (even locally) CpGs may not have the same methylation status. Consequently, if 

only one of the CpGs around the locus of interest has a different methylation status, the methylation 

status of the CpG of interest cannot be determined since neither allele-specifi c fragment can be 

amplifi ed.

ARRAY CHOICES13.5 

Designing a microarray to investigate DNA methylation on a genome-wide level is a challenging 

problem. The investigator has to decide whether to use bacterial artifi cial chromosomes (BACs), 

CpG island clone libraries, or oligonucleotide (oligo) probes and, given this, what resolution (cover-

age) the probes should have and where they should be located on the genome.

One method is to use whole-genome BAC arrays originally designed for array comparative 

genomic hybridization (array CGH) studies [43]. BACs (~120 Kb long) are tiled across the genome 

and so all CpG islands (or other methylated regions) should be contained within, or straddle two or 

more, BACs depending upon the relative sizes of a given CpG island and the BACs covering that 

region. An advantage of this method is that BAC arrays already exist for many organisms and could 

be adapted easily for methylation studies. BACs also provide coverage in regions of the genome 

where it is diffi cult to design smaller probes due to repetitive sequence content. Additionally, because 

of the length of the probes, the noise associated with BAC array data is low relative to other microar-

ray technologies. However, the length of a BAC relative to a CpG island means these arrays may not 

be sensitive enough to detect either small changes in methylation or small regions of methylation. In 

particular, many CpG islands (or other methylated regions) could be contained within a single BAC, 

resulting in data that are diffi cult to interpret. Further, even if only one methylated region is con-

tained within a BAC, the large disparity in size between this region and the BAC may affect the 

hybridization and result in data where it is diffi cult to distinguish between noise and truly methy-

lated regions.

An alternative approach is to use CpG island arrays, where the probes are taken from CpG island 

libraries [10]. In this case, there is no ambiguity about the location of the methylated regions—this 

is the principal benefi t of this method. However, there are a number of problems; for example, it is 

assumed that all methylation of interest occurs in CpG islands—this is not necessarily  so. Moreover, 

CpG island arrays often include probes that are not CpG islands or that are made up of repetitive 

genomic sequences; this can lead to an increase in the level of background noise due to cross-

hybridization. Consequently, the downstream analysis of such arrays requires expert bioinfor-

matic support.

Another method is to use oligo arrays. This area is developing rapidly but, as yet, no publications 

have described its application to genome-wide DNA methylation studies. However, it is likely that 

such publications will arise in the near future. Unlike BACs, oligos are small (generally between 25 

and 70 bp in length) and are therefore not practical to generate an array where they are tiled across 

the whole genome. Consequently, when using oligo arrays to investigate DNA methylation, it is 

necessary to choose between a number of different layouts. One option is to space the oligos 

(approximately) evenly across the genome. Alternatively, promoter arrays or CpG island oligo 

arrays, where oligos are tiled within gene promoter regions or CpG islands, may be used [60]. Both 

of these methods have the advantage of providing more sensitive coverage than a BAC array [61]. 

One obvious advantage of promoter or CpG island arrays is their extremely high coverage in genomic 

regions where methylation changes might be expected to occur—depending upon the resolution, it 

may even be possible to discriminate between different levels of methylation within the same CpG 

island or promoter region. Of course, any of these methods run the risk of differential methylation 

occurring in regions where there are no probes. However, as technology develops, it ought to become 
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possible to design longer oligos (up to 200 bp in length) than are available at present [62]. 

Notwithstanding technical problems caused by repeat sequences, this should allow the design of 

whole-genome tiled oligo arrays that would be ideal for studying DNA methylation.

However, irrespective of the chosen layout, oligo arrays do have some drawbacks. In particular, 

since oligos are much shorter than BACs, the processed signal tends to be noisier. Indeed, when oligo 

arrays are used for array CGH experiments, it is generally necessary to average over a window of 3–5 

consecutive probes to reduce the variability. Nevertheless, the effective resolution of oligo arrays may 

still be greater than BAC arrays, depending upon the density of oligos on a given array [61].

An additional diffi culty when designing oligo arrays is the GC content of individual probes. 

While GC content (and correspondingly the probes’ melting temperature) has been shown not to 

affect the assignation of probes as outliers [63], this is quite different from more subtle changes in 

the observed intensities that may be caused by GC-dependent hybridization effi ciency biases. This 

effect would clearly be aggravated if a probe was located within a CpG island. Moreover, if a DNA 

amplifi cation step is used, this may increase the GC-dependent bias depending upon the protocol 

used for target preparation (the amplifi cation step is less commonly used in array CGH experiments, 

so this problem has not yet been thoroughly examined). It is worth noting that GC-dependent biases 

may be less of a problem if large profi ling studies are being conducted, since cross-sample informa-

tion can be used when calling differentially methylated regions (DMRs) in the analysis step. Of 

course, this assumes that much of the observed variation is systematic (i.e., the variation tends to be 

similar across arrays). Finally, we note that a probe’s GC content is less of a problem in BAC arrays 

(in terms of hybridization bias) because of the probe’s length; however it has still been observed to 

affect the quality of the generated data.

One other important problem, irrespective of the array design, is how target fractions are 

 fragmented. In particular, the relationship between target fragments and the probes they hybridize 

to affect the interpretation of methylation measurements. A summary of the issues involved is given 

in Figure 13.11.

In summary, despite the problems mentioned above, it is likely that (as is already happening with 

array CGH experiments [61]), oligo arrays will supersede BAC arrays in DNA methylation studies. 

This is due principally to their superior resolution and their ability to better target small regions of 

the genome, such as CpG islands and other regulatory regions, where methylation is likely to occur.

DATA ANALYSIS ISSUES13.6 

Two major problems with the analysis of DNA methylation array data are (i) normalization and (ii) 

calling of methylation status at given genomic loci. Owing to the nature of methylation in the mam-

malian genome, global levels of methylation can differ radically between samples. Therefore, nor-

malization of arrays within an experiment can be diffi cult—real differences might be normalized 

away. Calling methylation levels across the genome is also challenging but, given accurate normal-

ization, differential methylation measures can be obtained. Finally, many data analysis issues are 

dictated by the experimental approach and the array and probe design.

NORMALIZATION ISSUES13.6.1 

Regardless of the approach, most microarray-based methods result in log-ratio data that are charac-

teristically asymmetric. The skewness of the log-ratio distribution arises from a fundamental imbal-

ance in methylation levels throughout the genome. In normal cells, there are generally more 

methylated than unmethylated sequences whereas, in cancer or diseased cells, the opposite situation 

can occur. The extent of the skewness is determined largely by the global levels of methylation 

in the samples studied. In addition to this skewness (which is specifi c to DNA methylation 

 experiments), it is also recognized widely that dye-bias is a common problem in two-color  microarray 

experiments that must be corrected.
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Unfortunately, real differences in methylation between samples can be removed through inap-

propriate use of common normalization procedures. This fundamental problem has received little 

attention in the literature despite the fact that it can have a dramatic impact on the results. We now 

consider an example (Figure 13.12) of the type of problem that might arise if an inappropriate 

between-array method is used to remove the skewness. Two arrays are used: in the fi rst, methylated 

sequences enriched from a normal sample are compared to unenriched sequences from the same 

sample, whereas, in the second, methylated sequences enriched from tumor tissue are compared to 

the  corresponding unenriched sequences. The aim of the experiment is to compare DNA methyla-

tion in the tumor and normal samples. In array 2, many more negative log-ratios are obtained 

(corresponding  to a large number of hypomethylated sequences), whereas in array 1 (the normal 

tissue array) more positive log-ratios are observed (corresponding to more methylated than unm-

ethylated sequences). Assume for the moment that there is no dye-bias present in either of these 

arrays so that no correction for this is required (Figure 13.12a). Clearly, the median log-ratio for the 

fi rst array is less than zero, whereas for the second array it is greater than zero. If a (between-array) 

median normalization were performed to make the two arrays “comparable” (i.e., both centred at 

zero), real differences in methylation between the tumor and normal array would be removed, as 

shown in Figure 13.12b. Consequently, even in the absence of dye-bias, performing between array 

normalization can be dangerous and should be performed only with great care.

FIGURE 13.11  (See color insert following page XXX.) Relationship between target fragments and probes 

in the interpretation of methylation measurements across probes. Fractionation of the genome by enzyme 

digestion results in predicted target fragments. Fractionation by shearing yields random (i.e., overlapping) 

target fragments. Target fragments that hybridize to a given probe determine the amount of methylation mea-

sured at that probe.
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NORMALIZATION OPTIONS13.6.2 

In an ideal experiment with no dye-bias (or other biases due, for example, to amplifi cation or 

 labeling), any global shift or skewness in log-ratios could be interpreted as a real difference in the 

proportion of methylated and unmethylated sequences present. However, dye-biases do occur and 

this variation is confounded with global changes in methylation. Consequently, it is diffi cult to 

assess whether a shift in log-ratios is due to dye-bias or real differences in global methylation. This 

is a particular problem in experiments that involve DNA methylation array profi ling of samples 

with very different methylation profi les (e.g., experiments involving normal and tumor samples are 

very diffi cult to  normalize). The one situation where dye-biases may be effectively normalized is 

where appropriate and reliable exogenous controls are available. Otherwise, it may be preferable to 

avoid dye-bias normalization. Alternatively, the investigator might normalize any obvious 

 intensity-dependent effects without shifting the overall location of the log-ratios to zero. This might 

be achieved by applying a loess normalization followed by a global correction of the log-ratios 

back to their orginal median value. However, this approach does not seem very satisfactory. 

Methods such as VSN [64] or other affi ne transformations [65] may provide a normalization that is 

more robust to the asymmetry.

The practicality of using exogenous spiked controls depends on two main factors. The fi rst is 

whether the intensity values of the controls cover suffi ciently the range of possible intensities. This 

determines if an intensity-dependent normalization based on these controls is possible. The 

 availability of such controls depends entirely on the number of different control probes on the array 

and whether the experiment is designed to use them in this way. The second, and probably more 

important, factor is whether the spiked material has been added in precisely the same amounts in 

both channels of the experiment—if not, a spike bias will be introduced into the normalization. 

FIGURE 13.12  (See color insert following page XXX.) Diagram of MA-plots for two arrays after (a) cor-

rect normalization and (b) incorrect normalization. Shaded regions in the plots represent the areas of the plot 

where data would be observed. Blue areas represent data from truly methylated sequences. Orange areas 

 represent data from truly unmethylated sequences. The sample hybridized to array 1 has considerably more 

methylated sequences than the sample hybridized to array 2. After correct normalization (a), methylated and 

unmethylated regions coincide with the M = 0 line for both arrays; positive M-values correspond to true 

methylation and negative M-values correspond to true unmethylation. After incorrect normalization, array 2 

(which has been globally centerd) has some of the methylated region below the M = 0 line, falsely represented 

as unmethylated.
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Spike biases can occur due to pipetting errors arising from trying to aliquot very small quantities of 

material—typically the amount of spiked material is very small relative to the amount of target 

material. To account for this problem, spiked material is generally diluted so that greater volumes 

are added, minimizing the chance of pipetting-based errors. However, there may be a constraint on 

the total volume of target material allowed (e.g., when a hybridization chamber is used). Additionally, 

it is possible that to cover the full range of intensities, spike controls at high concentrations may 

dominate the amplifi cation step.

In expression array experiments, titration controls have also been used [36]. Here, all probes on 

the array are pooled, and a serial dilution of the pool is spotted onto the array, assuming that both 

samples hybridize equally to this pool, these controls can be used for normalization. A disadvantage 

of this approach is its presumption that these custom spots can be printed on the array. Additionally, 

the assumption that both target fractions will hybridize equally to the titration pool may not be valid 

for all samples and approaches.

For enzyme-based DNA methylation array approaches there exists a class of probes that are 

potentially useful for normalization. These so-called uninformative probes do not have restriction 

sites for the enzymes used to enrich for methylated or unmethylated fractions. The presence of such 

probes depends on the type of array being used. Probes on CpG island arrays are based on sequence 

libraries obtained by cutting the genome with MseI. Therefore, if MseI genomic digestion is used to 

fragment the genome, the probes will correspond to predicted target sequences. Target sequences 

without internal digestion sites should hybridize equally (to their corresponding probes) in both 

channels. If an oligo-based array is used, such uninformative probes may not be available. However, 

if the oligo probes are designed to be contained within predicted target sequences, there will be 

uninformative probes that may be used for normalization. Obviously, if the genomic DNA is sheared, 

rather than fragmented into predicted sequences using enzyme digestion, uninformative probes will 

not exist. Uninformative probes are also useful for quality assessment—the variability in their log-

ratios refl ect the inherent quality of the experiment and the log-intensities indicate the level at which 

single-copy sequences are detected (after amplifi cation).

In experiments incorporating technical dye-swaps for every array, dye-bias self-correction may 

be suffi cient. However, care must be taken to check the basic assumption that the dye-bias is the 

same between the dye-swap pair. If labeling occurs during the amplifi cation step, dye-swaps are not 

true technical replicates since different amplifi cation steps would have been used. In this case, dye-

bias self-correction may not be appropriate since differences in amplifi cation biases between arrays 

are confounded with dye effect. It might be hoped that normalization of a large reference design 

experiment would be helped by utilizing intelligently the fact that the reference channel is common 

to all arrays. However, as with using dye-swaps for self-normalization, it is important that the refer-

ence channel is indeed a technical replicate (i.e., same fragmentation, enzyme digestion or enrich-

ment, amplifi cation, and labeling steps) in each array.

DNA methylation experiments involving samples with similar global levels of methylation are 

easier to normalize. While the log-ratios for each array may still be considerably skewed, the impor-

tant assumption is that the extent of skewness is roughly the same for all arrays within an experi-

ment. Consequently, within-array intensity-dependent dye-bias normalization would modify the 

overall log-ratios for each array by the same amount. In other words, the arrays would be compa-

rable to each other, but perhaps not to external experiments that include samples with signifi cantly 

different global methylation levels. This approach to normalization and subsequent analysis of DNA 

methylation array data is thus restricted to homogeneous collections of samples.

QUALITY ASSESSMENT OF DNA METHYLATION ARRAYS13.6.3 

Quality assessment is a critical step in the analysis of any microarray experiment. As for expression 

arrays, it is crucial to identify features that determine whether an experiment is of good quality. For 

example, one feature that might indicate a problem in the experiment is obvious dye-bias. One way of 
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exploring if this occurs is to compare plots of the red and green channel log-intensity distribution within 

and between arrays, as well as between different experimental batches. Other features of concern are 

spatial effects across the array or a low overall foreground-to-background signal intensity ratio.

In addition to examining these problems, another crucial quality control step is to generate 

MA-plots for every array and to compare the scatter before and after processing steps such as back-

ground correction and normalization. Caricatures of typical MA-plots observed for methylation 

experiments produced using different experimental designs and protocols are shown in Figure 13.4.

Given the extremely complicated experimental protocols described in Section 13.4 to effectively 

perform the quality assessment steps described above, it is crucial to have a suffi cient number of 

replicate arrays, particularly technical replicates and dye-swaps. Besides being a very useful tool for 

determining the reliability of the data, replicate arrays also (for example) allow the investigator to 

discern what sort of MA-plot is associated with good quality data for a particular approach. 

Additionally, as more and more experiments are performed, the characteristics that are important in 

determining whether a dataset is of good quality will become apparent.

ANALYSIS OF METHYLATION DATA13.6.4 

A key motivation for using DNA methylation arrays is to answer the question: how and where in the 

genome is my sample methylated? This involves trying to infer absolute methylation levels across 

the genome for a given sample. Alternatively, where a sample is compared to another (within an 

array), an equivalent aim would be to call changes in relative methylation levels across the genome. 

While single arrays can be used to determine relative methylation levels, multiple arrays are required 

to fi nd DMRs of the genome (i.e., regions that are consistently differentially methylated).

In Section 13.4.2, we describe methods for fi nding DMR [i.e., regions of the genome that are 

 differentially methylated between samples (arrays)], while in the following section we concentrate 

on methods for calling methylation within an array.

Calling Methylation within an Array13.6.4.1 
Low-throughput approaches (e.g., those based on bisulfi te sequencing) often summarize results at 

individual CpGs as a percentage methylation measurement. Regardless of whether this is entirely 

meaningful (even from low-throughput data inferences) it is unlikely to be a feasible objective for 

array experiments.

Even ignoring problems caused by sample heterogeneity, a number of experimental factors make 

determining absolute methylation levels extremely diffi cult. For example, if the MeDIP approach 

has been used (Section 13.4.5), the number of binding sites of the methyl antibody in a particular 

region clearly impacts upon the amount of DNA amplifi ed and this will affect the intensity (and 

hence the amount of methylation) observed. In particular, if two regions are fully methylated, but 

one has more binding sites, it will be enriched more effi ciently and appear to be more methylated 

(Figure 13.10c). Consequently, it may not be biologically meaningful to state that methylation in one 

genomic region is greater than another. Similarly, for methylation-sensitive restriction enzyme-

based approaches (including the NotI approach) the location of the restriction sites will determine 

how much sample DNA can be extracted and subsequently hybridized. Thus, if two regions are fully 

methylated but one contains a larger number of restriction sites, it might be more effi ciently enriched 

and thus appear to be more methylated. One way to resolve this problem could be to locate an 

enzyme’s restriction sites and factor this information into the analysis. However, given that hybrid-

ization biases will also occur, this is likely to be diffi cult. While bioinformatic approaches may be 

able to tackle this problem, it is not clear that they will be able to model other sources of bias that 

can impact upon the investigator’s ability to measure absolute methylation. For example, will it 

be possible to model probe effects, enzyme or antibody effi ciencies, restriction site or binding site 

frequencies, and amplifi cation biases? These biases will undoubtedly be protocol (and even lab) 
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specifi c and very diffi cult to generalize. Moreover, very large experiments, involving extensive 

 replication would probably be required to measure them.

Even if sample homogeneity could be assumed and the biases mentioned above were either non-

existent or removed, it is unlikely that regions 80% methylated could be distinguished with confi -

dence from regions 90% methylated in the same sample—there would be considerable overlap in 

the data from both groups. However, it is realistic to expect (barring uninformative probes) that 

regions that are 10% methylated can be confi dently distinguished from those that are 90% methy-

lated. Despite appearing rather trivial, this represents a very meaningful biological difference, and 

is arguably more important than a measured (but not necessarily real) difference of 10% in methyla-

tion. To make this process more straightforward, probes in uninformative regions (i.e., having few 

restriction or binding sites, for example) can be identifi ed bioinformatically and removed or down-

weighted. Moreover, probes that bind to fragments containing repetitive elements can also be con-

sidered for downweighting in statistical analyses.

Despite this, analyses that aim to attach an absolute methylation score (such as a percentage 

value) should proceed with caution for the reasons described above. However, calling changes in 

methylation levels across multiple probes is somewhat easier, particularly if the probe and target 

fragment resolution are high enough (Figure 13.9c). Analyses that average adjacent probes’ log-

ratios might allow better calling of true methylation changes in that region since many of the biases 

discussed above can essentially be averaged out. This may be acheived using a method as sophisti-

cated as an HMM or as simple as a sliding window averaging technique. It is likely that HMM 

approaches might be problematic, not least because (i) many arrays will not have enough probes 

(relative to the size of methylated regions); and (ii) probes will probably be unequally spaced across 

the genome (i.e., there may be large gaps between probed promoter or CpG island regions).

Instead of attempting to fi nd absolute levels of methylation for each probe on an array, an alterna-

tive is to fl ag probes or regions where there is a difference in the relative methylation of the test sample 

to the reference sample; a number of analytic methods have been proposed for fi nding such regions.

Where microarrays have been used to investigate methylation at a genome-wide level [42,43], 

threshold-based approaches have been employed. This fl ags probes if their log-ratio is above or 

below a threshold generally derived from the standard or median absolute deviation of the log-ratios 

from all of the probes on the array. While this approach is simple to understand and implement, it 

fails to take account of all the information provided. It does not utilize the spatial dependency (i.e., 

probes that are genomically adjacent to each other are more likely to have the same methylation 

status than probes which are further apart) inherent in the data (Figure 13.9c). As the resolution of 

the arrays used for methylation analysis increases, it will become more important to take this into 

account; this will necessitate the development of model-based approaches.

Many analysis methods for fi nding copy number changes using array CGH experiments or regu-

latory elements/transcription factors using ChIP-chip techniques take spatial features into account 

[66–69] and, at fi rst glance, some of these methods can be easily modifi ed and applied to the prob-

lem at hand. However, there are a number of diffi culties. The principle problem when modifying 

methods designed for analyzing array CGH data is that methylation status can change gradually 

over a region of the genome, whereas for array CGH data, it is assumed that copy number changes 

occur in steps (Figure 13.10a). Consequently, such methods might lead to an underestimation of the 

size of methylated regions (Figure 13.10c). (This will also be a problem for threshold-based 

approaches.) For ChIP-chip experiments on the other hand, analysis methods are designed to look 

for “bumps” (Figure 13.10b) which, superfi cially, seems more desirable. However, ChIP-chip analy-

sis methods often assume that the bump is symmetrical and they are generally only interested in 

fi nding its centre—the peripheral region is of less interest. Additionally, ChIP-chip analysis tech-

niques often rely on there being a large number of replica experiments [66]; this is unlikely to be the 

case for DNA methylation arrays due to the often large amounts of DNA required, the cost of such 

experiments, and the fact that this has not yet become a requirement in the literature.

Q1
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Despite this, it seems likely that model-based approaches for tackling this problem will be devel-

oped; these approaches will depend on the technology used and the possibilities afforded by more 

repeated design experiments. However, it is diffi cult to speculate about the form this method will take. 

Moreover, until large datasets exist where the methylation status of the whole (or at least large parts of 

the) genome have been confi rmed, it will not be possible to assess the effi cacy of  different methods.

Differential Methylation13.6.4.2 
All the methods described in the previous section can be thought of as “within-array” analysis. 

Another problem is how to combine information across arrays to explore whether regions of the 

genome are differentially methylated between samples. Methods for fi nding DMRs are heavily 

dependent upon the experimental design. For example, if the design illustrated in Figure 13.3c is 

employed, the same common reference sample must be used, otherwise cross-array inferences to 

fi nd DMRs are effectively impossible. One of the major advantages of fi nding DMRs (rather than 

determining absolute or relative methylation levels within an array) is that a lot of the probe effects 

and other technical problems will be neutralized if we assume that the effects are the same for each 

array (Figure 13.10d). If we make this assumption, we can fi nd DMRs by simply comparing the 

 log-ratios from one array to another.

Of course, this also assumes that all of the arrays have been properly normalized. As discussed 

earlier, this is diffi cult; consequently, it may be hard to compare different arrays. In particular, even 

a slight difference in amplifi cation effi ciencies could result in subtle differences in the log-ratios 

which could lead to problems. Thus, developing methods for fi nding DMRs is more complicated 

than is apparent at a fi rst glance. Because of this, and the lack of datasets where such methods can 

be tested, this remains an open and interesting research question.

ENZYME APPROACHES AND GENOMIC COPY NUMBER EFFECT13.7 

When using microarrays (or other technologies) to examine the methylation status of genomic 

regions, it is important to consider the number of copies of the genome present since this could 

effect the amount of methylation observed. For example, suppose we are interested in the methyla-

tion status of the same genomic region in two individuals, one of whom has two copies of the region 

and the other has three (or more) copies. We also assume that each strand of DNA in this region is 

methylated to the same extent for both patients. In this case, when the methylation status of this 

region is measured, it will appear as if more methylation occurs in the second individual relative to 

the fi rst due to the additional number of copies of the genome. We note that this confounding will 

occur only if one of the experimental designs illustrated in Figures 13.3b, c or e are used. By hybrid-

izing the test fraction alongside the input fraction, as shown in Figure 13.3d, the effect of copy 

number is neutralized. However, when the experimental designs described in Figures 13.3b, c, or d 

are used to properly assess methylation, it is also necessary to have a good understanding of the 

number of copies of the genome that might be present. This will be the case when methylation is 

examined using either one- or two-channel arrays.

One way of determining copy number is to hybridize DNA sheared using XbaI (or another 

digestion enzyme) to the same array used to measure DNA methylation. This has the advantage 

that the use of array CGH for determining copy number is well known and the protocols/analysis 

techniques are well established. Additionally, it ensures that copy number can be detected for 

every probe on an array.

Alternatively, technology is being developed that enables the measurement of copy number, loss 

of heterozygosity (LOH), and DNA methylation using the same array [70]. After using XbaI to shear 

the DNA and a methylation restriction enzyme (such as HpaII) to enrich for methlyated fragments, 

this method (called MSNP) separates SNPs into three groups depending upon whether an XbaI 
(DNA) fragment contains a HpaII binding site and whether this binding site might have been elimi-

nated/caused by the presence of a polymorphism. Subsequently, XbaI fragments not containing a 
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HpaII binding site are used to measure copy number, and fragments containing a HpaII binding site 

are used to measure methylation.

While this approach has the advantage that information about a number of different genetic 

 features can be determined from the same array, it also has a number of drawbacks. In particular, it 

has been observed [33] that multiple methylation restriction enzymes have to be used for DNA methy-

lation to be measured at a suffi cient number of locations across the genome—this will signifi cantly 

reduce the number of SNPs that can be used to determine copy number. Additionally, it is not  possible 

to detect copy number at the same SNPs where methylation has been measured, which means that the 

resolution may be insuffi cient to analyse both methylation and copy number  separately. Consequently, 

perhaps the best way of confi dently determining copy number and DNA methylation level is to carry 

out two different hybridizations, one using DNA sheared using only XbaI (or a similar enzyme) and 

the other where the DNA has been treated in such a way that methylation can be detected.

VALIDATION CHOICES13.8 

Validating data obtained from microarray experiments is essential. To confi rm that genes with 

known methylation levels are correctly identifi ed, it is necessary to select a number of genes and 

compare the results obtained in the array experiment with methylation analyses performed using a 

different technology. To analyze a particular gene, knowledge of its structure and sequence is 

required since (in most cases) its methylation status will be examined in only a small region, usually 

in CpG islands or CpG-rich regions near the gene promoter. The examination of such regions is 

typically performed using methods based upon bisulfi te conversion. Bisulfi te sequence analysis is 

performed by treating DNA with sodium bisulfi te which results in the deamination of unmethylated 

cytosine to uracil, while leaving methylated cytosine residues unchanged [71]. DNA sequencing can 

then be used to identify methylated cytosines with the exercise being reduced to differentiating 

between SNPs (cytosines vs thymines).

Variations of bisulfi te sequence analyses offer the opportunity to examine a number of CpGs 

simultaneously and can be scaled up to assay multiple sample sets. In this section, we give a brief 

description of some analysis methods that use bisulfi te conversion in conjunction with PCR to inter-

rogate the methylation status of a small genomic region. For a more detailed review see [72].

A number of commercially available kits for bisulfi te conversion are available and are continu-

ally being improved with regard to the yield and stability of bisulfi te converted DNA, enabling 

longer amplicons (typically up to 700 bp) to be obtained from small amounts of starting material. 

However, the limiting step in bisulfi te sequence analyses is the conversion process itself, which 

results in signifi cant DNA degradation such that 84–96% of DNA is affected [73]. While numerous 

attempts have been made to optimize bisulfi te treatment by striking a balance between achieving 

complete cytosine conversion and minimal DNA degradation [73–75], degradation remains an 

issue. Thus, it is important to determine the amount of degradation that occurs during specifi c reac-

tion conditions and to consider the effect on the amplicon of interest, and a recent method towards 

this end has been described [76]. Fragmentation not only sets an empirical upper size limit on the 

PCR amplicon (~400–500 bp), but the longer the amplicon, the fewer intact templates there will 

likely be. In addition, bisulfi te treatment results in reduced sequence diversity, generating AT-rich 

regions and long stretches of thymines, which can be diffi cult for polymerases to read. Thus, PCR 

amplifi cation of bisulfi te-treated DNA can be challenging and requires careful primer design to 

avoid mispriming and primer–dimer formation.

BISULFITE SEQUENCING13.8.1 

Conventional bisulfi te sequencing consists of amplifying a specifi c region of interest and then 

sequencing the PCR products. To simplify the sequence analysis, PCR products are cloned into 

bacterial plasmids, and single clones, each representing one PCR amplicon, are sequenced. This 
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approach enables a number of adjacent CpGs (up to 50) to be analyzed on a single amplicon and, by 

analyzing multiple clones of the same sample, sample-specifi c profi les can be generated. For an 

application of bisulfi te sequencing to the study of cell division, see Ref. [77]. This approach could 

be made allele-specifi c if combined with SNP detection (provided that the SNP is not masked by the 

bisulfi te conversion), and is still the method of choice for examining imprinted genes. The disadvan-

tage of this method is that cloning PCR products is time-consuming, and the cost of sequencing 

multiple clones of the same PCR reaction can be high.

Bioinformatics software that enables direct quantitative analyses from sequence traces is 

 emerging [78]. These programs allow for direct sequencing of complex mixes of amplicons gener-

ated from a single PCR. An obvious advantage of sequencing over other methods is that single CpG 

profi les can be generated for a locus of interest. In addition, sequencing can be outsourced and thus 

expensive equipment need not be purchased.

METHYLATION-SPECIFIC PCR/QUANTITATIVE METHYLATION-DEPENDENT 13.8.2 
PCR (METHYLIGHT)

Methylation-specifi c PCR (MSP), employs methylation-specifi c primers that exploit the sequence 

differences in methylated versus unmethylated bisulfi te-treated DNA at a particular locus [79]. 

Parallel amplifi cation reactions using unmethylation-specifi c primers should also be performed for 

each DNA sample. Thus, methylation is determined by the ability of specifi c primers to allow for 

amplifi cation. The PCR products can be examined following nondenaturing polyacrylamide gel 

electrophoresis and ethidium bromide staining such that the presence of a band of the appropriate 

molecular weight indicates the methylation status of the allele in the original sample. Such products 

may be compared but, due to variations in PCR effi ciency with different primers, quantitative 

 interpretation should be cautious. Specifi city can be improved by designing primers that anneal to 

multiple CpG sites or with the CpG dinucleotide at the 3¢ end of the primer. This approach is most 

useful for querying densely methylated CpG islands.

A variation on this approach allows for more quantitative measures of methylation by employing 

real-time quantitative PCR and is referred to as the MethyLight method. As in MSP, methylation-

specifi c primers are employed, but a methylation-specifi c fl uorescence reporter probe that anneals 

to the amplifi ed region of interest is also incorporated. Quantifi cation is performed based on methy-

lated reference sequences that are included on each plate to control for plate-to-plate variations and 

involves several optimization steps such as the generation of standard curves. Although these assays 

can be scaled up to quite high throughput, the number of CpGs that can be assayed depends on the 

probe and generally these are designed based on the assumption that all CpGs within the region 

queried share the same methylation status.

COMBINED BISULFITE RESTRICTION ANALYSIS13.8.3 

Combined bisulfi te restriction analysis (COBRA) is a low-throughput method that determines the 

level of methylation at specifi c genomic loci. After DNA has been bisulfi te-treated, the region of 

interest is amplifi ed using primers that do not span CpG sites to generate an amplicon that contains 

a CG recognizing restriction site. Digestion of the PCR product with an appropriate restriction 

enzyme results in the digestion of only those products that have unmodifi ed (i.e., methylated) cyto-

sine in the CpG. For example, BstUI’s recognition sequence, CGCG, if methylated would be 

unchanged after bisulfi te modifi cation. But if the recognition sequence were unmethylated, bisulfi te 

modifi cation would change it into TGTG and the PCR product would not be restricted [80].

A drawback of this method is that since a single restriction site is analyzed, if more than one CpG 

is present in the amplicon, these may or may not be identically methylated. Consequently, the PCR 

product could be a complex mixture of various amplicons which could impact upon the effi ciency 

of the digestion step. Additionally, during the melting and annealing steps of PCR, heteroduplexes 
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of methylated and unmethylated PCR strands that are resistant to restriction digestion may form, 

and therefore give false-negative results. False-positive results can occur when there is incomplete 

bisulfi te conversion.

METHYLATION-SENSITIVE SINGLE NUCLEOTIDE PRIMER EXTENSION13.8.4 

Methylation-sensitive single nucleotide primer extension (Ms-SNuPE) is an adaptation of a tech-

nique originally designed for the analysis of SNPs in the context of mutation detection [81] and for 

the quantifi cation of allele-specifi c expression [82,83]. Essentially, this approach employs paired 

primer extensions such that the Ms-SNuPE primers anneal to the PCR-generated template and sub-

sequently terminate 5¢ the cytosine residue to be queried [84,85]. In this application, bisulfi te-treated 

DNA is PCR amplifi ed and the gel excised PCR product is incubated with the appropriate Ms-SNuPE 

primers, polymerase, and radiolabeled dNTPs. The incorporation of [32P]dCTP or [32P]dTTP is then 

assessed following denaturing polyacrylamide gel-electrophoresis and phosphorimaging, and is 

used to determine the relative amounts of methylated (C) versus unmethylated (T) cytosines at the 

original CpG site. Similarly, the complementary strand can be queried using primers designed to 

incorporate either [32P]dATP or [32P]dGTP. Nonradioactive fl uorescent labeling and quantifi cation 

schemes can also be adapted to this assay. This approach allows for the simultaneous analysis of 

several CpG dinucleotides in a single reaction and provides a quantitative readout of the ratio of 

methylated to unmethylated cytosines at a particular CpG site.

Adaptations of this approach employ matrix-assisted laser desorption ionization/time-of-fl ight 

(MALDI-TOF) mass spectrometry to discriminate between the two primer extension products 

based on the GOOD assay for SNP analysis.

PYROSEQUENCING13.8.5 

Pyrosequencing is a sequencing by synthesis method that offers rapid and accurate quantifi cation 

of CpG methylation sites [86]. After bisulfi te conversion and PCR amplifi cation, a sequence- 

specifi c primer is hybridized to the strand to be interrogated. The nucleotides are dispensed 

sequentially according to the predicted sequence which is programed into the pyrosequencer 

(Biotage). Each time a nucleotide is incorporated into a sequence, pyrophosphate (PPi) is released, 

and this energy is used for the enzymatic conversion of luciferin to oxyluciferin. This generates 

light in proportion to the released PPi, which is captured on a CCD camera and recorded as a peak. 

Before the addition of the next nucleotide in the sequence, a nucleotide-degrading enzyme or 

 apyrase such as uracil N-glycosylase (UNG) is employed to remove excess nucleotides. The result 

is synchronized nucleotide addition or real-time quantitative sequencing such that the amount of 

cytosine and thymine incorporation during extension can be used to quantitatively determine the 

C/T ratio at specifi c loci. At present this technology is expensive and still being improved. The 

potential advantages are its accuracy, high-throughput nature, and the minimization of variation 

between experiments.

CONCLUSIONS13.9 

Using high-throughput microarrays to interrogate DNA methylation on a genome-wide level is an 

exciting research area that could yield important insights into many biological problems. However, 

as described in this chapter, there are many outstanding technological and analytical issues that 

have to be resolved so that the investigator can have more confi dence that the data obtained are of 

“good” quality. Determining data quality might be made easier by the Human Epigenome Project 

[22] which uses low-throughput technology to assess the methylation status of each base of the 

genome for a number of individuals—this will provide a rich test dataset on which the effi cacy of 

Q1
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technologies and analysis methods might be assessed. Besides testing the performance of these 

methods, another important consideration will be how to improve the effective resolution of DNA 

methylation microarrays. This will be crucial if we want to combine data from DNA methylation 

arrays with other microarray technologies (e.g., expression, array CGH, ChIP-chip, or micro RNA), 

since such a comparison will be limited by the effective resolutions of the data obtained. Such com-

bined analysis will be essential to improve our understanding of how different genetic phenomena 

interact and contribute to (for example) biological development and tumorigenesis.
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 83. Szabó, P. and Mann, J. 1995. Allele-specifi c expression and total expression levels of imprinted genes 

during early mouse development: Implications for imprinting mechanisms. Genes Dev, 9, 3097–3108.

 84. Gonzalgo, M. and Jones, P. 1997. Rapid quantitation of methylation differences at specifi c sites using 

methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res, 25, 2529–2531.

 85. Gonzalgo, M. and Liang, G. 2007. Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) 

for quantitative measurement of DNA methylation. Nat Protoc, 2, 1931–1936.

 86. Tost, J. and Gut, I. 2007. DNA methylation analysis by pyrosequencing. Nat Protoc, 2, 2265–2275.

 87. Hoheisel, J. D. 2006. Microarray technology: Beyond transcript profi ling and genotype analysis. Nat Rev 
Genet, 7, 200–210.

Q5

94483_C013.indd   20394483_C013.indd   203 11/4/2008   8:49:50 PM11/4/2008   8:49:50 PM



94483_C013.indd   20494483_C013.indd   204 11/4/2008   8:49:51 PM11/4/2008   8:49:51 PM



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white final Printer PDFs)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


