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Summary. The structural information in high-dimensional transposable data allows us to write the data recorded for each
subject in a matrix such that both the rows and the columns correspond to variables of interest. One important problem
is to test the null hypothesis that the mean matrix has a particular structure without ignoring the dependence structure
among and/or between the row and column variables. To address this, we develop a generic and computationally inexpensive
nonparametric testing procedure to assess the hypothesis that, in each predefined subset of columns (rows), the column
(row) mean vector remains constant. In simulation studies, the proposed testing procedure seems to have good performance
and, unlike simple practical approaches, it preserves the nominal size and remains powerful even if the row and/or column
variables are not independent. Finally, we illustrate the use of the proposed methodology via two empirical examples from
gene expression microarrays.
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1. Introduction

In some applications, the measurements related to each sub-
ject are naturally organized in a matrix, especially when
the rows and columns correspond to two different sets of
variables and dependencies are expected to occur between
and/or among them. Allen and Tibshirani (2010) introduced
the term “transposable data” to acknowledge the structural
information and the presence of two-way dependencies in
matrix-valued random variables. Examples of transposable
data can be found in spatiotemporal studies (Mardia and
Goodall, 1993; Genton, 2007), in cross-classified multivariate
data (Galecki, 1994; Naik and Rao, 2001), in genetics (Efron,
2009; Teng and Huang, 2009; Allen and Tibshirani, 2010,
2012; Yin and Li, 2012; Ning and Liu, 2013), in functional
MRI (Allen and Tibshirani, 2010), in time-series (Carvalho
and West, 2007; Lee, Daniels, and Joo, 2013) and in electroen-
cephalography studies (Zhang et al., 1995) among others.

Although our findings can be applied to any of the disci-
plines mentioned above, our work is primarily motivated by
biological studies that use microarrays to study gene expres-
sion patterns in multiple tissue samples taken from the same
subject (Zahn et al., 2007; Sottoriva et al., 2013). For each
subject, the row variables correspond to genes, the column
variables to tissue samples and the measurements are mRNA
gene expression levels. A complex and high-dimensional de-
pendence structure is expected to occur as neither the genes
nor the tissue samples are likely to be independent. In such
studies, a natural biological objective is to determine whether
given subsets of tissue samples share a common mean vector of
gene expression levels. This leads to two important statistical
challenges. First, the number of genes will typically exceed the
number of subjects and it is a well-known fact that classical
multivariate tests for testing equality of mean vectors, such
as the Hotelling’s T 2 or Wilk’s �, are not applicable in “large

p, small N” settings. Second, the dependence among the tis-
sue samples for each subject might restrict us from utilizing
practical approaches that rely on mixing univariate standard
testing procedures and multiple testing correction methods.
This includes, for example, the approach of testing the signif-
icance of each gene across tissue samples based on an analysis
of variance (ANOVA) test and adjusting the corresponding
p-values for multiple testing. This approach requires tissue-
wise (column-wise) independence, a rather strong assumption
that is unlikely to be met in real datasets.

To introduce these concepts in mathematical terms, sup-
pose that an experimentalist collects N independent and iden-
tically distributed (i.i.d.) transposable r × c random matrices
X1, . . . ,XN . For each subject, there are r row variables and
c column variables and the high-dimensional setting is indi-
cated by letting the sample size (N) be much smaller than the
number of observations (rc) for a single subject. The goal is
to perform hypothesis testing for M = E[Xi], the r × c mean
matrix of the transposable data, while accounting for the two-
way dependencies.

To illustrate some difficulties of this task, consider the sim-
ple hypothesis

H0 : M = μ1T
c vs. H1 : M �= μ1T

c , (1)

where μ is an unknown r-variate parameter vector and 1s

denotes an s-variate vector of ones. The null hypothesis sug-
gests that the mean relationship between the row and col-
umn variables is completely determined by the row variables.
In the motivating examples, H0 in (1) is consistent with no
genes showing differential expression across the multiple tissue
samples. To the best of our knowledge, no statistical proce-
dure exists to test hypothesis (1) directly in high-dimensional
transposable data unless there are only two dependent column
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variables (c = 2). In this case, the test proposed by Chen and
Qin (2010) for comparing the mean vector of paired high-
dimensional random vectors can be used. To accomplish this,
one needs to form the vector of the difference of the two
columns for each subject and then test the hypothesis of a
zero mean vector. Unfortunately, there is no straightforward
way to apply or extend this test when c > 2. In particular, at-
tempts to do this essentially infer rather than test the mean
relationship between the row and column variables. For exam-
ple, suppose that M = [μ, −μ, μ, −μ] and consider the follow-
ing naive algorithm to test hypothesis (1). First, create two
groups of column variables, one based on the first two columns
and the other based on the last two. Second, for each group
create N r-variate random vectors by averaging the appropri-
ate columns in each matrix, and then for each subject cre-
ate the r-variate vectors of the difference of the two groups.
Thirdly, test hypothesis (1) using the test statistic of Chen
and Qin (2010) as above. It can be shown that this vector-
based test statistic will be powerless since the transformed
random vectors will indeed have a zero mean vector.

By contrast, we propose a simple approach to test hypoth-
esis (1) that overcomes these theoretical problems. In this
direction, let Pc = Ic − Jc/c where Is is the identity matrix
of size s and Js is the s × s matrix of ones, and let tr(A)
denote the trace operator of the matrix A. Note that Pc is
a symmetric and idempotent (P2

c = Pc) matrix such that
tr(MTMPc) = 0 if and only if H0 in (1) holds. Since the
squared Frobenius norm, tr(MTMPc), measures deviations
from H0 in (1), it seems meaningful to develop a test statistic
based on

∑
i�=j

tr(XT
i XjPc)/(N[N − 1]), the unbiased estima-

tor of this norm. Under rather weak conditions about the
two-way dependence structure, illustrated in Section 2.3, this
estimator asymptotically follows a normal distribution, and
hence, the critical region of the test statistic can be defined
under H0.

The main contribution of this article is that we allow test-
ing more complicated hypotheses than hypothesis (1) for the
mean matrix. In particular, we consider the hypothesis

H0 : M = [μ11
T
c1

, μ21
T
c2

, . . . , μg1
T
cg

] vs.

H1 : M �= [μ11
T
c1

, μ21
T
c2

, . . . , μg1
T
cg

], (2)

where c1, . . . , cg are positive integers such that
∑g

q=1
cq = c

with at least one cq ≥ 2 and μ1, . . . , μg are g unknown r-
variate parameter vectors. H0 in (2) states that in each one
of the given g column groups there is no column effect upon
the mean of the row variables. Since g is known but arbitrary,
the proposed testing procedure is not bounded by the num-
ber of column groups or the group size under consideration.
For example, hypothesis (1) is a special case of hypothesis (2)
with g = 1 and c1 = c while the hypothesis that two column
variables, say the first two, have a common mean vector is
obtained by setting g = c − 1, c1 = 2, and c2, . . . , cg = 1. Sim-
ilarly to testing hypothesis (1), the proposed test statistic will
be based on an asymptotic argument via a pivotal quantity
that is the unbiased estimator of the distance of the mean
matrix from H0 in (2). The proposed testing methodology is
a global procedure that produces a single p-value for testing
H0 in (2) and it is not seriously restricted by the presence of
dependence structures other than the independence.

The proposed testing procedure can also be employed to
determine the mean relationship between row and column
variables in many predefined sets of row variables rather than
across all row variables. In the motivating examples, the bi-
ological interest might lie in finding gene-sets for which the
mean vector of expression levels varies across different tissue
samples. This could allow better identification of biological
processes that are tissue-specific, thus facilitating their explo-
ration in greater detail. In this case, one needs to test hy-
pothesis (1) for each predefined gene-set and then correct the
corresponding p-values for multiple testing. We illustrate how
to perform this type of analysis in Section 4.1.

The rest of this article is structured as follows. In Section 2,
we introduce the high-dimensional working framework and
we construct the test statistic for testing hypothesis (2). We
also discuss the asymptotic power of the proposed test, we
argue that the required assumptions that make the high-
dimensional setting manageable are weak, we make general
comments about practical aspects of the testing procedure
and we provide guidelines about how to adjust the proposed
methodology to test hypotheses other than hypothesis (2).
In Section 3, we examine the performance of the proposed
testing methodology in finite samples using simulations. In
Section 4, we apply the proposed testing methodology to
two microarrays studies where gene expression levels are
measured in different tissue samples (Zahn et al., 2007;
Sottoriva et al., 2013). In Section 5, we summarize the main
findings of our research and future research directions.

2. Test Statistics for the Mean Matrix

As the generative process for transposable data, consider a
matrix-valued extension of the nonparametric model for vec-
tors considered in Bai and Saranadasa (1996) and Chen and
Qin (2010)

Xi = Wi + M (3)

for i = 1, . . . , N, where

(1) M = E[Xi] is the r × c mean matrix,
(2) Wi is an r × c matrix of random variables such that

vec(Wi) = �1/2vec(Zi), and where vec(A) denotes vec-
torization of the matrix A,

(3) � = �1/2�1/2 = cov[vec(Xi)] is an (rc) × (rc) positive-
definite covariance matrix,

(4) Z1, . . . ,ZN are i.i.d. r × c random matrices and Ziab is
the (a, b)th element of Zi,

(5) E[Ziab] = 0, E[Z2
iab] = 1, E[Z4

iab] = 3 + B for a finite con-
stant B > −2, E[Z8

iab] < ∞ and for any positive integers
l1, . . . , lq with

∑q

ν=1
lν ≤ 8

E[Z
l1
ia1b1

Z
l2
ia2b2

, . . . , Z
lq
iaqbq

] = E[Z
l1
ia1b1

]E[Z
l2
ia2b2

], . . . , E[Z
lq
iaqbq

]

for (a1, b1) �= (a2, b2) �= · · · �= (aq, bq).

The matrix-variate normal distribution (Dawid, 1981; Gupta
and Nagar, 2000), a common and sensible choice for model-
ing transposable data, is a special case of model (3). To see
this, let Ziab be i.i.d. random variables from a standard normal
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distribution N(0, 1) and let � = �2 ⊗ �1, where �1 is the co-
variance matrix of the row variables, �2 is the covariance
matrix of the column variables and ⊗ denotes the Kronecker
product operator applied to matrices. However, we underline
that model (3) is more general. It can handle departures from
the matrix-variate normal model by relaxing the normality
and/or the covariance structure assumption. The distribution
of the “white-noise” random variables in Zi remains unspec-
ified. In fact, the white noise random variables do not need
to be independent or identically distributed. Also the depen-
dence structure between and among the row and column vari-
ables is not limited to a Kronecker product form.

To construct the test statistic for testing hypothe-
sis (2), we need additional notation. Let P{c1,c2,...,cg} =
diag(Pc1 ,Pc2 , . . . ,Pcg

) be the c × c block diagonal matrix
where the positive integers {c1, c2, . . . , cg} are defined by
H0 in (2). For notational ease, suppress the index set in
P{c1,c2,...,cg} and write instead P. Further, note that P is a pro-
jection matrix as it is both idempotent and symmetric. The
key to our proposal is to observe that tr(MTMP) = 0 if and
only if H0 in (2) holds. To see this, note that tr(MTMP) =
tr(PMTMP) is the sum of squares of the elements of MP,
whose (a, b)th element equals the difference between μab, the

(a, b)th element of M, and μ̄
(k)
a , the average of the ath row in

the mean matrix when this is restricted to the column group,
say k, to which column b belongs under H0 in (2). Therefore,
it is sensible to consider the unbiased estimator of tr(MTMP)

GN = 1

N(N − 1)

∑
i�=j

tr(XT
i XjP),

whose variance is

Var[GN ] = 2

N(N − 1)
tr

(
[�{P ⊗ Ir}]2

)
+ 4

N
vec(MP)T �vec(MP).

Next, we define the asymptotic framework needed to de-
rive the limiting distribution of GN . We handle the high-
dimensional setting without specifying the limiting rate of
the pairwise ratios of the triplet (N, r, c) because in many ap-
plications, including our motivating examples, the number of
row (genes) and/or column (multiple samples) variables are
not expected to increase proportionally to the sample size.
Instead, we assume that as N → ∞ and rc = r(N)c(N) → ∞,
the following conditions hold:

tr
(
[�{P ⊗ Ir}]4

) = o
{
tr2

(
[�{P ⊗ Ir}]2

)}
(4)

and

vec(MP)T �vec(MP) = o

{
1

N
tr

(
[�{P ⊗ Ir}]2

)}
(5)

or

1

N
tr

(
[�{P ⊗ Ir}]2

) = o
{
vec(MP)T �vec(MP)

}
. (6)

The assumption rc → ∞ does not require r → ∞ and c → ∞
simultaneously and it allows the number of row or column
variables to be fixed provided that the other dimension of
the transposable data tends to ∞. Condition (4) specifies the
class of covariance matrices for � under consideration. In Sec-
tion 2.3, we argue that this class is quite large and thus, the
proposed testing procedure is not seriously restricted. At least
one of the conditions (5) and (6) is needed to control the
asymptotic variance of GN and to derive the asymptotic dis-
tribution of GN , given in Theorem 1 and proven in the Web
Appendix A.

Theorem 1. Under the nonparametric model (3), condi-
tion (4) and either condition (5) or condition (6)

GN − tr(MTMP)√
Var[GN ]

�N(0, 1)

where � denotes convergence in distribution as N → ∞ and
rc = r(N)c(N) → ∞. Consequently, under H0 in (2),

GN√
2tr ([�(P ⊗ Ir)]2) /(N[N − 1])

�N(0, 1).

To construct the test statistic, we avoid estimating the
unknown and high-dimensional covariance matrix � upon
observing that the N i.i.d. rc-variate random vectors Yi =
vec(XiP) have covariance matrix � = (P ⊗ Ir)�(P ⊗ Ir) and
that tr(�2) = tr ([�{P ⊗ Ir}]2). Therefore, it follows from the
work of Chen, Zhang, and Zhong (2010) that

TN = 1

DN
2

∑
i�=j

(YT
i Yj)

2 − 2
1

DN
3

∑∗

i�=j �=k
YT

i YjY
T
i Yk

+ 1

DN
4

∑∗

i�=j �=k �=l
YT

i YjY
T
k Yl,

where Ds
t = (s − t)!/s! and

∑∗
denotes summation over mutu-

ally exclusive indices, is a ratio-consistent estimator of tr(�2).
Therefore, the proposed test rejects H0 in (2) with an α sig-
nificance level if and only if

G∗
N = GN√

2TN/(N[N − 1])
≥ za,

where za is the upper α-quantile of N(0, 1).

2.1. Remarks

Consider the transformation Xi 	−→ aAXi + C where
a �= 0 ∈ �, A is an r × r orthogonal matrix and C is an r × c

matrix of constants such that CP = 0r×c, and where 0s×t

denotes the zero matrix of size s × t. As desired, the test
statistic G∗

N is invariant to orthogonal rotations of the row
variables, to scalar multiplication, and to location shifts of
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the mean matrix under H0 in (2). The last property implies
that the nominal size of the test statistic is not affected by the
magnitude of the true mean matrix M given that this satisfies
H0 in (2). To this end, note that column groups of size one do
not contribute to the test statistic, meaning that the value of
G∗

N does not change if column groups of size one (ck = 1) are
ignored. This is not surprising since no mean comparisons
are performed therein. Hence, these column variables should
be removed prior to calculating the test statistic.

Although the testing methodology is presented for testing
the mean structure of row variables across groups of column
variables, we emphasize that the same testing procedure can
be used to test the mean structure of column variables across
groups of row variables. To do this, apply the transformation
Xi 	−→ XT

i prior to calculating G∗
N .

A critical point in our proposal is the choice of the pro-
jection matrix P. Although Theorem 1 holds for any projec-
tion matrix that satisfies the required assumptions, say P∗, to
avoid trivial power under certain alternatives it is essential to
require that MP∗ = 0r×c if and only if the corresponding null
hypothesis is true. For example, an alternative way to test
hypothesis (1) is to consider the projection matrix P∗ = Jc/c

(instead of Pc = Ic − Jc/c). The asymptotic power of the re-
sulting test statistic is trivial if, for example, c is even and
the mean vector is μ for the odd columns of M and −μ for
the even columns. Thus attention is required when projection
matrices other than the suggested ones are used.

It is important to note that the testing procedure can
be modified and applied to test hypotheses other than
hypothesis (2). For example, consider testing the hypothesis
of a known r × c matrix of constants M0 (H0 : M = M0).
To do this, we can center the data by subtracting M0 and
then employ the test statistic G∗

N calculated using P = Ic.
Another example is testing the hypothesis H0 : μ1 − μ2 = μ0,
where μ1 and μ2 are the unknown r-variate mean vectors
of the first and second column variable respectively, and μ0

is an r-variate vector of known constants. To accomplish
this, one needs to subtract μ0 from the first column of
each data matrix and then test hypothesis (2) with g = 2,
c1 = 2 and c2 = · · · = cg = 1 using the transformed data. In
a similar way, the proposed method can be extended to test
known differences in the mean vectors of two or more column
groups.

To calculate TN , it is more efficient to use the equivalent
formula given in Himeno and Yamada (2014) which reduces
the computational cost from O(N4) to O(N2). Combining this
result with simple algebraical properties for the trace opera-
tor, we can prove that the proposed testing methodology is
computationally cheap regardless of the dimensionality, that
is, number of row variables, number of column variables or
sample size.

2.2. Asymptotic Power

Under condition (5), the leading order power for the proposed
test is

βN = �

(
−za + N

tr(MTMP)√
2tr(�2)

)
,

where � is the cumulative distribution function of N(0, 1).
The power of the proposed test is bounded since

�

(
−za + N

tr(MTMP)√
2tr(�2)

)
≤ βN ≤ �

(
−za + N

tr(MTM)√
2tr(�2)

)
,

and thus a sufficient condition for the proposed test to have
non-trivial power is

lim
N,(rc)→∞

N
tr(MTMP)√

2tr(�2)
> 0.

Under condition (6), the leading order power term becomes

βN = �

( √
Ntr(MTMP)

2
√

vec(MP)T �vec(MP)

)

= �

( √
Ntr(MTMP)

2
√

vec(M)T �vec(M)

)
.

The power of the proposed test remains bounded since

�

( √
Ntr(MTMP)

2
√

vec(M)T �vec(M)

)
≤ βN

≤ �

( √
Ntr(MTM)

2
√

vec(M)T �vec(M)

)
,

which implies that

lim
N,(rc)→∞

√
Ntr(MTMP)

2
√

vec(M)T �vec(M)
> 0

is a sufficient condition for the proposed test to have non-
trivial power.

Although the proposed testing procedure can handle de-
pendence structures other than the independence, it can still
be more powerful than typical univariate tests that require
multiple testing corrections even for independent row and col-
umn variables (� = Irc). To provide such an instance, assume
a fixed number of column variables and no row-effect in the
mean structure, that is Mab = Mb where Mab is the (a, b)th
element of M. In this scenario, the asymptotic power of the
proposed test under conditions (5) and (6) becomes

�

(
−za +

√
N2r

2(c − g)

g∑
k=1

ck∑
b=ck−1+1

(Mb − M̄(k))2

)
and

�

⎛
⎝ r

2

√√√√N

g∑
k=1

ck∑
b=ck−1+1

(Mb − M̄(k))2

⎞
⎠

respectively, where c0 = 0 and M̄(k) is the average of the mean
of the row variable a in group k. As desired, under either (5)
or (6), the power of the test is an increasing function of the
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number of row variables r. On the contrary, the power of some
commonly used univariate tests applied sequentially to each
row, such as ANOVA based tests, depends on the magnitude
of the differences {Mb − M̄(k), b = 1, . . . , c}. Therefore, we ex-
pect ANOVA based tests to suffer from low power when these
differences are small regardless of r. Note that we reach to
the same conclusion even if we replace the no row-effect in
the mean structure with an unstructured one such that all
row-wise differences {Mab − M̄(ak), b = 1, . . . , c} are small, and
where M̄(ak) denotes the average of the mean of the row vari-
able a in group k. In these cases, the proposed test performs
better because it extracts information from both the row and
the column variables, which is ignored by univariate tests. We
verified this speculation in simulations where we also investi-
gated the situation in which the null hypothesis under con-
sideration was violated for varying proportions of the rows in
the mean matrix.

2.3. Class of Covariance Matrices Under Consideration

We provide examples of covariance matrices that satisfy con-
dition (4) and technical details can be found in Web Appendix
C. Because of the popularity of the matrix-variate normal dis-
tribution in modelling transposable data, we first study the
implications of condition (4) when � = �2 ⊗ �1. In this case,
condition (4) becomes

tr
(
[P�2]

4
)
tr(�4

1) = o
{
tr2

(
[P�2]

2
)
tr2(�2

1)
}

.

For example, this condition is met if tr ([P�2]
4) =

o
{
tr2 ([P�2]

2)
}

and/or if tr(�4
1) = o

{
tr2(�2

1)
}
. This means

that �1 and/or �2 can have bounded eigenvalues or a few
eigenvalues that diverge slowly to infinity (Chen and Qin,
2010), or satisfy a (banded) first order autoregressive cor-
relation pattern such that the corresponding variances are
bounded away from 0 or ∞ (Chen et al., 2010). When c is
fixed, then condition (4) becomes tr(�4

1) = o
{
tr2(�2

1)
}
, and

it follows that �1 cannot satisfy a compound symmetry corre-
lation structure. However, if r is fixed, then condition (4) be-
comes tr ([P�2]

4) = o
{
tr2 ([P�2]

2)
}
, and therefore the com-

pound symmetry correlation structure is an acceptable de-
pendence structure for �2.

A sufficient assumption for condition (4) in the presence of
uncorrelated (not necessarily independent) column variables
is that tr(�4) = o

{
tr2(�2)

}
. This assumption covers the case

of independent row and column variables with bounded vari-
ances or a few divergent variances among others. When the
row and column variables are correlated, then condition (4)
is met for a covariance matrix � with bounded eigenvalues or
a few divergent values that diverge slowly, for � that implies
a (banded) first order autoregressive correlation pattern or a
(banded) compound symmetry correlation matrix.

3. Simulation Studies

We investigated the nominal size and the power of the pro-
posed testing procedure using simulations. The simulated ran-
dom matrices X1, . . . ,XN satisfied model (3). To study the
nonparametric nature of the proposed methodology, three dis-
tributional scenarios were considered for the elements of Zi:

Scenario 1: A normality scenario, in which Ziab

i.i.d∼
N(0, 1).

Scenario 2: A centralized gamma distributional sce-

nario, in which Ziab = (Z∗
iab − 8)/4 and Z∗

iab

i.i.d∼
Gamma(4, 0.5).

Scenario 3: A mixture of Scenarios 1 and 2, in which
the random variables in the upper half of Zi

are distributed as in Scenario 1, while the re-
maining random variables are distributed as
in Scenario 2.

Conditional on N, M, � and the distributional scenario,
we draw 1000 replicates while keeping the significance level
fixed at 5%. For each competing testing procedure, we calcu-
lated the empirical size as the proportion of rejections when
M = 0r×c and the empirical power as the proportion of rejec-
tions when M �= 0r×c as defined in Sections 3.1 and 3.4. To dis-
tinguish the test statistics of the proposed methodology used
in the simulations, we denoted by H{c1,c2,...,cg} the test statistic
G∗

N of the proposed methodology based on P{c1,c2,...,cg}. Fur-
ther, we let [k] denote the integer part of k ∈ �. Additional
simulation studies for the proposed testing methodology can
be found on the Web Appendix B.

3.1. Comparison with ANOVA and Kruskal–Wallis

We first compared the proposed testing methodology, evalu-
ated using H{c}, to the ANOVA test of no group effect and the
Kruskal–Wallis test for testing the hypothesis of no column
effect in the mean matrix, that is, testing hypothesis (1). The
ANOVA and Kruskal–Wallis tests were applied sequentially
to each of the r row variables and the resulting p-values were
adjusted using the false discovery rate (FDR) correction and
the Bonferroni (BON) correction. Web Table 2 suggests that
the ANOVA and Kruskal–Wallis tests are extremely conserva-
tive in the presence of row-wise and column-wise dependencies
and therefore, a fair and meaningful comparison is ensured by
restricting the dependence structure to independent row and
column variables (� = Irc). In addition to calculating the em-
pirical size, we measured the empirical power of the compet-
ing tests assuming that M = [0r×7, tJr×3] where Jk×l denotes
the k × l matrix of ones. This configuration is motivated by
the power analysis in Section 2.2. The constant t was selected
such that tr(MTM)/

√
r(c − 1) = 0.1, that is, by fixing the

quantity that determines the upper bound of the asymptotic
power of the proposed tests under condition (5) equal to 0.1.
In this way, the asymptotic power of H{c} is not trivial and
the simulation results are comparable across varying values
of r and c. Table 1 displays the results under Scenario 3—
similar patterns were observed under the other two scenarios.
Unlike the Kruskal–Wallis test which seemed to be conserva-
tive unless N = 100, the empirical sizes for H{c} and for the
ANOVA test appeared to be a good approximation of the
nominal size even for N = 10. Despite the conservativeness of
the proposed test for N = 10, it was always more powerful
than the ANOVA and the Kruskal–Wallis test. Conditional
on N and the distributional scenario, the empirical power of
the proposed test increased as r increased while that of the
competing testing procedures did not change much even when
N = 100. This is due to the effectiveness of the proposed test
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Table 1
Empirical size and power of H{10}, ANOVA and Kruskal–Wallis test at 5% significance

ANOVA Kruskal–Wallis

H{10} FDR BON FDR BON

r N Power Size Power Size Power Size Power Size Power Size

100 10 0.138 0.063 0.051 0.047 0.051 0.046 0.013 0.014 0.013 0.014
30 0.412 0.057 0.091 0.045 0.088 0.045 0.062 0.040 0.060 0.039
50 0.756 0.053 0.136 0.045 0.125 0.044 0.115 0.043 0.112 0.043

100 0.997 0.044 0.319 0.047 0.294 0.045 0.317 0.048 0.285 0.047
500 10 0.186 0.063 0.075 0.066 0.075 0.066 0.011 0.008 0.011 0.008

30 0.703 0.039 0.096 0.060 0.094 0.059 0.051 0.033 0.047 0.033
50 0.974 0.040 0.102 0.042 0.093 0.040 0.082 0.026 0.077 0.026

100 1.000 0.051 0.261 0.054 0.244 0.053 0.253 0.048 0.233 0.047

in high-dimensional settings when the magnitude of the row-
wise (column-wise) difference in the mean matrix is small but
constant for every row (column) of the mean structure.

Next, we compared the empirical power of the competing
testing procedures under a sparsity scenario for the mean
structure. In particular, we defined M = [0r×9, μ] and sim-
ilarly to Chen and Qin (2010), we let the r-variate vector
μ contain a varying proportion (0%, 25%, 50%, 75%, 95%,
and 99%) of zero elements. At each proportion level, we em-
ployed a linearly increasing allocation where two nonzero-
elements of μ satisfy μl1 < μl2 if and only if l1 < l2. We set
r = 100, 500, 1000 and we let � = I10r. To make the results
comparable across the sampling schemes, the non-zero ele-
ments of μ were defined in such a way that

tr(MTM)√
r(c − 1)

= 0.15.

Table 2 displays the simulation results only for r = 1000
under Scenario 3 since similar trends were noted for the re-
maining sampling schemes. As desired, the empirical power of
the proposed methodology appeared to be unaffected by the
proportion of zero elements in μ for fixed N and the empirical
power approached 1.00 as soon as N = 50. However, the em-
pirical power of the ANOVA and Kruskal–Wallis tests seemed
to decrease as the proportion of zero elements decreased. In
fact, the largest differences between the empirical power of
the proposed test and of the univariate tests were observed
when there were no zeros in μ. This agrees with our claims in
Section 2.2 regarding the power of the competing procedures.
For 1% of non-zero elements in μ, the empirical powers of
the three testing procedures were comparable unless N = 30
in which case the ANOVA and Kruskal–Wallis tests were
substantially more powerful than the proposed test. For all
other proportions of zero elements in μ, the proposed test was
extremely more powerful than the univariate tests with the
sole exception of the sampling scheme with N = 100 and 75%
of zero elements in μ. Overall, the proposed test appeared
to be more powerful than univariate tests under the sparsity
scenario for the mean matrix and under the rather unrealistic
assumption of independent row and column variables for the

dependence structure. Similar trends were observed for an
equal allocation scenario in μ (see Web Table 3).

3.2. Comparison with the Chen-Qin Test

Suppose we want to test hypothesis (1) when the column vari-
ables are independent. In this case, we can create c groups, one
group for each column variable that contains N independent
r-variate random vectors. An alternative practical approach
to test hypothesis (1) is to apply the two-sample test for high-
dimensional mean vectors proposed by Chen and Qin (2010)

Table 2
Empirical power of H{10}, ANOVA and Kruskal–Wallis for
the sparsity scenario with r = 1000 under Scenario 3 at 5%

significance

ANOVA Kruskal–Wallis

N #{μl = 0} H{10} FDR BON FDR BON

10 99% 0.164 0.189 0.184 0.014 0.014
95% 0.170 0.068 0.067 0.003 0.003
75% 0.162 0.062 0.061 0.003 0.003
50% 0.164 0.061 0.060 0.003 0.003
25% 0.161 0.061 0.060 0.004 0.004
0% 0.168 0.058 0.057 0.003 0.003

30 99% 0.618 0.997 0.997 0.976 0.971
95% 0.624 0.254 0.242 0.132 0.125
75% 0.618 0.096 0.091 0.052 0.050
50% 0.626 0.082 0.080 0.044 0.043
25% 0.628 0.081 0.078 0.047 0.045
0% 0.625 0.084 0.081 0.051 0.049

50 99% 0.949 1.000 1.000 1.000 1.000
95% 0.948 0.721 0.678 0.566 0.538
75% 0.949 0.144 0.135 0.103 0.100
50% 0.943 0.117 0.108 0.080 0.078
25% 0.944 0.105 0.102 0.078 0.077
0% 0.944 0.094 0.092 0.076 0.073

100 99% 1.000 1.000 1.000 1.000 1.000
95% 1.000 1.000 1.000 1.000 0.999
75% 1.000 0.398 0.356 0.314 0.290
50% 1.000 0.245 0.229 0.192 0.176
25% 1.000 0.197 0.180 0.157 0.148
0% 1.000 0.163 0.152 0.155 0.142
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Table 3
Empirical size of H{10} and the Chen-Qin test (with a

Bonferroni correction) at 5% significance

Scenario 1 Scenario 2 Scenario 3

r N H{10} Chen-Qin H{10} Chen-Qin H{10} Chen-Qin

100 10 0.048 0.179 0.066 0.179 0.065 0.173
20 0.050 0.144 0.058 0.150 0.059 0.144
30 0.059 0.147 0.069 0.157 0.056 0.158
50 0.057 0.142 0.046 0.126 0.063 0.169

500 10 0.045 0.114 0.059 0.104 0.057 0.097
20 0.051 0.115 0.046 0.090 0.054 0.091
30 0.054 0.084 0.046 0.081 0.040 0.078
50 0.054 0.091 0.050 0.090 0.050 0.077

1000 10 0.060 0.093 0.051 0.081 0.057 0.087
20 0.053 0.080 0.059 0.068 0.046 0.090
30 0.046 0.068 0.059 0.089 0.061 0.073
50 0.042 0.067 0.051 0.075 0.052 0.067

to all possible pairs of groups, and then adjust the resulting
p-values for multiple testing. To satisfy the required assump-
tions of the Chen-Qin test, � was set equal to a block diagonal
matrix with c blocks. Each block of � satisfied a first-order
autoregressive form ({ρ|a−b|}1≤a,b≤r) where ρ = 0.5 in the first
c/2 blocks and ρ = 0.4 elsewhere. Table 3 shows the empiri-
cal sizes of the two competing testing procedures across the
three distributional scenarios with c = 10. The proposed test
seemed to preserve the nominal size but the Chen-Qin test
appeared to have a highly inflated empirical size even when
r = 1000, which prohibited us from conducting power com-
parisons.

3.3. Nominal Size

Using H{c}, H{[0.7c],[0.3c]} and H{[0.5c],[0.2c],[0.3c]}, we examined
in greater detail the size of the proposed methodology with
non-independence dependence patterns. In particular, we as-
sumed that � = �2 ⊗ �1 where �1 = {0.85|a−b|}1≤a,b≤r and
�2 = 0.5(Ic + Jc) and we employed an exchangeable form for
� but since the results were similar, we present only the
simulations with the Kronecker product dependence struc-
ture. To reflect practical situations where the dimension of
the mean vector is at least equal to the sample size (N) and
the number of row variables (r) is greater or equal to the
number of column variables (c), we set N = 10, 30, 50, 100,
r = 100, 500, 1000 and c = 10, 100. Also, we covered the case
where the number of row variables is much smaller than the
number of column variables by using r = 10 and c = 100, 500.
Table 4 contains the empirical sizes under Scenario 3. Again,
similar results were observed for the other two distributional
scenarios, a fact that validates empirically the non-parametric
nature of the methodology. The discrepancy between the em-
pirical and nominal size was small for all three test statistics
which confirms the robustness of the proposed testing proce-
dure to the number of groups and to the group sizes.

3.4. Power Considerations

Using H{c}, H{[0.6c],[0.4c]} and H{[0.4c],[0.2c],[0.4c]}, we also evalu-
ated the empirical power of the proposed methodology under
a multiplicative mean vectors scenario. In particular, we let
M = [Jr×[0.9c], tJr×[0.1c]], where t = 1.15, �1 = {0.85|a−b|}1≤a,b≤r

and �2 = 0.5(Ic + Jc) for r = 100, 500, 1000 and c = 10, 100.
Table 5 displays the simulation results based on H{c} across the
three distributional scenarios. The tests based on H{[0.6c],[0.4c]}
and H{[0.4c],[0.2c],[0.4c]} were more powerful and hence we do not
show these results. Conditional on N, r and c, the empirical
power was similar across the three distributional scenario and,

Table 4
Empirical size of the proposed methodology under Scenario 3 and a Kronecker product dependence structure at 5%

significance

N r H{c} H{[0.7c],[0.3c]} H{[0.5c],[0.2c],[0.3c]}

c 10 100 10 100 10 100

10 100 0.064 0.056 0.059 0.056 0.057 0.058
500 0.068 0.067 0.068 0.067 0.060 0.067

1000 0.058 0.065 0.060 0.057 0.060 0.060
30 100 0.063 0.053 0.061 0.050 0.060 0.049

500 0.049 0.054 0.053 0.048 0.049 0.049
1000 0.049 0.057 0.048 0.063 0.056 0.056

50 100 0.058 0.046 0.059 0.048 0.064 0.048
500 0.060 0.058 0.066 0.062 0.054 0.059

1000 0.047 0.044 0.047 0.042 0.039 0.045
100 100 0.047 0.055 0.050 0.053 0.057 0.058

500 0.047 0.048 0.049 0.040 0.048 0.044
1000 0.051 0.068 0.055 0.068 0.051 0.067

c 100 500 100 500 100 500

10 10 0.055 0.065 0.052 0.067 0.052 0.068
30 10 0.061 0.059 0.057 0.058 0.057 0.055
50 10 0.054 0.053 0.057 0.053 0.056 0.054

100 10 0.062 0.045 0.065 0.045 0.058 0.045
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Table 5
Empirical power of H{c} for the multiplicity scenario at 5%

significance

c 10 100 10 100 10 100

N r Scenario 1 Scenario 2 Scenario 3

10 100 0.097 0.317 0.128 0.282 0.103 0.303
500 0.210 0.778 0.207 0.813 0.206 0.781

1000 0.331 0.967 0.305 0.971 0.315 0.965
30 100 0.291 0.975 0.313 0.964 0.294 0.966

500 0.809 1.000 0.782 1.000 0.790 1.000
1000 0.979 1.000 0.965 1.000 0.971 1.000

50 100 0.590 1.000 0.551 1.000 0.576 1.000
500 0.997 1.000 0.992 1.000 0.998 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000

as desired, it approached 1.00 as the sample size, the number
of row or column variables increased.

4. Two Examples

We applied the proposed testing methodology to two datasets.

4.1. The Glioblastoma Dataset

The glioblastoma (GB) dataset describes an experimental
study designed to explore the heterogeneity of GB (Sottoriva
et al., 2013) by comparing the gene expression patterns in 3
different brain compartments; the tumor margin (MA), nor-
mal brain tissue that surrounds the tumor mass, the sub-
ventricular zone (SVZ), a targeted area located at the center
of the brain, and the tumor mass. For each of the patients
(N = 8) included in the study, 7 mRNA samples were ex-
tracted; 1 from the MA, 1 from the SVZ and 5 from different
fragments in the tumor mass such that earlier fragments were
closer to MA and later fragments closer to SVZ. Gene expres-
sion levels were then measured from the 7 × 8 = 56 mRNA
samples using microarrays. The data for each subject were or-
ganized in a matrix with row variables (r = 16,810) the genes
and column variables (c = 7) the MA, the SVZ and the 5 tu-
mor fragments ordered in the spatial order described above.

An important biological hypothesis was the conservation of
the mean vectors of gene expression levels across the tumor
mass. Statistically speaking, this corresponds to testing the
hypothesis

H0 : M = [μ1, μ2, μ31
T
5 ] vs. H1 : not H0, (7)

where μ1 and μ2 denote the mean vector of gene expression
levels in the MA and the SVZ respectively, and μ3 denotes
the common mean vector of gene expression levels in each of
the five tumor fragments. The corresponding test statistic was
equal to −0.282 (p-value= 0.611) suggesting that we did not
have enough evidence to reject H0 in (7). This motivated us
to assess the likelihood of a simpler mean structure than the
one tested in (7) (see Web Table 1). These results suggest that
the overall gene expression patterns differed across the 3 brain
compartments under study and thus, M = [μ1, μ2, μ31

T
5 ] de-

scribed adequately the compartment-wise mean relationship
in the GB dataset.

We compared further the mean gene expression patterns in
the MA and the tumor mass by utilizing Gene Ontology (GO)
terms. The GO terms classify genes into groups such that
the genes within a group are involved in the same biological
process. From the 1316 gene groups in the GB dataset, we
selected 231 groups that had more than 7 genes in order to be
closer to the high-dimensional assumptions. For the kth group
of genes (k = 1, . . . , 231) with mean matrix Mk, we tested the
hypothesis

H0k : Mk = [μ1k, μ2k, μ1k1
T
5 ] vs. H1k : not H0k,

where μ1k denotes the common mean gene expression levels
vector in the MA and in the 5 tumor fragments, and μ2k de-
notes the mean gene expression levels vector in the SVZ. After
applying an FDR correction, we rejected the null hypothesis
in 224 groups. The high-proportion of rejections (96.97%) sup-
ports the adopted form for the overall mean matrix M. Many
of these 224 gene-groups correspond to biological processes
that are known to be directly linked to cancer, including cellu-
lar response to hypoxia and the extracellular matrix organiza-
tion (Gilkes, Semenza, and Wirtz, 2014), negative regulation
of retinoic acid receptor signaling pathway (Tang and Gudas,
2011; Connolly, Nguyen, and Sukumar, 2013) and positive
regulation of ERK1 and ERK2 cascade (Santamaria and Ne-
breda, 2010) among others. Thus, rejecting the corresponding
H0k can be biologically justified.

4.2. The Mouse Aging Dataset

The atlas of gene expression in the mouse aging data (Zahn et
al., 2007) contains mouse mRNA gene expression levels mea-
sured in different tissues. For each mouse (N = 40), mRNA
expression levels were extracted for r = 8932 genes from up to
16 tissues. Here, we considered c = 9 tissues (adrenal glands,
cerebrum, hippocampus, kidney, lung, muscle, spinal cord,
spleen, and thymus) for which mRNA gene expression lev-
els were available for all the mice.

Unsurprisingly, the hypothesis of no tissue effect upon
the mean expression level was rejected since G∗

N = 481.28
(p-value< 0.001). A subset of genes called “housekeeping”
genes are typically assumed to be expressed at a relatively
constant level across many or all known experimental con-
ditions. As a result, these genes are often used to calibrate
gene expression levels across experiments. However, it has
been suggested that commonly used housekeeping genes can
show considerable variability in expression across tissues
(de Jonge et al., 2007; Kouadjo et al., 2007). To explore this,
we created a list of 22 housekeeping genes compromised of
8 genes that are commonly classified as housekeeping genes
(de Jonge et al., 2007) and 14 genes that were classified as
housekeeping genes by de Jonge et al. (2007). The hypothesis
of conservation of the mean expression levels of this gene-set
across the nine tissues was rejected (G∗

N = 382.93 and
p-value< 0.001). We believe that further research is required
in order to identify housekeeping genes for these nine tissues
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and the proposed testing methodology is a useful statistical
tool to this direction.

5. Discussion

We proposed a novel non-parametric procedure to test the
mean matrix in high-dimensional transposable data. In
particular, our methodology can determine whether in each
of the given groups of column variables the mean of every row
variable remains constant. Of course, the role of the row and
column variables is interchangeable in transposable data and
hence the proposed tests can be applied to check the effect
of the row variables upon the mean vector of the column
variables. The simulation studies verified the robustness of
the proposed testing procedure to the number of row or
column groups, to the size of each group, to the number of
column and row variables relative to the sample size, and to
the underlying dependence structure between and among the
row and column variables. In simulations, the proposed tests
were more powerful than univariate testing procedures that
require row-wise and/or column-wise independence in almost
all settings. In a sense, we developed a theoretically sound
non-parametric testing procedure that extends the applica-
tion of univariate ANOVA flavored tests to high-dimensional
transposable data while making mild dependence structure
assumptions. The practical advantage of the proposed test
is its computationally simplicity since the cumbersome task
of estimating high-dimensional matrix parameters, such as
the mean matrix and the covariance matrix, is avoided.
The proposed testing methodology is implemented in the
function meanmat.ts() of the R package HDTD (available
at http://www.bioconductor.org/packages/3.0/bioc/html/
HDTD.html).

In practice, we expect that the experimental design will
dictate the null hypothesis of interest about the mean-
relationship between the row and column variables, as was
the case with the glioblastoma dataset. In applications where
it is not clear which column (or row) groups should be formed
under the null hypothesis, the following strategy that can be
helpful in determining the column-wise (row-wise) structure.
First, test whether there is no column (row) effect upon the
mean of the row (column) variables. If we fail to reject this
hypothesis, assume that the mean of the row (column) vari-
ables is independent of the column (row) variables. Otherwise,
perform the test that two column (row) variables have the
same mean vector for all pairs of column (row) variables, and
then adjust for multiple testing using an FDR or a Bonferroni
correction. If all the adjusted p-values are very small, then as-
sume an unstructured mean matrix M or transpose the data
and repeat the above procedure for the column (row) vari-
ables. Otherwise, record the column (row) pairs for which the
adjusted p-values< 0.05, form g column (row) groups and test
hypothesis (2) as this is determined by the g groups.

In future work, we aim to develop test statistics for hy-
potheses that cannot be directly handled by the proposed
testing methodology, for example, the hypothesis of a mean-
restricted matrix (Allen and Tibshirani, 2010), that is M =
μ1T

c + 1rν
T where μ is an r-variate vector of constants and ν

is a c-variate vector of constants, and hypotheses of testing

simultaneously the presence of predefined row and column
groups.

6. Supplementary Materials

Web Appendices and Tables referenced in Sections 2, 3, and 4,
along with the R code and the data of the examples in Section
4 are available with this paper at the Biometrics website on
Wiley Online Library.
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Web Appendix A: Proof of Theorem 1

Without loss of generality, let P be an idempotent and symmetric matrix that satisfies

condition (4) and either condition (5) or condition (6). Define Yi = vec(XiP) for all i, where

E[Yi] = vec(MP) and cov[Yi] = Ω = (P⊗ Ir)Σ(P⊗ Ir). Rewrite relations (4), (5) and (6)

as

tr(Ω4) = o
{

tr2(Ω2)
}
,

vec(M)TΩvec(M) = o
{

tr(Ω2)/N
}

and

tr(Ω2)/N = o
{

vec(M)TΩvec(M)
}

respectively, and note that

GN =
1

N(N − 1)

∑
i 6=j

tr(XT
i XjP) =

1

N(N − 1)

∑
i 6=j

YT
i Yj.

With this parameterization, the asymptotic distribution of (GN −E[GN ])/
√

Var[GN ] can be

derived in a similar fashion as in the proof of Theorem 1 in Chen and Qin (2010).

Web Appendix B: Additional Simulation Results

Web Table 2 displays the empirical size of the ANOVA test and the Kruskal-Wallis test in

the presence of row-wise and column-wise dependence. In particular, it was assumed that

Σ = Σ2 ⊗ Σ1 where Σ1 = {0.85|a−b|}16a,b6r and Σ2 = 0.5(Ic + Jc) so that the results are

comparable to those in Table 4. Unlike to the proposed testing methodology, the nominal size

was not preserved for the univariate tests. In fact, the ANOVA test and the Kruskal-Wallis

test failed to reject the null hypothesis throughout this sampling scheme. This suggests that

practical approaches might not be suitable to use with high-dimensional transposable data.

Moreover, we considered the empirical power of the competing testing procedures (pro-

posed tests, ANOVA and Kruskal-Wallis approaches) under a sparsity scenario for the mean
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structure, M = [0r×9,µ], and with an equal allocation for the varying proportion (0%, 25%,

50%, 75%, 95% and 99%) of zero elements in µ. We set r = 100, 500, 1000 and we let Σ = I10r.

To make the results comparable across the sampling schemes, the non-zero elements of µ

were defined in such a way that

tr(MTM)√
r(c− 1)

= 0.15.

Web Table 4 displays the simulation results only for r = 1000 under Scenario 3 because we

observed similar trends for the other 8 sampling schemes. The same conclusions as those

with an increasing allocation (see Table 2) can be drawn. Therefore, the empirical power

of the proposed test did not seem to be affected by the type of allocation of the non-zero

elements in µ.

We considered a sparsity scenario for the mean matrix configuration under non-independence

of the row and column variables. We evaluated the empirical power of the proposed testing

methodology via H{c}, H{[0.6c],[0.4c]} and H{[0.4c],[0.2c],[0.4c]}. We defined M = [0T
r×[0.7c],µ1T

[0.3c]]

and similarly to Chen and Qin (2010), we let µ contain a varying proportion (0%, 25%,

50%, 75%, 95% and 99%) of zero elements. At each proportion level, we employed two

types of allocations for the non-zero elements: (i) equal allocation and (ii) linearly increasing

allocation where two nonzero-elements of µ satisfy µl1 < µl2 if and only if l1 < l2. We set

r = 100, c = 10 and we used a Kronecker product form for Σ with Σ1 = {0.8|a−b|}16a,b6r

and Σ2 = 0.5(Ic +Jc). To make the results comparable across the different proportion levels,

the non-zero elements of µ were defined in such a way that

tr(MTM)√
tr(Σ2

1)tr(Σ
2
2)

= 0.1.

Table 4 displays the simulation results for H{6,4}. Similar trends occurred for H{4,2,4} but not

for H{10}, which was extremely powerful in these settings. This indicates that as we move

away from H0, the power of the proposed methodology increases. Conditional on the sample

size, the empirical power was similar across the three distributional scenario and it did not
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depend on the type of allocation or the proportion level. The proposed testing procedure

was powerful to the sparsity scenarios considered and their empirical power approached 1.00

as N increased.

Finally, we increased r = 10, 000 and we let c = 1000, N = 10, 30, 50 and Σ = I10r under

Scenario 3. For the mean structure, we assumed the same configuration as in Table 2. In

addition we calculated the empirical size. The results for the proposed method are displayed

in Web Table 5. Clearly, increasing r does not affects the conclusions drawn in Table 2 as

long as we keep

tr(MTM)√
r(c− 1)

fixed.

Web Appendix C: Class of Covariance Matrices under Consideration

Let λk(∆) denote the k-th ordered eigenvalue of a p× p symmetric matrix ∆ such that

λrc(∆) 6 λrc−1(∆) 6 . . . 6 λ1(∆),

and recall that

P = P{c1,c2,...,cg} = Ic − diag(Jc1/c1,Jc2/c2, . . . ,Jcg/cg) = Ic −Hc

where the integers {c1, . . . , cg} satisfy the constraint c1 + c2 + . . .+ cg = c.

Suppose that Σ = Σ2 ⊗Σ1 in which case

tr(Ω4)

tr2(Ω2)
=

tr [(PΣ2)
4]

tr2 [(PΣ2)2]

tr(Σ4
1)

tr2(Σ2
1)
.

If tr(Σ4
1) = o

{
tr2(Σ2

1)
}

, then condition (4) is satisfied. Now we prove that condition (4) is

also met when tr(Σ4
2) = o

{
tr2(Σ2

2)
}

. First, note that

λ41(Σ2)

tr2(Σ2
2)

6

∑rc
k=1 λ

4
k(Σ2)

tr2(Σ2
2)

=
tr(Σ4

2)

tr2(Σ2
2)
,

and thus the condition tr(Σ4
2) = o

{
tr2(Σ2

2)
}

implies that λ1(Σ2) = o
{√

tr(Σ2
2)
}

. Now write

tr
[
(PΣ2)

2
]

= tr(Σ2
2) + tr(HcΣ2HcΣ2)− 2tr(HcΣ

2
2)
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and note that

0 6 tr(HcΣ2HcΣ2) 6 tr(HcΣ
2
2) 6

g∑
k=1

λk(Hc)λk(Σ2
2) 6

g∑
k=1

λ2k(Σ2) 6 gλ21(Σ2).

It follows that

tr [(PΣ2)
2]

tr
(
Σ2

2

) → 1

and hence

tr [(PΣ2)
4]

tr2 [(PΣ2)2]
→ 0.

The above prove that Σ1 and/or Σ2 belong to the class of covariance matrices ∆ for which

tr(∆4) = o
{

tr2(∆2)
}

. This class includes covariance matrices that have bounded eigenvalues

or have a few eigenvalues that diverge slowly to infinity (Chen and Qin, 2010) or when Σ1

and Σ2 a (banded) first order autoregressive correlation pattern such that the variances are

bounded away from 0 or∞ (Chen et al., 2010). Under the Kronecker product structure, when

c→∞ and Σ2 satisfies a compound symmetry correlation matrix, i.e., Σ2 = ρIc + (1− ρ)Jc

for −1/(c− 1) < ρ 6 1, it can be shown that

tr(Ω4)

tr2(Ω2)
6

tr [(PΣ2)
4]

tr2 [(PΣ2)2]
=

(1− ρ)4(c− g)

[(1− ρ)2(c− g)]2
→ 0.

Next, suppose that the column variables are uncorrelated, in which case Σ is a block

diagonal matrix and tr(Σ4) = o
{

tr2(Σ2)
}

. We prove that condition (4) holds when Hc =

Jc/c. The proof is similar when Hc = diag(Jc1/c1,Jc2/c2, . . . ,Jcg/cg). Let H = Hc⊗Ir. Some

algebra shows that tr(HΣ2) = tr(Σ2)/c and tr(HΣHΣ) > tr(Σ2)/c2, and consequently

tr(Ω2) = tr(Σ2) + tr(HΣHΣ)− 2tr(HΣ2) > (1− 1/c)2tr(Σ2) > tr(Σ2)/2.

Therefore

tr(Ω4)

tr2(Ω2)
6 4

tr(Σ4)

tr2(Σ2)
→ 0.

Finally, assume that neither the rows nor the columns are independent. By the Pioncare

seperation theorem, it follows that

λrg+k(Σ) 6 λk(Ω) 6 λk(Σ)
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for k = 1, . . . , r(c − g) and that λr(c−g)+1(Ω) = . . . = λrc(Ω) = 0. Assume first that Σ has

eigenvalues bounded away from zero and infinity, i.e., there exist constants L and U such

that

0 < L 6 λrc(Σ) 6 . . . 6 λ1(Σ) 6 U <∞

then

tr(Ω4)

tr2(Ω2)
6

1

r(r − g)

U4

L4
→ 0

as rc → ∞. It can be shown that condition (4) holds even if Σ has unbounded eigenvalues

with λ1(Σ)→∞ and λrc(Σ)→ 0 such that λ1(Σ) = o {r(c− g)λrc(Σ)}. Next assume that

Σ = ρIrc + (1 − ρ)Jrc for −1/(rc − 1) < ρ 6 1. For all k = 1, 2, . . ., it can be readily

shown that tr(Ωk) = (1 − ρ)kr(c − g) and thus condition (4) is met. Consider the case

where Σ satisfies a first order autoregressive correlation matrix and Hc = Jc/c. Similar

arguments generalize the result for Hc = diag(Jc1/c1,Jc2/c2, . . . ,Jcg/cg). It can be shown

that tr(HcΣ
2) = o

{
tr(HcΣ

2)
}

which implies condition (4).
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Web Table 1

Hypothesis testing results regarding the global mean structure in the GB study.

p−value

Mean matrix under H0 Test statistic Unadjusted FDR correction

M = [µ1,µ2,µ31
T
5 ] -0.2818 0.6110 0.6110

M = [µ1,µ1,µ31
T
5 ] 15.2426 <0.0001 <0.0001

M = [µ1,µ2,µ21
T
5 ] 3.0211 0.0013 0.0016

M = [µ1,µ2,µ11
T
5 ] 22.2515 <0.0001 <0.0001

M = [µ1,µ1,µ11
T
5 ] 22.5101 <0.0001 <0.0001

Web Table 2

Empirical sizes of ANOVA and Kruskal-Wallis test under Scenario 3 and under a Kronecker product dependence

structure at 5% significance.

ANOVA Kruskal-Wallis

N r FDR BON FDR BON

10 100 0.000 0.000 0.000 0.000

500 0.000 0.000 0.000 0.000

30 100 0.000 0.000 0.000 0.000

500 0.000 0.000 0.000 0.000

50 100 0.000 0.000 0.000 0.000

500 0.000 0.000 0.000 0.000

100 100 0.000 0.000 0.000 0.000

500 0.000 0.000 0.000 0.000
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Web Table 3

Empirical power of H{10}, ANOVA and Kruskal-Wallis for the sparsity scenario with r = 1000 under Scenario 3

under an equal allocation at 5% significance

H{10} ANOVA Kruskal-Wallis

N #{µl = 0} FDR BON FDR BON

10 99% 0.181 0.214 0.203 0.052 0.051

95% 0.194 0.075 0.074 0.006 0.006

75% 0.193 0.063 0.062 0.003 0.003

50% 0.186 0.064 0.061 0.004 0.004

25% 0.187 0.063 0.058 0.003 0.003

0 % 0.186 0.060 0.058 0.003 0.003

20 99% 0.703 1.000 1.000 1.000 1.000

95% 0.709 0.287 0.273 0.189 0.177

75% 0.696 0.090 0.089 0.050 0.046

50% 0.707 0.076 0.075 0.041 0.040

25% 0.699 0.080 0.077 0.045 0.045

0 % 0.693 0.080 0.076 0.049 0.048

50 99% 0.974 1.000 1.000 1.000 1.000

95% 0.975 0.786 0.739 0.677 0.641

75% 0.976 0.160 0.149 0.122 0.117

50% 0.976 0.123 0.117 0.093 0.089

25% 0.977 0.116 0.115 0.089 0.086

0 % 0.976 0.108 0.105 0.088 0.086

100 99% 1.000 1.000 1.000 1.000 1.000

95% 1.000 1.000 1.000 1.000 1.000

75% 1.000 0.444 0.401 0.372 0.336

50% 1.000 0.235 0.209 0.198 0.185

25% 1.000 0.197 0.185 0.177 0.169

0 % 1.000 0.176 0.164 0.168 0.158
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Web Table 4

Empirical power of H{6,4} for the sparsity scenario with r = 100 at 5% significance.

Equal Allocation Increasing Allocation

N #{µl = 0} Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

10 99% 0.194 0.213 0.173 0.194 0.213 0.173

95% 0.175 0.207 0.164 0.172 0.213 0.163

75% 0.166 0.204 0.171 0.168 0.205 0.173

50% 0.174 0.211 0.169 0.172 0.207 0.169

25% 0.173 0.203 0.170 0.169 0.203 0.168

0% 0.167 0.201 0.165 0.164 0.199 0.166

30 99% 0.605 0.609 0.606 0.605 0.609 0.606

95% 0.626 0.582 0.605 0.623 0.589 0.605

75% 0.632 0.634 0.635 0.637 0.637 0.642

50% 0.643 0.646 0.649 0.651 0.648 0.650

25% 0.645 0.647 0.654 0.647 0.645 0.653

0% 0.658 0.644 0.663 0.662 0.643 0.666

50 99% 0.903 0.868 0.882 0.903 0.868 0.882

75% 0.896 0.897 0.899 0.904 0.898 0.896

50% 0.938 0.936 0.934 0.947 0.941 0.936

25% 0.962 0.955 0.949 0.965 0.958 0.954

5% 0.964 0.959 0.954 0.967 0.964 0.958

0% 0.965 0.966 0.961 0.969 0.967 0.963
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Web Table 5

Empirical size and power of H{10} for the sparsity scenario with r = 10000 under Scenario 3 at 5% significance

N #{µl = 0} Scenario 1 Scenario 2 Scenario 3

10 100% 0.055 0.056 0.068

99% 0.181 0.158 0.166

95% 0.176 0.159 0.164

75% 0.178 0.151 0.164

50% 0.180 0.158 0.170

25% 0.181 0.163 0.169

0% 0.182 0.164 0.166

30 100% 0.050 0.054 0.065

99% 0.660 0.591 0.664

95% 0.653 0.599 0.660

75% 0.653 0.586 0.644

50% 0.656 0.592 0.650

25% 0.649 0.588 0.661

0% 0.648 0.596 0.650

50 100% 0.050 0.055 0.039

99% 0.952 0.952 0.953

95% 0.948 0.954 0.943

75% 0.953 0.953 0.944

50% 0.952 0.954 0.947

25% 0.955 0.956 0.947

0% 0.954 0.954 0.952
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