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Abstract: The matrix-variate normal distribution is a popular model for high-

dimensional transposable data because it decomposes the dependence structure of

the random matrix into the Kronecker product of two covariance matrices, one for

each of the row and column variables. However, few hypothesis testing procedures

exist for these covariance matrices in high-dimensional settings. Therefore, we pro-

pose tests that assess the sphericity, identity, and diagonality hypotheses for the

row (column) covariance matrix in a high-dimensional setting, while treating the

column (row) dependence structure as a “nuisance” parameter. The proposed tests

are robust to normality departures, provided that the Kronecker product depen-

dence structure holds. In simulations, the proposed tests appear to maintain the

nominal level, and tend to be powerful against the alternative hypotheses tested.

The utility of the proposed tests is demonstrated by analyzing a microarray and an

electroencephalogram study. The proposed testing methodology is implemented in

the R package HDTD.

Key words and phrases: Covariance matrix, high-dimensional settings, hypothesis

testing, matrix-valued random variables, transposable data.

1. Introduction

Transposable data (Allen and Tibshirani (2010)) refer to matrix-valued ran-

dom variables that treat the rows and columns as two distinct sets of variables of

interest. To illustrate the term, consider the mouse aging atlas project (Zahn et

al. (2007)), where gene expression levels were measured in tissue samples collected

from multiple mice. For each mouse, the data are organized in a 9×8,932 matrix,

where the rows index nine different tissues, and the columns index 8,932 genes

under study. Biological questions involve at least one of the two sets of variables

(tissues and genes). For instance, we might want to infer the dependence struc-

ture among the genes and/or the tissues, or we might want to study the overall
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mean gene expression relationship across the nine tissues. In addition to studies

on genetics (Allen and Tibshirani (2010, 2012); Efron (2009); Teng and Huang

(2009); Yin and Li (2012); Ning and Liu (2013); Touloumis, Tavaré and Marioni

(2015)), transposable data arise in electroencephalogram EEG studies (Zhang et

al. (1995); Leng and Tang (2012); Xia and Li (2017)), spatio-temporal studies

(Genton (2007); Mardia and Goodall (1993)), cross-classified multivariate data

(Galecki (1994); Naik and Rao (2001)), functional MRI (Allen and Tibshirani

(2010); Zhu and Li (2018), financial market targeting (Leng and Tang (2012)),

and in time series (Carvalho and West (2007); Lee, Daniels and Joo (2013)),

among others.

To introduce the notation, considerN independent and identically distributed

(i.i.d.) r × c random matrices X1, . . . ,XN , such that in each matrix, there are

r row variables and c column variables. To reflect a high-dimensional setting

or, equivalently, the “small sample size, large number of parameters” paradigm,

assume that the sample size N is smaller than the number of observations r × c
in a single matrix. The challenge with high-dimensional transposable data is to

parsimoniously model the covariance structure of X1, . . . ,XN , while respecting

the structural information provided by presenting the data in matrix form. For

this reason, the matrix-variate normal distribution (Dawid (1981); Gupta and

Nagar (2000)) is widely used to model high-dimensional transposable data (Allen

and Tibshirani (2010, 2012); Efron (2009); Teng and Huang (2009); Carvalho and

West (2007); Leng and Tang (2012); Yin and Li (2012); Tsiligkaridis and Hero

(2013); Zhou (2014); Zhu and Li (2018)). It is defined by three matrix param-

eters, namely the mean matrix M, and two positive-definite matrices ΣR and

ΣC. These matrices satisfy the relations E(Xi) = M and Cov [vec(Xi)] = Σ =

ΣC⊗ΣR, where vec(A) vectorizes matrix A by its columns, and A⊗B denotes the

Kronecker product of the matrices A and B. In simple terms, the matrix-variate

normal distribution allows researchers to decompose the high-dimensional depen-

dence structure into the Kronecker product of two lower-dimensional covariance

matrices ΣC and ΣR, recognized as the covariance matrices of the column and

row variables, respectively. Consequently, the covariance between two elements

of Xi, say Xir1c1 and Xir2c2 , is given by

Cov(Xir1c1 , Xir2c2) = (ΣR)r1r2 (ΣC)c1c2 ,

for all i = 1, . . . , N , r1, r2 = 1, . . . , r, and c1, c2 = 1, . . . , c, where (A)a1a2
denotes

the (a1, a2) element of the matrix A. To exemplify this relation, consider again

the mouse aging project, where ΣR describes the dependence structure among the
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tissue samples, and ΣC describes that among the genes. Hence, the covariance

between the expression levels of gene r1 in tissue c1 and gene r2 in tissue c2 is

the product of the covariance between the two genes and that between the two

tissues.

The Kronecker product covariance matrix decomposition is not necessarily

an over simplified and convenient assumption. In fact, Hafner, Linton and Tang

(2020) showed that it can approximate (in the least squares sense) the true high-

dimensional covariance matrix well.

This result provides some theoretical justification for using the matrix-variate

normal distribution (or, more precisely, any distribution with a Kronecker prod-

uct covariance matrix) in high-dimensional settings with transposable data. In

addition, hypothesis testing procedures (Aston, Pigoli and Tavakoli (2017)) and

diagnostic plots (Ning and Liu (2013); Yin and Li (2012)) are available to evaluate

the Kronecker product assumption for a given data set.

However, to the best of our knowledge, no formal procedure exists for per-

forming hypothesis testing for ΣR (or ΣC) in high-dimensional transposable data

under the matrix-variate normal distribution, while treating M and ΣC (or ΣR)

as matrix-valued nuisance parameters. To fill this gap, we consider the following

three hypothesis tests: the sphericity hypothesis test,

H0 : ΣR = σ2Ir vs. H1 : ΣR 6= σ2Ir , (1.1)

where σ2 > 0 is an unknown constant and Ip is the identity matrix of size p; the

identity hypothesis test,

H0 : ΣR = Ir vs. H1 : ΣR 6= Ir ; (1.2)

and the diagonality hypothesis test,

H0 : ΣR = ∆ΣR
vs. H1 : ΣR 6= ∆ΣR

, (1.3)

where ∆A denotes the diagonal matrix, with diagonal elements the corresponding

elements of A. This suggests that the diagonality hypothesis test can also be

written as:

H0 : (ΣR)r1r2 = 0 for all r1 6= r2 vs. H1 : not H0 . (1.4)

To illustrate the practical importance of testing these three hypotheses, con-

sider first the diagonality test. The null hypothesis implies independence of the

row variables such that the transposable data can be written in terms of r inde-

pendent populations, one for each row. In particular, the r1th population consists
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of N c-variate random vectors, with mean vector the r1th row of M and covari-

ance matrix (ΣR)−1
r1r1

ΣC. Therefore, the diagonality hypothesis test under the

matrix-variate normal model is equivalent to testing whether the r row random

vectors are independently distributed with proportional covariance matrices, but

not necessarily with a common mean vector.

Next, consider the sphericity test. The null hypothesis is more restrictive be-

cause it requires the r independent populations have identical covariance matrices

(equal to σ−2ΣC). Thus, it can be utilized to explore whether the r rows are

independently distributed with a common covariance matrix, but with varying

mean vectors. Another use of the sphericity hypothesis test is to assess indirectly

whether a known row covariance matrix ΣR0 is equal to the row-wise covariance

structure ΣR; that is, we test

H0 : ΣR = ΣR0 vs. H1 : ΣR 6= ΣR0 .

To accomplish this, we must apply the transformationXi 7−→ Σ
−1/2
R0 Xi, and then

test the sphericity hypothesis on the transformed random matrices. In this case,

the constant σ2 is the normalizing constant that makes ΣR and ΣC identifiable

(see also Section 2).

To this end, consider now the identity test. The null hypothesis implies

that all row variances are equal to one. This test is useful only in studies where

transposable data for each subject have been preprocessed in such a way that the

measurements across the column and/or row variables have sample mean zero

and unit variance. Examples of column- and/or doubly standardized data can be

found in microarray studies (Efron (2009)).

It is not straightforward to assess hypothesis tests (1.1), (1.2), or (1.3) by

applying existing testing procedures for high-dimensional covariance matrices of

random vectors, such as the testing procedures of Chen, Zhang and Zhong (2010)

and Srivastava, Yanagihara and Kubokawa (2014), among others. For a more de-

tailed discussion on testing a covariance structure with high-dimensional random

vectors, see, for example, Ahmad and von Rosen (2015). Unfortunately, these

methods do not account for the presence of a column-wise dependence structure

and/or an unrestricted mean matrix M. In our preliminary simulations (see

Section 10 in the Supplementary Material), we found that such tests approxi-

mate the nominal size only when the column variables were indeed independent

(ΣC = Ic) and a constant r-variate mean µ vector holds for the row variables.

Otherwise, they lead to inflated sizes, for example, always falsely rejecting the

null hypothesis in the presence of a moderate to strong column-wise correlation
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pattern and/or more complicated forms of the mean matrix.

To address this issue, we extend the work of Chen, Zhang and Zhong (2010) to

include matrix-variate distributions. In all cases, we estimate a (scaled) squared

Frobenius norm that measures the distance between the corresponding null and

alternative hypotheses for ΣR, while treating M and ΣC as “nuisance” matrix

parameters. This is reasonable, because the squared Frobenius norm of the dif-

ference of the Kronecker product ΣC ⊗ΣR under the sphericity, identity, or di-

agonality hypothesis and the corresponding alternative hypothesis depends only

on that for ΣR. Next, the unknown parameters in the squared Frobenius norms

are replaced by unbiased and/or consistent estimators. This allows us to derive

the general asymptotic distributions of the proposed test statistics and, hence,

to explore their asymptotic power. In addition, we show that the proposed tests

are nonparametric, meaning that under suitable conditions, they can account for

some departures from the matrix-variate normal distribution.

Note that the methods developed here can manage a high-dimensional set-

ting in a very parsimonious and efficient way. The proposed test statistics are

computationally cheap, because their construction relies on estimating just four

parameters: tr(ΣR), tr(Σ2
R), tr(∆2

ΣR
), and tr(Σ2

C). We avoid an explicit estima-

tion of r(r − 1)/2 + c(c− 1)/2 non-redundant elements in ΣR and ΣC, which is

a cumbersome task for a large number of rows and/or columns. To appreciate

the computational gains, assume that we want to test the dependence structure

for the tissues in the mouse aging example. A full estimation of the mean ma-

trix and the gene covariance matrix requires estimation of 1,140 non-redundant

nuisance parameters. In contrast, the proposed methods need to account only

for the gene-covariance matrix using a single parameter tr(Σ2
C), which can be

consistently estimated.

Note that the role of the row and column variables can be interchanged. This

implies that if the interest lies in applying the sphericity, identity, or diagonality

hypothesis test to the column covariance matrix, then the transformation Xi 7−→
X ′i should be performed prior to carrying out the test on the transformed data.

In other words, the proposed tests can be applied to ΣC by simply transposing

the data matrices.

This remainder of the paper is organized as follows. In Section 2, we present

the working framework that allows us to handle and develop test statistics for

high-dimensional transposable data under a Kronecker product patterned co-

variance matrix in a nonparametric manner. In Section 3, we propose tests for

assessing the sphericity, identity, and diagonality hypotheses of the row (or col-

umn) covariance matrix. For each of the tests proposed, we derive the general
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asymptotic distribution, indicate the rejection region, and provide a lower bound

for the asymptotic analysis. We also indicate appropriate software implementa-

tions for our methods. In Section 4, we demonstrate the good performance of the

proposed tests in simulation studies. In Section 5, we apply the test statistics to

the mouse aging data set and to an EEG data set. We summarize our findings

and discuss future research in Section 6. Technical details can be found in the

online Supplementary Material.

2. Notation and Assumptions

Suppose there are r row variables and c column variables, and assume that

r × c random matrices X1, . . . ,XN are generated from the matrix-valued non-

parametric model

Xi = Σ
1/2
R ZiΣ

1/2
C + M , (2.1)

where

• ΣR = Σ
1/2
R Σ

1/2
R is an r × r row covariance matrix.

• Z1, . . . ,ZN are r × c i.i.d. random matrices, and Zir1c1 denotes the (r1, c1)

element of Zi, for r1 = 1, . . . , r and c1 = 1, . . . , c.

• E (Zir1c1) = 0, Var (Zir1c1) = 1, E(Z4
ir1c1

) = 3 +B for a finite constant B ≥
−2, E(Z8

ir1c1
) <∞, and for any positive integers l1, . . . , lq, with

∑q
v=1 lv ≤ 8,

E

(
q∏

k=1

Zirkck

)
=

q∏
k=1

E(Zirkck),

for (r1, c1) 6= · · · 6= (rq, cq). Thus, the elements of Zi can be viewed as white

noise that can also accommodate weak dependence patterns.

• ΣC = Σ
1/2
C Σ

1/2
C is a c× c column covariance matrix, such that tr(ΣC) = c,

where tr(A) denotes the trace of the matrix A.

• M = E(Xi) is an r × c mean matrix.

Model (2.1) is a special case of the nonparametric matrix-valued model for

transposable data employed in Touloumis, Tavaré and Marioni (2015) with Σ =

ΣC⊗ΣR, where Σ is the covariance matrix of xi = vec(Xi), the vectorized form

of Xi. Hence, it contains the matrix-variate normal distribution as a member

(B = 0) and preserves the interpretation of ΣR and ΣC as row and column

covariance matrices, respectively. Furthermore, it allows us to consider some

nonnormal distributions, such as members of the elliptically contoured family of
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distributions and the independent component model (Oja (2010)), subject to a

Kronecker product covariance decomposition.

The trace restriction on ΣC makes the two covariance matrices identifiable,

because otherwise we have Σ = (tΣC) ⊗ (ΣR/t), for any t > 0. In the context

of the matrix-variate normal distribution, this issue has been resolved by setting

tr(ΣC) = c (Mardia and Goodall (1993); Theobald and Wuttke (2006)), or set-

ting a diagonal element of ΣC equal to one (Naik and Rao (2001); Srivastava,

von Rosen and von Rosen (2008); Yin and Li (2012)). Although none of these

constraints affect the row and column correlation patterns, we adopt the former

because it eases the construction of unbiased and/or consistent estimators of the

parameters we base the proposed test statistics upon.

To manage high-dimensional settings, we assume that as N →∞,

rc = r(N)c(N)→∞ , N = O(rc) ,
tr(Σ4

m)

tr2(Σ2
m)
→ 0 for m ∈ {R,C} . (2.2)

Assumption (2.2) does not specify the pairwise limiting ratios of the triplet

(N, r, c) or the rate at which r →∞ and c→∞. Thus, it covers applications in

which i) the sample size might not be expected to increase proportionally with

the dimension of the transposable data matrices, and ii) r and/or c tend to ∞
a lot faster than N . These situations are tested in the simulation study, where

the proposed tests appeared to behave well. Assumption (2.2) does not seriously

limit the scope of the row and column covariance structures under consideration.

Covariance matrices with eigenvalues bounded away from zero and ∞ (Chen,

Zhang and Zhong (2010)), that satisfy a first-order autoregressive correlation

pattern with bounded variances (Chen, Zhang and Zhong (2010)), or that have a

few divergent eigenvalues, as long as they diverge slowly (Chen and Qin (2010)),

all satisfy the trace ratio restrictions in (2.2). Therefore, model (2.1) and as-

sumption (2.2) constitute a flexible working framework that allows us to handle

a wide range of studies with high-dimensional transposable data.

3. Test Statistics

To construct the proposed test statistics, we need to estimate tr(ΣR), tr(Σ2
R),

tr(∆2
ΣR

) = tr(ΣR ◦ ΣR), and tr(Σ2
C), where A ◦ B is the Hadamard product

of the matrices A and B. Before introducing the test statistics, we present

unbiased and/or consistent estimators of these parameters, and we discuss some

computational aspects.
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3.1. Parameter estimators

The parameters tr(ΣR), tr(Σ2
R), and tr(∆2

ΣR
) can be estimated by

T1N = Y1N − Y4N =
1

cN

N∑
i=1

tr(XiX
′
i)−

1

cPN2

∗∑
i,j

tr(XiX
′
j),

T2N = Y2N − 2Y5N + Y6N

=
1

c2PN2

∗∑
i,j

tr(XiX
′
iXjX

′
j)− 2

1

c2PN3

∗∑
i,j,k

tr(XiX
′
iXjX

′
k)

+
1

c2PN4

∗∑
i,j,k,l

tr(XiX
′
jXkX

′
l) ,

and

T3N = Y6N − 2Y7N + Y8N

=
1

c2PN2

∗∑
i,j

tr[(XiX
′
i) ◦ (XjX

′
j)]− 2

1

c2PN3

∗∑
i,j,k

tr[(XiX
′
i) ◦ (XjX

′
k)]

+
1

c2PN4

∗∑
i,j,k,l

tr[(XiX
′
j) ◦ (XkX

′
l)]

respectively, where P st =
∏t
k=0(s−k) and

∑∗ denotes a summation over mutually

distinct indices. The terms Y1N , Y2N , and Y3N in T1N , T2N , and T3N , respectively,

are the unbiased estimators of the targeted parameters when M = 0. The terms

Y4N , Y5N , Y6N , Y7N , and Y8N are U -statistics of order two, three, and four that

are subtracted so that T1N , T2N , and T3N remain unbiased, even when M 6= 0.

To the best of our knowledge, Chen, Zhang and Zhong (2010) first exploited this

usage of U -statistics to construct test statistics.

To estimate tr(Σ2
C), we use the vectorized form of model (2.1), and write

tr(Σ2
C) = tr(Σ2)/tr(Σ2

R). To estimate tr(Σ2
C), we use T5N = T4N/T2N , that is,

the ratio of an unbiased estimator of tr(Σ2),

T4N =
1

PN2

∗∑
i,j

(x′ixj)
2 − 2

1

PN3

∗∑
i,j,k

x′ixjx
′
ixk +

1

PN4

∗∑
i,j,k,l

x′ixjx
′
kxl ,

to T2N , an unbiased estimator of tr(Σ2). Theorem 1 establishes that T1N , T2N ,

T4N , and T5N are all ratio-consistent estimators of the targeted parameters (a

general statistic θ̂N is a ratio-consistent estimator of the parameter θ if θ̂N/θ
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converges in probability to one), and that T3N is a ratio-consistent estimator of

tr(∆2
ΣR

) under H0 in the diagonality hypothesis test (1.3).

Theorem 1. Under model (2.1) and assumption (2.2),

T1N

tr(ΣR)

P→ 1,
T2N

tr(Σ2
R)

P→ 1,
T4N

tr(Σ2)

P→ 1,
T5N

tr(Σ2
C)

P→ 1 ,

where
P→ denotes convergence in probability, and

Var (T3N )

tr2(Σ2
R)
→ 0 .

Thus, when ΣR = ∆ΣR
we have that

T3N

tr(∆2
ΣR

)

P→ 1 .

From a computational perspective, note that equivalent formulae for T2N ,

T3N , and T4N (available in the Supplementary Material) and the cyclic property

applied on the trace operators when r > c can significantly reduce the order of the

calculations of T2N , T3N , and T4N from N4r2(r+2c) to N2 min{r, c}2(min{r, c}+
2 max{r, c}). In the special case of centered transposable data matrices (M = 0),

further reductions in the computational time can be gained by employing only

the first terms in T1N , T2N , T3N , and T4N .

3.2. Sphericity test

The proposed test relies on the general limiting distribution of

UN = r
T2N

T 2
1N

− 1 ,

a ratio-consistent estimator of the scaled Frobenius norm

1

r
tr

[
ΣR

tr(ΣR)/r
− Ir

]2

= r
tr(Σ2

R)

tr2(ΣR)
− 1 .

This measures the distance between the null and alternative hypotheses in the

sphericity hypothesis test (1.1), which is equal to zero if and only if the null

hypothesis is true. Let

σ2
UN

=
4

N2

[
tr(Σ2

C)

c2

]2

+
8

N

tr(Σ2
C)

c2
tr

{[
Σ2

R

tr(Σ2
R)
− ΣR

tr(ΣR)

]2
}
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+
4B

N

tr(∆2
ΣC

)

c2
tr

{[
Σ2

R

tr(Σ2
R)
− ΣR

tr(ΣR)

]
◦
[

Σ2
R

tr(Σ2
R)
− ΣR

tr(ΣR)

]}
.

Because −2 ≤ B, tr
(
∆2

A

)
= tr(A ◦A) ≤ tr(A2) for any symmetric matrix

A and tr(Σ2
C) ≤ c2, it follows that σ2

UN
> 0.

Theorem 2. Under model (2.1) and assumption (2.2),

σ−1
UN

[
tr2(ΣR)

tr(Σ2
R)

UN + 1

r
− 1

]
d→ N (0, 1) ,

where
d→ denotes convergence in distribution, and N (0, 1) denotes the standard

normal distribution.

Under H0 in the sphericity hypothesis test (1.1), σ2
UN

reduces to

4

N2

[
tr(Σ2

C)

c2

]2

.

In most applications, tr(Σ2
C) will be unknown, but it can be replaced by its

ratio-consistent estimator T5N . Hence, Slutsky’s Theorem and Theorems 1 and 2

imply that a test with a nominal α level of significance rejects H0 in the sphericity

hypothesis test (1.1) when

N − 1

2

c2

T5N
UN ≥ z1−α ,

where zp is the p quantile of N (0, 1). The scaling factor (N−1)/N serves as a pre-

caution against inflated empirical sizes in finite samples. This factor is motivated

by the work of Mao (2016), who compared U-statistic-based testing procedures

for assessing the sphericity and identity hypothesis tests for a covariance matrix

of high-dimensional vector-valued random variables. It is basically a correction in

the asymptotic variance of UN that accounts for estimating the mean matrix M

using the sample mean matrix in T1N and T2N (see the corresponding alternative

formulae available in the Supplementary Material). In addition, T3N depends on

the sample mean matrix. Therefore, we also apply the (N − 1)/N correction to

the identity and diagonality tests.

The asymptotic normality of UN permits us to investigate the power of the

proposed test. As such, let

0 ≤ ξ1N = 1− 1

r

tr2(ΣR)

tr(Σ2
R)

< 1
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and

ξ2N = tr

{[
Σ2

R

tr(Σ2
R)
− ΣR

tr(ΣR)

]2
}
,

and note that for large N ,

4

N2

[
tr(Σ2

C)

c2

]2

≤ σ2
UN
≤

tr(Σ2
C)

c2

[
4

N2
+

4(2 +B)

N
ξ2N

]
.

Theorem 3. Under model (2.1) and assumption (2.2),

lim inf
N

βSN ≥ 1− Φ

(
z1−a −

1

2
lim inf

N

√
c2

tr(Σ2
C)

N2ξ1N

1 + (2 +B)Nξ2N

)
,

where βSN is the power function of the proposed sphericity test, and Φ is the

cumulative distribution function of N (0, 1).

Theorem 3 states that the proposed sphericity test is consistent, as long as

lim inf
N

√
c2

tr(Σ2
C)

N2ξ1N

1 + (2 +B)Nξ2N
=∞ .

This does not impose severe restrictions on the row covariance. For example, the

test is consistent, provided that ξ1N and ξ2N are both bounded away from zero and

ξ2N is bounded away from∞. Theorem 3 also implies that, in finite samples and

when conditioning on the remaining parameters, the strength of the column-wise

correlation might affect the power of the proposed test. Heuristically, we expect

weak column-wise correlation patterns to increase the power of the proposed

test, because the asymptotic lower bound of βSN takes its maximum value when

ΣC = Ic, because tr(Σ2
C) ≤ tr(I2

c) = c.

3.3. Identity test

For the identity hypothesis test (1.2), consider

VN = T2N − 2T1N + r ,

an unbiased estimator of the squared Frobenius norm tr
[
(ΣR − Ir)

2
]

= tr(Σ2
R)−

2tr(ΣR) + r, that is equal to zero if and only if the null hypothesis holds. Let

σ2
VN

=
4

N(N − 1)

[
tr(Σ2

C)

c2

]2

tr2(Σ2
R) +

8

N

tr(Σ2
C)

c2

[
tr(Σ2

R −ΣR)2
]

+
4B

N

tr(∆2
ΣC

)

c2
tr
[
(Σ2

R −ΣR) ◦ (Σ2
R −ΣR)

]
> 0 .
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Theorem 4 proves that σ2
VN

is the asymptotic variance term of VN and, conse-

quently, we can derive the general asymptotic distribution of VN .

Theorem 4. Under model (2.1) and assumption (2.2), it follows that Var(Vn) =

σ2
VN
{1 + o(1)}. Furthermore,

VN − tr(ΣR − Ir)
2

σVN

d→ N (0, 1) .

Slutsky’s Theorem and Theorems 1 and 4 imply that a test with a nominal

α level of significance rejects H0 in the identity hypothesis test (1.2) when

N − 1

2

c2

T5N

1

r
VN ≥ z1−α .

To investigate the asymptotic power of the proposed test, we need to intro-

duce additional notation. Let

ξ3N =
1

r
tr
[
(ΣR − Ir)

2
]

and

ξ4N =
tr(Σ2

R)

Ntr [(ΣR − Ir)2]
.

Because tr
[
(ΣR − Ir)

2
]
≤ tr(ΣR − Ir)tr(ΣR) we obtain that for large N ,

4

[
tr(Σ2

C)

c2

]2

r2ξ2
3Nξ

2
4N ≤ σ2

VN
≤ 4

tr(Σ2
C)

c2
tr
[
(ΣR − Ir)

2
] [
ξ2

4N + (2 +B)ξ4N

]
.

Theorem 5. Under model (2.1) and assumption (2.2),

lim inf
N

βIN ≥ 1− lim sup
N

Φ

(
z1−α

Nξ3Nξ4N
− 1

2

√
c2

tr(Σ2
C)

1

ξ2
4N + (2 +B)ξ4N

)
,

where βIN is the power function of the proposed identity test.

Theorem 5 suggests that the proposed test is consistent under mild conditions

on the row covariance matrix, for example, whenever ξ3N and ξ4N are bounded

away from zero. Similarly to the proposed sphericity test, the proposed identity

test is expected to be more powerful in the presence of a weak, rather than a

strong column-wise correlation pattern.
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3.4. Diagonality test

A test statistic for assessing the diagonality hypothesis test (1.3) or (1.4) can

be constructed by following a similar strategy. In particular, consider

WN = T2N − T3N ,

an unbiased estimator of the squared Frobenius norm,

tr
[
(ΣR −∆ΣR

)2
]

= tr(Σ2
R)− 2tr(ΣR∆ΣR

) + tr(∆2
ΣR

) = tr(Σ2
R)− tr(∆2

ΣR
) ,

that is equal to zero if and only if the null hypothesis in the diagonality hypothesis

test (1.3) holds. The asymptotic variance of WN is

σ2
WN

=
4

N2

[
tr(Σ2

C)

c2

]2

tr2(Σ2
R) +

8

N

tr(Σ2
C)

c2
tr [ΣR(ΣR −∆ΣR

)ΣR(ΣR −∆ΣR
)]

+
4B

N

tr(∆2
ΣC

)

c2
tr
{[

Σ
1/2
R (ΣR −∆ΣR

)Σ
1/2
R

]
◦
[
Σ

1/2
R (ΣR −∆ΣR

)Σ
1/2
R

]}
.

Theorem 6. Under model (2.1) and assumption (2.2), it follows that Var(WN ) =

σ2
WN
{1 + o(1)}. Furthermore,

WN − tr
[
(ΣR −∆ΣR

)2
]

σWN

d→ N (0, 1) .

As before, the general asymptotic distribution of WN in Theorem 6 is used

to find a rejection area. Slutsky’s Theorem and Theorems 1 and 6 imply that a

test with a nominal α level of significance rejects H0 in the diagonality hypothesis

test (1.3) when
N − 1

2

c2

T5N

1

T3N
WN ≥ z1−α .

To investigate the asymptotic power of the proposed test, let

0 ≤ ξ5N =
tr
[
(ΣR −∆ΣR

)2
]

tr(Σ2
R)

= 1−
tr(∆2

ΣR
)

tr(Σ2
R)

< 1,

and note that for large N ,

4

N2

[
tr(Σ2

C)

c2

]2

tr2(Σ2
R) ≤ σ2

WN
≤

tr(Σ2
C)

c2
tr2(Σ2

R)

[
4

N2
+

4(8 +B)

N

]
.
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Theorem 7. Under model (2.1) and assumption (2.2),

lim inf
N

βDN ≥ 1− Φ

(
z1−a −

1

2
lim inf

N

√
c2

tr(Σ2
C)

N2ξ5N

1 + (8 +B)N

)
,

where βDN is the power of the proposed diagonality test.

Note that ξ5N converges to zero if all elements of ΣR−∆ΣR
converge to zero.

In this case, tr
[
(ΣR −∆ΣR

)2
]
→ 0 and, hence, the proposed test is expected to

suffer a power loss. On the other hand, the test will be asymptotically consistent,

provided that ΣR and ∆ΣR
differ in at least one element as N → ∞ and r →

∞, as long as this difference is bounded away from zero and regardless of its

magnitude.

3.5. Special cases

When the subject-specific data are vector-valued rather than matrix-valued

(c = 1), it can be shown that the proposed sphericity and identity tests reduce to

the corresponding sphericity and identity tests proposed by Srivastava, Yanagi-

hara and Kubokawa (2014). Mao (2016) showed that these tests are the same

except for a scale factor, as those proposed by Chen, Zhang and Zhong (2010).

Furthermore, the proposed diagonality test is asymptotically equivalent, but not

identical to the bandness test with a fixed bandwidth equal to one proposed by

Qiu and Chen (2012).

When the column features are independent, in which case ΣC = Ic, and

M = µ1c for an r-dimensional mean vector µ, then the proposed tests are asymp-

totically equivalent to the corresponding test statistics of Srivastava, Yanagihara

and Kubokawa (2014), Chen, Zhang and Zhong (2010), and Qiu and Chen (2012)

when treating the columns as independent. However, if M 6= µ1c, the asymp-

totic equivalence between the proposed tests and the existing vector-based tests

no longer holds.

3.6. Software availability

The function covmat.ts() of the R package HDTD (Touloumis, Marioni

and Tavaré (2016)) implements the proposed sphericity, identity, and diagonality

tests. These can be applied to either the row or the column covariance matrix

by specifying the voi argument. The software is available from the Bioconductor

repository at http://bioconductor.org/packages/HDTD/.

http://bioconductor.org/packages/HDTD/
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4. Simulations

We investigated the performance of the proposed procedures for testing hy-

potheses (1.1), (1.2), and (1.3) using numerical studies. Owning to the lo-

cation invariance property of the proposed test statistics, we generated r ×
c matrix-variate random variables X1, . . . ,XN according to model (2.1), with

M = 0. To assess the nonparametric nature, we simulated Z1, . . . ,ZN un-

der a standard matrix-variate normal scenario, where Zir1c1
i.i.d∼ N (0, 1), such

that B = 0, and under three standardized Gamma scenarios, where Zir1c1 =(
Z∗ir1c1 − α/β

)
/
√
β, with Z∗ir1c1

i.i.d∼ Gamma(α, β): (i) Gamma(1, 0.5), such that

B = 6; (ii) Gamma(0.6, 1), such that B = 10; and (iii) Gamma(0.3, 1), such that

B = 20. To reflect high-dimensional settings, we considered N = 20, 40, 60, 100,

200, r = 10, 50, 100, 300, 600 and c = 10, 100, 600. As such, the number of subject-

specific observations (r × c) is larger than the sample size (N) in all instances,

except when N = 200 and r = c = 10, without specifying a relationship among

N , r, and c. For the “nuisance” covariance matrix ΣC, we employed a first-order

autoregressive correlation matrix with elements (ΣC)c1c2 = 0.85|c1−c2|. This con-

figuration generated complex pairwise correlation patterns in which the strength

of the pairwise correlations between the column variables varied from moderate

to strong (c = 10) and from weak to strong (c = 100, 600).

We employed identity, heteroscedastic (2–3), and tridiagonal (4–5) structures

for the row covariance matrix ΣR:

1. The identity matrix ΣR = Ir.

2. Diagonal ΣR, with (ΣR)r1r1
i.i.d∼ U(0.5, 1.5), where U(a, b) denotes the uni-

form distribution with parameters a and b.

3. Diagonal ΣR, with (ΣR)r1r1 = 1 + I(r1 ≤ 0.9r), where I(A) is the indicator

function of the event A.

4. Tridiagonal ΣR, with elements (ΣR)r1r2 = 0.10|r1−r2|I(|r1 − r2| ≤ 1).

5. Tridiagonal ΣR, with elements (ΣR)r1r2 = 0.15|r1−r2|I(|r1 − r2| ≤ 1).

In each simulation scheme, we used 1,000 replicates, and calculated the propor-

tion of rejections at a 5% nominal significance level based on the proposed test

statistics for the sphericity, identity, and diagonality hypotheses. The empirical

levels of the proposed sphericity and identity test were calculated when ΣR = Ir,

while their empirical power was recorded whenever any of the other four struc-

tures for ΣR was used. For the proposed diagonality test, the empirical levels
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were calculated using the identity and heteroscedastic structures, and its em-

pirical power was calculated under the tridiagonal structures. Tables 1–10 in

Section S9 of the Supplementary Material contain all simulation results for the

sphericity and diagonality tests. The results for the proposed identity test are

not discussed or presented, because they are similar to those of the sphericity

test in all sampling schema.

Table 1 in the Supplementary Material suggests that the nominal size of the

proposed sphericity test is well approximated for normal instances. For gamma

instances, the empirical sizes are slightly inflated when r = 10 or r = 50, but

they are closer to the nominal size once r ≥ 100. The empirical sizes of the

proposed diagonality test are close to the nominal size, regardless of the distri-

butional scenario or the number of row variables, as shown in Table 6 in the

Supplementary Material. The difference in the behavior of the two tests with

skewed data and small r may be because the variance of WN is approximated

more accurately by σ2
WN

than that of UN is by σ2
UN

. Tables 7 and 8 in the Sup-

plementary Material show that the proposed diagonality test preserves its size

under both heteroscedastic structures, as desired.

As expected from Theorem 3, the empirical power of the proposed spheric-

ity test under the heteroscedastic and tridiagonal structures approaches 1.0 for

a large number of column variables (c = 100, 600), as shown in Tables 2–5 in

the Supplementary Material. Therefore, we restrict our attention to the sam-

pling schema with c = 10. Conditional on ΣR and r, the empirical power was not

severely affected by the distributional scenario. This can be viewed as a confirma-

tion of the nonparametric nature of the proposed test. For fixed r, the empirical

power approaches 1.0 as N increases to 200 under both the heteroscedastic and

the tridagonal structures for ΣR, but the exact gains depend on the implied

value of ξ1N . For the two structures that lead to smaller values of ξ1N , that is,

the heteroscedastic structure with (ΣR)r1r1 = 1 + I(r1 ≤ 0.9r) and the tridiag-

onal structure with nonzero correlation parameter equal to 0.10, the empirical

powers are low, even for N = 60. For the other two structures, larger values of

ξ1N were obtained, as reflected in their empirical power for N = 40 and N = 60.

Therefore, we conclude that for a small number of strongly dependent column

variables, the consistency of the proposed sphericity test appears to depend on

the magnitude of ξ1N . The results for the power of the proposed diagonality test

are almost identical to those above, and can be found in Tables 9 and 10 of the

Supplementary Material.
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5. Examples

5.1. Mouse aging project

In a study on aging in mice, Zahn et al. (2007) measured gene expression

levels in up to 16 tissues per mouse (N = 40). Herein, we focus on inferring the

dependence structure among nine tissues (r = 9), namely, the adrenal glands,

cerebrum, hippocampus, kidney, lung, muscle, spinal cord, spleen, and thymus,

based on the expression levels from 46 genes (c = 46) that play a role in the

mouse endothelial growth factor (VEGF) signaling pathway. Because Ning and

Liu (2013) argue against a normality assumption, we apply the nonparametric

bootstrap test of Aston, Pigoli and Tavakoli (2017) to assess the plausibility of

the Kronecker product dependence decomposition for the covariance structure

(p−value = 0.616). This finding partially supports using the Kronecker product

covariance decomposition modeling approach adopted in previous analyses (Yin

and Li (2012); Ning and Liu (2013)) to construct gene and tissue networks, and

justifies using our proposed testing methods.

The tissue correlation matrix implied by the tissue-wise shrinkage covariance

matrix estimate (Touloumis, Marioni and Tavaré (2016)) reveals a rather weak

correlation pattern; all pairwise tissue correlations are estimated to be smaller

than 0.1 in absolute value, except that between the lung and spinal tissues, which

is equal to 0.2754. At a 5% significance level, we tested and failed to reject the

null hypothesis in the diagonality hypothesis test for the tissue covariance matrix

(p−value = 0.0686). Combining these results, it appears that both Yin and Li

(2012) and Ning and Liu (2013) might have overestimated the strength of the

tissue dependencies. The tissue networks presented therein might be influenced

by networks of genes that co-vary consistently between tissues. Controlling for

this, the apparent “relatedness” between tissues is less than that reported previ-

ously. We further conclude that the tissues cannot be assumed to be equi-variant

because we reject the sphericity hypothesis (p−value < 0.0001). Therefore, it

seems sensible to treat the nine tissues as uncorrelated, but with differing vari-

ances. Using the sample tissue variances, the hippocampus tissue appears to

vary the least, followed by the muscle, kidney, adrenal, spleen, spinal, thymus,

cerebrum, and lung tissues, in ascending order.

5.2. EEG data

The EEG data set Zahn et al. (2007) et al., available from http://kdd.

ics.uci.edu/databases/eeg/eeg.data.html, comes from a study that explores

whether EEG data suggest a correlation between alcoholism and genetic predis-

http://kdd.ics.uci.edu/databases/eeg/eeg.data.html
http://kdd.ics.uci.edu/databases/eeg/eeg.data.html
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position. The 122 subjects who participated in this study were classified into

either an alcoholic group (77 subjects) or a control group (45 subjects). For

each subject, voltage fluctuations were recorded from 64 electrodes placed on the

subject’s scalp. Each subject was shown either one stimulus or two (matched or

unmatched) stimuli, and the voltage measures were recorded at 256 consecutive

time points. This procedure was repeated for up to 120 trials. For each of the

122 subjects, we created a two-dimensional data matrix, such that the rows cor-

respond to the 64 electrodes, the columns correspond to the 256 time points and

the values represent the average voltage measures across the available number of

trials.

Xia and Li (2017) analyzed this data set assuming a matrix-variate normal

distribution, an assumption that we follow in our analysis as well. Their goal was

to construct a brain connectivity network for each of the two groups. The key to

constructing of the networks is to decorrelate the 256 time points and, in effect,

increase the sample size from 77 to 19,712 = 77 × 256 in the alcoholic group

and from 64 to 11,520 = 64 × 256 in the control group. Applying the proposed

diagonality test to the temporal covariance matrix in each group indicates that

at least some of the time points are correlated (the p−values are close to zero

in each group). To decorrelate the columns, Xia and Li (2017) employed and

estimated a banded structure (with bandwidth equal to three) for the temporal

covariance matrix at each group. If this is the case, then the time points in each

of the following three sets are expected to be uncorrelated: (i) {1, 5, . . . , 253};
(ii) {2,6,. . . ,254}; and (iii) {3, 7, . . . , 255}. To assess this hypothesis, we applied

the sphericity test to each set for both groups. The corresponding p-values were

again close to zero, suggesting that the time points in each set are correlated,

regardless of the group. Our finding suggests that Xia and Li (2017) might

not have completely decorrelated the rows. As such, the construction of their

two brain connectivity networks might have been affected by the presence of

significant temporal correlations.

6. Discussion

We have considered test statistics that assess the sphericity, identity, and

diagonality hypothesis tests for the row or column covariance matrices in high-

dimensional transposable data, conditional upon the N i.i.d. random matrices

having a Kronecker product dependence structure, which is a reasonable theo-

retical and practical assumption for high-dimensional transposable data. From

a computational perspective, all three tests proposed are parsimonious in con-
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struction because they require estimating just five parameters, and there is no

need to estimate the full column covariance matrix. Based on the results of

the simulation study, it appears that the proposed diagonality test preserves the

nominal size, regardless of the distributional scheme, sample size and numbers

of row and column variables. The proposed sphericity and identity tests also

appear to maintain the nominal size under normality, but they might be slightly

liberal when there are few column variables, say 10 or less, under non-normality.

All three proposed tests seem to be extremely powerful when there is a large

number of “nuisance” (column) variables, but they suffer some power loss in

the presence of strongly correlated column variables, unless the sample size is

greater than 100. We have created the R package HDTD that implements the

proposed testing methods. The implementation of the proposed tests in HDTD

takes advantage of the computationally inexpensive formulae presented in the

Supplementary Material, making the proposed methodologies suitable for high-

dimensional transposable data, even for very large numbers of row and/or column

variables.

In future work, we aim to investigate the implications of the proposed tests

when the true covariance structure does not satisfy a Kronecker product assump-

tion. We will also extend our methodology to account for covariance matrices

that do not satisfy assumption (2.2), such as a covariance matrix with bounded

variances, which implies a compound symmetry correlation pattern. Lastly, we

will consider extensions of these methods to array-variate random variables.

Supplementary Material

The online Supplementary Material contains technical details, alternative

formulae for the proposed test statistics, additional simulation results, and the R

code for reproducing the results in Section 5.
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