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ABSTRACT

Motivation: Most methods for estimating differential expression

from RNA-seq are based on statistics that compare normalized read

counts between treatment classes. Unfortunately, reads are in general

too short to be mapped unambiguously to features of interest, such as

genes, isoforms or haplotype-specific isoforms. There are methods for

estimating expression levels that account for this source of ambiguity.

However, the uncertainty is not generally accounted for in downstream

analysis of gene expression experiments. Moreover, at the individual

transcript level, it can sometimes be too large to allow useful compari-

sons between treatment groups.

Results: In this article we make two proposals that improve the

power, specificity and versatility of expression analysis using RNA-

seq data. First, we present a Bayesian method for model selection

that accounts for read mapping ambiguities using random effects. This

polytomous model selection approach can be used to identify many

interesting patterns of gene expression and is not confined to detect-

ing differential expression between two groups. For illustration, we use

our method to detect imprinting, different types of regulatory diver-

gence in cis and in trans and differential isoform usage, but many other

applications are possible. Second, we present a novel collapsing

algorithm for grouping transcripts into inferential units that exploits

the posterior correlation between transcript expression levels. The

aggregate expression levels of these units can be estimated with

useful levels of uncertainty. Our algorithm can improve the precision

of expression estimates when uncertainty is large with only a small

reduction in biological resolution.

Availability and implementation: We have implemented our soft-

ware in the mmdiff and mmcollapse multithreaded Cþþ programs

as part of the open-source MMSEQ package, available on https://

github.com/eturro/mmseq.

Contact: et341@cam.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

High-throughput sequencing of RNA (RNA-seq) is superseding

microarrays as the standard technology for genome-wide profil-

ing of RNA samples and for differential expression analysis.

RNA-seq is a technique for generating millions of short subse-

quences called reads from a population of RNA transcripts in

a biological sample. Roughly speaking, the number of reads

generated by a transcript is proportional to its length and

to the number of copies of the transcript in the sample.

Consequently, given an accurate mapping of reads back to tran-

scripts (e.g. from sequence alignments), it is possible to quantify

transcript expression levels from read counts.
Sequencing offers greater dynamic range than microarrays

and, by providing direct observations of complementary DNA

sequences, it allows improved discrimination among isoforms

and haplotypes. Although the methodological literature for

gene expression profiling with microarray data is mature, there

remain aspects of RNA-seq data analysis that require further

development. In particular, the principal approaches currently

used for differential expression analysis with RNA-seq (Anders

and Huber, 2010; Hardcastle and Kelly, 2010; Robinson and

Oshlack, 2010; Tarazona et al., 2011) make comparisons between

treatment classes using statistics derived from sequence align-

ment counts. Such approaches are useful for assessing differential

gene expression because, for most genes, an exact read count can

be obtained that is proportional to its expression level. However,

methods based on read counts are not robust to variability in the

relative expression of isoforms because the length of each iso-

form—not only its expression level—influences the expected

number of gene-level read counts. It can be more accurate to

estimate expression at the gene level by adding up estimates

made at the transcript level than by counting raw alignments

as though each gene produced a single transcript of canonical

length (Wang et al., 2010).
A distinct advantage of RNA-seq is that sequencing along

splice junctions and heterozygous loci facilitates the estimation

of expression levels for gene isoforms and even haplotype-specific

isoforms in polyploid organisms. At the isoform level, raw

counts are not available because the sharing of exons between

isoforms of the same gene means that reads may align to multiple

transcripts. Moreover, sequence homology between genes can

result in reads that map to transcripts belonging to different

genes. For haplotype-specific analysis, sequence-sharing is even

more extreme as only reads mapping to heterozygous loci allow

transcripts from different haplotypes to be distinguished.

Deconvolution algorithms, which account for the read mapping

ambiguity, can provide estimates of the expression levels of each

transcript and estimates of the associated uncertainties (Glaus

et al., 2012; Turro et al., 2011). Given the large amounts of*To whom correspondence should be addressed.
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sequence-sharing between transcripts in mammalian transcrip-
tomes, these uncertainties can be considerable and highly vari-
able. Consequently, it is important to account for differential

uncertainty in any statistical analysis based on expression esti-
mates, e.g. when comparing expression levels between treatment
groups. This idea has been pursued previously in the context of

microarray analysis (e.g. Hein and Richardson, 2006; Liu et al.,
2006) but has received less attention in the context of RNA-seq
analysis.

The Cuffdiff 2 software (Trapnell et al., 2012) implements
frequentist hypothesis tests to detect differential expression and
regulation. The methods rely on a number of distributional ap-

proximations, are limited to two-class comparisons and cannot
be used for haplotype-specific inference. Recently, a Bayesian
model of Markov chain Monte Carlo (MCMC) traces for ex-

pression parameters has been proposed (Glaus et al., 2012) that
is attractive because it accounts for the shape of the posterior

uncertainties in the parameters. However, it too is limited to a
two-condition study design and relies on a computationally in-
tensive read-level algorithm to generate the MCMC traces.

2 APPROACH

In this article, we propose a Bayesian mixed model approach to

the analysis of multisample RNA-seq expression data that ac-
counts for the posterior uncertainty in expression estimates,

including the uncertainty due to read mapping ambiguity.
Figure 1 is a motivating illustration showing how a method ac-
counting for the uncertainty in the expression parameters can

have more power to detect differential expression between two
treatment groups than a method that assumes that all expression
parameters are known with equal accuracy. Up-weighting obser-

vations with lower posterior uncertainty helps to recover the
signal from the noise. In real datasets, the variability in posterior
uncertainty can be considerable (Supplementary Fig. S1).

Our method identifies transcripts with scientifically interesting
patterns of expression by making a statistical comparison of re-
gression models. Consequently, it is flexible and can be applied

to a wide range of experimental designs. The uncertainty in ex-
pression estimates is incorporated via random effects. In general,
this means that the more precise an estimate the more informa-

tion it will contribute to the comparison of models. We present
an MCMC algorithm for posterior inference that uses the
method of Carlin and Chib (1995) for making the model com-

parisons. The method we propose can be used to identify more
intricate variations in patterns of expression than the usual gene-

level differentiation between treatment groups. For example, we
can model estimates of haplotype-specific expression in first-
generation crosses of inbred strains to detect imprinted genes

or transcripts. We can also detect differential isoform usage by
applying our method to the probit transform of the expression
level of an isoform expressed as a proportion of the overall

expression of its gene.
Finally, in cases where the posterior uncertainty in expression

estimates is extreme, it can be reduced by collapsing transcripts

into identifiable aggregates. We propose an algorithm to gener-
ate such a collapsing using the output of the MMSEQ (Turro
et al., 2011) method for estimating transcript-specific expression

levels. Briefly, MMSEQ infers transcript expression levels using

an MCMC algorithm for a Bayesian model of read counts. The

model accounts for Poisson noise and various sources of tech-

nical bias. In addition, it accounts for any uncertainty about

which transcript generated which read by integrating over all

possibilities. We demonstrate that aggregation of transcripts

based on the MMSEQ output does not preclude biologically

meaningful inference, as it tends to apply to sets of transcripts

that share considerable stretches of sequence and important bio-

logical attributes (such as skipped or retained exons). This

approach helps counteract some of the estimation difficulties

posed by the existence of highly complex gene structures.

3 METHODS

3.1 Linear mixed model

Consider a single feature (i.e. gene, isoform or haplotype-specific isoform)

with expression �i in sample i. If �i is known with complete precision for

each i, regressions of the following type may be used to model the bio-

logical variation across samples:

log�i ¼ P
ðmÞ
i �ðmÞ þ �ðmÞi ð1Þ

Here, P
ðmÞ
i is the ith row of design matrix PðmÞ, which defines the statistical

model m, �(m) is a corresponding vector of regression coefficients and �ðmÞi

is a Gaussian error with mean zero. Biological inferences may be drawn

through a statistical comparison of competing models, where the true

model is denoted by � 2 f0, 1g. Although we consider only two choices

for � in any given model comparison, an arbitrary number of models can

be considered through multiple pairwise comparisons. The choice of PðmÞ

should depend on the structure of the experiment and the scientific hy-

pothesis. For example, in a differential expression experiment comparing

two treatment groups of size three, the following PðmÞs would be

appropriate:

Pð0Þ ¼ ð 1 1 1 1 1 1 ÞT ð2Þ

Pð1Þ ¼
1 1 1 1 1 1
1 1 1 �1 �1 �1

� �T

ð3Þ

In practice, the log�i are not known precisely but are estimated with

varying degrees of statistical uncertainty. The MMSEQ method (Turro

et al., 2011) summarizes this statistical uncertainty in the Monte Carlo
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Fig. 1. Accounting for the posterior uncertainty in log-expression can

improve the power to detect differential expression. The left panel illus-

trates a hypothetical analysis that ignores heterogeneity in posterior un-

certainty, so that the total error (measurement plus experimental) has the

same variance (bars) across the observations (crosses). The right panel

illustrates a hypothetical analysis, which accounts for the error in the

point measurements of log-expression (posterior means) using random

effects, thereby exposing a difference between the two treatment groups

(grey lines)
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samples of log�i generated by an MCMC algorithm. The posterior dis-

tribution of each log�i can be approximated using a Gaussian distribu-

tion with mean and variance equal to the empirical mean yi and variance

v2i of the corresponding Monte Carlo sample. The posterior mean yi can

be treated as an estimator of log�i. Because the MMSEQ prior on log�i

is vague, yi and 1=v2i should closely approximate the maximum likelihood

estimator and Fisher information of log�i, respectively. Consequently,

approximately:

yij�i � Nðlog�i, �
2
i Þ ð4Þ

Substitution of (4) in (1) leads to the following mixed model with a

random effect, which accounts for the uncertainty in the log�i:

y ¼ PðmÞ�ðmÞ þ �ðmÞ þ �ðmÞ

�ðmÞi � Nð0, �2i Þ:

We have yet to specify the variance structure of the �ðmÞ. One option is

to assume homoscedasticity across all samples, but grouped data are

common in gene expression experiments and thus it may be more appro-

priate to specify a different variance parameter for each grouping. For

convenience, we adopt the latter parameterization in this article:

�ðmÞi � N
�
0, �2

ðmÞ

cðmÞ ðiÞ

�
where i�cðmÞðiÞ maps observation i to grouping category cðmÞðiÞ under

model m. Note that the �2i are fixed quantities, and therefore the �2c
ðmÞ are

identifiable.

Having specified a probability model for the data, we now consider

inference. The parameters of primary scientific interest are the model

indicator � and the regression coefficients of the true model �ð�Þ. We

prefer the Bayesian over the frequentist approach on foundational

grounds, but there are also practical advantages. It is difficult to apply

standard frequentist procedures, such as the likelihood ratio test, to this

problem because there is a non-zero (frequentist) probability that the

maximum likelihood estimate of each of the �2c ðmÞ will lie on the bound-

ary of the parameter space (i.e. at 0). The boundary event occurs when

the estimates of the posterior variance, given by the v2i , are sufficiently

large to explain the empirical variability of the y. When there is a non-

zero probability of a maximum likelihood estimate lying on a boundary,

standard asymptotic results for the distribution of frequentist test statis-

tics (e.g. Wilks’s theorem) may fail to apply (Ferguson, 1996). Even when

frequentist theory does hold (e.g. if all v2i ¼ 0), standard frequentist

approaches may nonetheless suffer from overfitting when sample sizes

are low (in the order of ten to a hundred), as is common in gene expres-

sion experiments, leading to unreliable inference (Gelman, 2004, p. 371).

The Bayesian approach allows us to specify priors for hyperparameters,

which restrict overfitting. Specifically, our prior for � penalizes large co-

efficients, reflecting a prior belief that big log fold changes are rare.

However, because prior belief about the location of the data is vague,

we prefer to separate the intercept term 	 from � and avoid including a

constant column in P [cf. (2) and (3)]:

y ¼ 	ðmÞ þ PðmÞ�ðmÞ þ �ðmÞ þ �ðmÞ

It is not always possible to design an experiment controlling for all ex-

traneous variables, such as gender, thought to affect gene expression

levels. However, such variables can be accounted for statistically by

including covariates in the regression model. We generalize the probabil-

ity model for the data previously given, by specifying a model-independ-

ent covariate matrix M with corresponding vector of regression

coefficients 
:

y ¼ 	ðmÞ þM
ðmÞ þ PðmÞ�ðmÞ þ �ðmÞ þ �ðmÞ

We now describe the choice of priors for the parameters. We specify

independent Gaussian priors for the 	ðmÞ and 
ðmÞ and Student’s t priors

for the �ðmÞ. For the error term variance parameters, we specify

�2c
ðmÞ � Inverse�Gammaðshape ¼ k=2, scale ¼ k�ðmÞ=2Þ. We shrink

the �2c
ðmÞ towards a common mean by specifying a common Gamma

prior on �ðmÞ, reflecting our prior belief that the error term variance

will be similar across categories (see Supplementary Material for details).

Finally, we place a Bernoulli prior on � with fixed hyperparameter p,

reflecting our degree of prior belief that model 1 rather than model 0

is true.

We have implemented an MCMC algorithm to generate samples from

the joint posterior distribution of these models. For model comparison,

we use the pseudo-prior method of Carlin and Chib (1995), which can be

used to generate a Bayes factor and therefore an estimate of the posterior

probability for � ¼ 1. Details of the MCMC algorithm can be found in

the Supplementary Material.

3.2 Assessment of random effects model

To assess our method, we simulated expression values and standard

deviations for 80 000 features across 10 samples. For the first 20 000 fea-

tures, there is no P (homogeneous expression model) and for the remain-

ing features P has a single column such that P
ðDÞ
i1 ¼

1
2 if i 2 f1, . . . , 5g and

P
ðDÞ
i1 ¼ �

1
2 if i 2 f6, . . . , 10g (two-condition differential expression

model). For the first 20000 features, 	 ¼ 0, 
 ¼ � ¼ 0 and �c ¼ 0:3.
To mimic the heteroscedasticity of the posterior variances and their

correlation with the expression values, we sampled the vi from posterior

standard deviations obtained using a real dataset (Brooks et al., 2011).

Specifically, we sampled the standard deviation from values in the real

dataset where the estimate of log� was within 0.5 log fold change of the

simulated expression value. In this way, our simulation accounts for the

fact that more highly expressed features tend to be estimated more

precisely (on the log scale) (Supplementary Fig. S1).

The data for the remaining 60 000 features are generated in the same

way except using the two-condition model with log fold changes of 1, 2

and 4 and 	 values of 0.5, 1 and 2, respectively, for successive sets of

20 000 features (thus keeping the baseline expression fixed at around

zero). For the inference, we specify a model without a Pð0Þ and with a

Pð1Þ ¼ PðDÞ, and we use a prior probability that � ¼ 1 of 0.1. For the first

20 000 features, therefore, as we do not simulate any differential expres-

sion, model 0 is the true model whilst for the remaining features, as we

simulate a non-zero log fold change, model 1 is the true model.

Each box plot in the left panel of Figure 2 summarizes the distribution

(of the MCMC point estimates) of the posterior probabilities for � ¼ 1 in

the group of features corresponding to a particular simulated log fold

change. Evidently, increases in the simulated fold-change lead to model 1

being selected preferentially over model 0.

The main motivation for developing the random effects method was to

account for posterior uncertainty about the values of expression param-

eters (including uncertainty due to multi-mapping of reads to transcripts)

in the statistical model linking expression levels to treatment groups. To

assess the impact of accounting for heterogeneous errors on the accuracy

of inference, we reanalyzed the simulated data using the method already

described but setting the vi ¼ 0. This inference model does not account

for heteroscedasticity in uncertainties about expression parameters.

We found that when the log fold change is 0 and therefore the true

model is model 0, the posterior probability that � ¼ 1 tends to be lower in

the analysis with the non-zero vi, which corresponds to a lower type I

error rate. Furthermore, when the log fold change is positive, the poster-

ior probability that � ¼ 1 tends to be larger when the vi are non-zero,

which corresponds to greater power to detect differential expression. The

advantage in sensitivity and specificity held by the method taking account

of the posterior uncertainty in expression estimates is clearly visible in the

receiver operator characteristic (ROC) curves comparing the two

approaches (Fig. 2, right panel).

As ROC curves evaluate a classifier assuming that the population

proportion of each of the two values of the binary variable are equal,

we also show positive predictive value (PPV) and negative predictive
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value (NPV) plots for varying proportions of differentially expressed

(DE) versus non-differentially expressed features (Supplementary Fig.

S2). The inclusion of the posterior uncertainty in read counts improves

both PPV and NPV. The PPV improvement is most noticeable when the

proportion of DE features is small while the NPV improvement is most

noticeable when the proportion of DE features is large. When we simulate

20 000 non-DE and 6000 DE features (2000 features per fold-change

class), we observe a drastic improvement: for a posterior probability

threshold of 0.45, incorporating read count uncertainty results in

almost perfect PPV, whereas assuming no uncertainty results in a PPV

of around 0.5.

3.3 Collapsing sets of transcripts

We have shown how it is possible to account for posterior uncertainty in

log�i using random effects. When the variance of the random effects is

large, there will be low power to distinguish between the models using the

analysis described earlier in the text. Unfortunately, in all RNA-seq ex-

periments there is a large class of transcripts for which the posterior

variance is large—specifically, transcripts that are not mapped to

uniquely by any read (e.g. black points in Supplementary Fig. S1).

Often, sets of transcripts with poorly estimated expression parameters

are anti-correlated because reads can be mapped to the combined set of

transcripts with confidence, but no reads can be mapped to specific tran-

scripts within the set. In these circumstances, it may be more informative

to treat the set of transcripts as the unit of inference, rather than the

individual transcripts.

We now propose an algorithm for collapsing transcripts with anti-

correlated expression parameters into informative sets. Given a set S in

a partition of the transcripts, we define an aggregate expression param-

eter �iS �
P

t2S �it, where �it is the expression parameter for transcript t

in sample i. At each iteration of the algorithm, we coarsen the current

partition of the transcripts by combining the two sets S and S0 for which

the mean posterior correlation between �iS and �iS0 is the least, where the

mean is taken over i (i.e. we combine the pair of sets that have on average

the most anti-correlated expression parameters). The algorithm termin-

ates when the minimum (over transcripts) mean (over samples) posterior

correlation exceeds a stopping threshold. We use the right tail of the

empirical distribution of maximum mean correlations as a control and

set the stopping threshold to minus the 97.5th percentile by default. We

have found that this threshold leads to reasonably symmetric distribu-

tions between the minimum and maximum mean correlations while being

robust to small numbers of spurious highly correlated transcripts

(Supplementary Fig. S4). To initialize the algorithm, we need to choose

the set of transcripts to collapse and a partition on that set. We now

discuss concrete choices.

Empirically, the log expression parameters of transcripts with u

uniquely mapping reads almost always have higher posterior standard

deviations than the log expression parameters of transcripts with uþ 1

uniquely mapping reads (see the stratified pattern in Supplementary

Fig. S1). In practice, the expression of transcripts for which u � 1 can

usually be estimated with a reasonable degree of accuracy. In order not to

collapse transcripts for which we have reasonably precise estimates in at

least some of the samples, we apply our collapsing algorithm only to

transcripts in the u¼ 0 stratum and for which the posterior standard

deviation is greater than the maximum posterior standard deviation

among transcripts with u � 1. We call transcripts in this set ‘low-infor-

mation transcripts’. We initially collapse transcripts with identical se-

quences as, by necessity, their expression parameters are unidentifiable.

We then collapse the remaining low-information transcripts. However,

low-information transcripts that are not observed (i.e. have zero align-

ments across all samples) are excluded from collapsing.

3.4 Assessment of collapsing algorithm

We use the well-known Pasilla dataset (Brooks et al., 2011), which in-

cludes RNA-seq reads from sevenDrosophila melanogaster cell cultures in

two conditions [4 control and 3 ps(RNAi) samples], to assess our collap-

sing algorithm. The top-right panel of Figure 3 shows a trace of the

minimum mean correlation as the algorithm progresses. There is a grad-

ual increase in the minimum mean correlation interrupted by sudden

downward fluctuations. Supposing transcript sets S and S0 are such

that meanicorð�iS,�iS0 Þ is lowest at iteration q, a sudden downward fluc-

tuation in the minimummean correlation occurs at iteration qþ 1 if there

exists a set S00 such that meanicorð�iS þ �iS0 ,�iS00 Þ � meanicorð�iS,�iS0 Þ.

For example, the expression parameters for transcripts RC and RB of the

five-transcript gene CG42671 have a mean correlation of �0.61.

However, the expression of the collapsed pair has a much lower correl-

ation of �0.95 with that of a third transcript, RE. The collapsed triplet

shares an extremely similar structure, including a 30 exon that is unique to

the three transcripts (Fig. 4). As another example, consider

Supplementary Figure S3, which shows how nine transcripts from the

up gene sharing the same two exons near the 50 end cluster together

while a 10th transcript with a different 50 exon, up-RD, is estimated

separately.

Overall, the algorithm collapsed 1368 low-information transcripts

from the Drosophila dataset into 570 higher-precision sets. Of these 570

transcript sets, 546 solely contained isoforms belonging to the same gene,

even though the algorithm uses only posterior correlations and is thus

blind to each isoform’s gene membership, sequence and coordinates. Only

22 and two sets contained isoforms from two and three different genes,

respectively. The sets of three consisted of paralogues of the U2 snRNAs

(14B, 38ABa and 38ABb) and the TEKTIN protein family (CG32819,

CG32820, CG17450). The sets of two consisted mostly of duplicated

neighbouring genes (e.g. CG31809 and CG31810) or highly overlapping

genes (e.g. SP555 and CG14042). These examples illustrate how our

algorithm can improve precision by collapsing groups of resemblant tran-

scripts without a significant loss in biological resolution.

We next examined the consistency of our algorithm through cross-

validation, comparing collapsed sets obtained using different bipartitions

Fig. 2. Assessment of model selection algorithm. The box plots (left

panel) summarize distributions (over simulated features) of MCMC esti-

mates of the posterior probability in favour of a two treatment group

differential expression model (� ¼ 1), when comparing that model to a

null model assuming no differential expression (� ¼ 0). Each plot corres-

ponds to analyses of simulated data with a different log fold change in

expression between treatment groups. Therefore, the leftmost plot corres-

ponds to features for which � ¼ 0, whereas the other plots correspond to

features for which � ¼ 1. The ROC curves (right panel) illustrate the

superiority of a classifier that accounts for differential uncertainty in

the log�i over one that does not. Both classifiers threshold on the

MCMC estimate of the posterior probability that � ¼ 1. The posterior

probability estimates for the green/dashed curve were generated by the

model accounting for uncertainty in log�i through random effects,

whereas those for the black/solid curve were generated by the same

model without random effects (�2i ¼ 0)
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of six of the seven samples in the Drosophila dataset. We assessed the

consistency between the two groups formed by each of the 10 (i.e.

6
3

� �
=2) possible bipartitions of equal size. A collapsed set S in group

1 is said to be consistent with the collapsed sets in group 2 if either of the

following conditions is met:

� S is a subset of a set in group 2,

� all sets in group 2 containing an element in S are subsets of S.

Thus, fA,B,Cg in group 1 would be consistent with ffAg, fB,Cgg or

fA,B,C,Dg in group 2 but not with fA,Dg. Also, note that

ffA,Bg, fC,Dgg is not consistent with ffA,Cg, fB,Dgg. For each biparti-

tion, the consistency of each set in group 1 was assessed with respect to all

sets in group 1 and vice versa. Despite the dataset containing mixed single

and paired-end libraries and two different conditions, our consistency

rate averaged 96.7%. The lowest consistency, of 95.84%, was obtained

in the bipartition separating the treatment and the control group exactly.

Thus, even in the presence of structured biological variability, our

algorithm merges transcripts in a highly consistent manner.

4 APPLICATIONS

4.1 Finding imprinted genes in mice

Mammalian cells can express the (usually) two copies of auto-

somal genes differentially, leading to allele-specific imbalance in

their RNA products. When the direction of the imbalance be-

tween the two copies depends on the sex of the parent from

whom each copy was inherited, imprinting is said to occur. It

is thought that imprinting is mostly determined by differential

methylation during gametogenesis (Li and Sasaki, 2011). We

analyzed previously published RNA-seq data obtained from

the livers of six initial and six reciprocal crosses of inbred mice

(Goncalves et al., 2012) to assess whether our model selection

algorithm can be used to detect imprinting. The initial crosses

inherited the C57BL/6J (BL6) strain genome from the father and

the CAST/EiJ (CAST) strain genome from the mother. The

reciprocal crosses inherited the CAST genome from the father

and the BL6 genome from the mother. We obtained haplotype-

and gene-specific estimates for each strain within each cross

using MMSEQ. Thus we obtained two sets of posterior means

and standard deviations for each initial and reciprocal mouse.
We applied our model selection algorithm comparing a null

versus an imprinting model. Under the null model, it is assumed

that any difference between the two strains in the initials is the

same in the reciprocals. Under the imprinting model, it is

assumed that the difference between the two strains has the

same magnitude in the initials as the reciprocals, but has opposite

sign. The collapsed design matrices (i.e. with repeat rows

removed) are as follows:

PðnullÞ ¼
1

2

1 1
1 �1
�1 1
�1 �1

0
BB@

1
CCA PðimpÞ ¼

1

2

1 1
1 �1
�1 �1
�1 1

0
BB@

1
CCA

. . .F1i BL6

. . .F1i CAST

. . .F1r BL6

. . .F1r CAST

Each row of the two matrices corresponds to a cross-classifica-

tion of the mice by haplotype (BL6/CAST) and cross type (F1

initial/F1 reciprocal, abbreviated F1i/F1r). There are six obser-

vations of each kind so the uncollapsed matrices used in the

analysis have 24 rows, a six-fold replication of those above.

The regression coefficient �ðnullÞ1 (which corresponds to the first
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Fig. 3. Left panels: histograms of mean posterior standard deviations for sets of identical transcripts before (top) and after (bottom) collapsing. Central

panels: histograms of mean posterior standard deviations for sets of non-identical low-information transcripts before (top) and after (bottom) collapsing.

Right panels: trace of the minimum mean correlation as the collapsing algorithm progresses. Bottom-right panel: histogram of the set sizes after

collapsing sets of non-identical low-information transcripts

Fig. 4. The algorithm collapses the five transcripts of gene CG42671 into

two groups. One group contains transcripts RB, RC and RE, and the

other group contains transcripts RD and RF. Transcripts within the same

group share the same 30 exon
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column of the design matrix PðnullÞ) represents the log fold change

between the initial and the reciprocal crosses while the coefficient

�ðnullÞ2 represents the log fold change between the two haplotypes.

The coefficient �ðimpÞ
1 has the same interpretation as �ðnullÞ1 , but the

�ðimpÞ
2 represents the log fold change between the maternally and

the paternally inherited haplotype.
We restricted our analysis to polymorphic genes, as there is no

power to detect imprinting unless there is a difference in sequence

between the BL6 and CAST haplotypes. We used a prior prob-

ability of imprinting of 10% to calculate the posterior probabil-

ities. For each gene, we checked whether it was listed in the

following four online imprinting databases: WAMIDEX

(Schulz et al., 2008), geneimprint.com, mousebook.org and the

Catalogue of Imprinted Genes and Parent-of-Origin Effects in

Humans and Animals (Morison et al., 2001).

The 10 genes with the highest posterior probability of being

imprinted are well known to be imprinted in mouse, as they are

listed in all four of the aforementioned databases. These genes

are H13, Igf2r, Meg3, Slc22a3, Rian, Snrpn, Sgce, Impact, Zrsr1

and Peg3, all of which have a posterior probability of imprinting

499%. If we relax the threshold on the posterior probability to

90%, we find an additional five genes, three of which have sup-

porting evidence in the literature or in the databases of being

imprinted in mouse: Mas1, Mirg and Mcts2 (Fig. 5, left panel).

Our results are in general agreement with the findings of

Goncalves et al. (2012) (Fig. 5, right panel), with a few additional

identifications of known genes such as Rian [posterior probabil-

ity (pp)¼ 1.00] Peg3 (pp¼ 1.00), Mirg (pp¼ 0.99), H19

(pp¼ 0.70), Rtl1 (pp¼ 0.58), Mkrn3 (pp¼ 0.54), Peg10

(pp¼ 0.43) and Igf2 (pp¼ 0.31).

4.2 Classifying mouse genes by type of

regulatory divergence

Thus far, we have focused on pairwise comparisons between

pairs of models, i.e. � 2 f0, 1g. However, it is straightforward

to perform polytomous classification through pairwise compari-

sons of Bayes factors between each model and an arbitrary base-

line model (e.g. model 0):

Pð� ¼ mjyÞ ¼
Bayes factorð0,mÞ � Pð� ¼ mÞP

m0
Bayes factorð0,m0Þ � Pð� ¼ m0Þ

ð5Þ

This type of polytomous analysis lends itself to problems where

there are several plausible models for the expression summaries,

which correspond to different biological mechanisms. Returning

to the mouse liver dataset, it is possible to discern different types

of regulatory divergence for each gene by comparing expression

summaries obtained in the pure-strain mice (F0s) with those ob-

tained in first-generation crosses of the two strains (F1s). Briefly,

genes for which there is no difference between the strains in the

F0s and no difference between the haplotypes in the F1s are

considered to have conserved regulation. Genes for which the

difference between the strains is the same in the F0s as in the

F1s are considered to have diverged through cis-acting regula-

tory mutations. If a difference in the F0s is completely lost in the

F1s, then the gene is said to have diverged through trans-acting

mutations. Finally, if there are different fold changes in the F0s

compared with the F1s, then the gene is said to have diverged

through a combination of cis and trans-acting mutations

(Goncalves et al., 2012).
Here, we assess whether our general model selection frame-

work can be used to discern the four patterns of gene expression

divergence. We define the following four collapsed design matri-

ces for the different models of regulatory divergence where, for

each row of each design matrix, we show the corresponding class

of observation on the right:

PðconservedÞ ¼
1

2

1

�1

� �
. . . . . . . . . . . . . . . . . . : :F0 ðboth strainsÞ

. . . . . . . . . . . . . . . . . . : :F1 ðboth strainsÞ

PðcisÞ ¼
1

2

1 1

1 �1

�1 1

�1 �1

0
BBB@

1
CCCA

. . . . . . . . . . . . : : F0 BL6

. . . . . . . . . . . . : : F0 CAST

. . . . . . . . . . . . : : F1 BL6

. . . . . . . . . . . . : : F1 CAST

PðtransÞ ¼
1

2

1 1

1 �1

�1 0

0
B@

1
CA

. . . . . . . . . . . . : :F0 BL6

. . . . . . . . . . . . : :F0 CAST

. . . . . . . . . . . . : :F1 ðboth strainsÞ

PðcisþtransÞ ¼
1

2

1 1 0

1 �1 0

�1 0 1

�1 0 �1

0
BBB@

1
CCCA

. . . . . . . . .F0 BL6

. . . . . . . . .F0 CAST

. . . . . . . . .F1 BL6

. . . . . . . . .F1 CAST

The 5804 genes that are not polymorphic between the two

strains were excluded from analysis, as there is no power to

detect differences in the hybrid strains using sequencing.

Imprinting is a confounding factor in this study design because

it results in strain-specific imbalance in the F1s that is not driven

by regulatory divergence. Therefore, we excluded from analysis

all 542 genes with a moderate posterior probability (40:25) of
being imprinted. We attempted to classify the remaining 28 630

genes into one of the four categories. We ran our model selection

algorithm comparing the conserved model with each of the three

other models. Then, assuming a flat prior probability of 0.25 that

any of the four models is true, we calculated the joint posterior

probability of the models using Equation (5).
For many of the genes, the data did not favour any model

strongly and the joint posterior probabilities resembled the prior

model probabilities. In total, 11 135 genes had a posterior prob-

ability greater than 0:5 of belonging to one of the categories. We

classified these genes into the conserved, cis, trans and cisþtrans

categories. Figure 6 contrasts the log fold change between the

strains within the F0s and the log fold change between the strains

within the F1s in each of the classes. Our algorithm produces a

clear clustering of genes into four different patterns. The con-

served genes cluster around (0,0) (allowing for some error

along y¼ 0 due to lower sequencing depth per mouse and

strain in the F1s), cis genes cluster around y¼ x, trans genes

cluster around x¼ 0 and cisþtrans genes are scattered away

from the rest. Notice how the cisþtrans panel shows distinctive

gaps at y¼ x and x¼ 0, where the cis and trans genes cluster,

respectively. The plots show that our model comparison algo-

rithm is able to distinguish multiple patterns of gene expression

effectively, while accounting for the major sources of statistical

uncertainty.
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4.3 Detecting differential isoform usage

Differential regulation of splicing is an important biological phe-

nomenon that can be associated with disease (Garcia-Blanco

et al., 2004). Methods exist (e.g. Anders et al., 2012) for detecting

differential usage of exons, which serves as an indicator that dif-

ferential isoform usage is taking place but does not necessarily

pinpoint specifically which isoform is being differentially regu-

lated. It may sometimes be more interesting to quantify changes

in the proportions of alternative isoforms of a gene directly rather

than through changes at the exon level, as isoforms are the ul-

timate determinants of protein products. Furthermore, in studies

of inbred crosses, as in the aforementioned example, standard

exon-level analyses cannot be applied because the detection of

differential exon or isoform usage must be haplotype-specific.

In contrast, our method can straightforwardly accommodate ana-

lyses for arbitrary units of inference (see Section 5).
Here we investigate whether our model selection algorithm can

be used to detect differential isoform usage. Given the high level

of ambiguity in the assignment of reads to isoforms when the

genomic coordinates of isoforms from the same gene overlap,

accounting for uncertainty in the observations is potentially

more important in this scenario than in gene-level or haplo-

type-specific gene-level analyses.

We return to the Pasilla dataset, for which 16 RT-PCR-vali-

dated cases of differential splicing between the control samples

and the ps(RNAi) samples are available from the authors. We

first adapted the MMSEQ estimation program to output the

posterior distributions of the probit-transformed isoform pro-

portions for each isoform in each gene. At each iteration of the

MMSEQ MCMC, the expression level of each isoform is

expressed as a proportion of the total expression of its gene,

which is probit-transformed and recorded. The empirical

means and standard deviations of these traces are then down-

sampled and used as input to our model selection program (see

Fig. 7, left panel for an example).
As in the imprinting example mentioned earlier in the text, we

found a clear pattern for the distribution of posterior probabilities

consisting of a large population near or below the prior and a

small population of posterior probabilities, which rise well above

the prior. The maximum posterior probability of isoform usage

per gene was below the isoform-wise prior (0.1) for 84.6% of

genes (Fig. 7, right panel), showing that in the vast majority of

cases there is no evidence of differential isoform usage. Only 225

genes showed moderate evidence of differential isoform usage

(maximum posterior probability 40:2). This is somewhat fewer

than the number of genes (323) found by Brooks et al. (2011)

Fig. 5. The left plot shows the posterior probability that the imprinting model for the top-ranking genes with a posterior probability490%. Genes

known to be imprinted in mice are shown as crosses and coloured in green, whereas the two genes not known to be imprinted in mice are shown as

squares and coloured in black. The right plot shows the posterior probabilities for all genes, coloured in red if they were identified as imprinted by the

custom analysis done by Goncalves et al. (2012). The prior probability that the imprinting model is true was set to 0.1 (horizontal line)

Fig. 6. Each scatterplot shows crude estimated log fold change between the two strains in the F0s (y-axes) and the F1s (x-axes) for genes confidently

classified into one of the four categories. The crude estimates are the mean differences of the posterior means weighted by the inverse of the posterior

variances
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using various heuristics and Fisher’s exact tests of genome align-

ment counts. We cannot assess the false discovery rate exactly

because the truth is known only for a small subset of genes that

were validated by RT-PCR (all of which tested positive). We can,

however, determine the posterior probabilities for the set of genes

that were validated. The right panel of Figure 7 shows that the

genes cluster on the vertical high-probability section of the plot.

Genes bmm, CG4829, trol, msn, sesB, osa, RhoGAP19D, slik

and PhKgamma all had maximum posterior probabilities greater

than 0.9.
Having observed a marked enrichment of validated genes

within the small group for which we found compelling evidence

of differential isoform usage, we conclude that our method has
reasonable power and specificity for detecting differential regu-

lation of isoform usage by modelling posterior summaries of

probit-transformed isoform usage proportions. By way of com-

parison, a standard Cuffdiff 2 splicing analysis of the same data-
set declared only three of the validated genes as ‘significant’: trol,

CG4829 and bmm. The minimum (over transcription start sites)

unadjusted P-values ranged from 0.00005 to 0.53085 for the

validated genes while LamB1 and CG8920 were given a
‘NOTEST’ result by Cuffdiff 2. Supplementary Figure S5

shows that our approach is much more sensitive at recovering

the validated genes than Cuffdiff 2.

5 DISCUSSION

The work we have presented can be applied to a wide range of

problems in the study of gene expression thanks to two import-

ant features. First, due to the linear mixed regression framework,
we are able to model many different patterns of expression. We

have shown, for example, how the framework can be used to

detect imprinting in mice. Second, by using posterior summaries

of expression as the outcomes in our regression models rather
than alignment counts, we are able to apply our methods in cases

where counts are not readily available, such as haplotype-specific

and isoform-specific analyses. We have described earlier in the

text how transformation of expression proportion variables to

the probit scale allows us to detect differential isoform usage.

Crucially, having demonstrated that posterior uncertainty in

expression estimates may be large and heteroscedastic, we have
shown that accounting for this uncertainty can improve precision

and sensitivity.

Ordinarily, a different method would be applied to compari-
sons of expression intensities at different levels of granularity.

For example, standard gene expression analyses might be

based on comparisons of genome-alignment counts, allele-

specific expression analyses might compare counts on a hetero-

zygote-by-heterozygote basis and splicing analyses might

compare counts on a splice junction by splice junction basis. It
is difficult to integrate the results of such varied kinds of analyses

to make inference. Returning to the mouse dataset mentioned

earlier in the text, we have shown how our method can be used to

perform a differential expression analysis between the two strains

in the (pure-strain) parents together with a differential expression

analysis between the two strains in the first-generation crosses
(i.e. between haplotypes). Our model can straightforwardly ac-

commodate both types of analysis, producing comparable pos-

terior probabilities. More generally, our model selection method

can be applied universally to any arbitrary collection of features

through aggregation of joint posterior distributions. Analyses

could be performed at the gene, haplo-gene, isoform, haplo-iso-

form, exon and 50-untranslated region (UTR) level, to name a
few, applying a single method of inference across comparison

types to an RNA-seq dataset. In the latter example, it would

be possible to detect changes in 50 UTR usage between treatment

groups simply by collapsing isoforms sharing the same 50 UTR

start sites. Finally, we have shown how polytomous classification

can be performed effectively when more than two models are
postulated for the data, which is often the case in studies of

gene expression.
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