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a b s t r a c t

The fossil recordprovides a lower boundon theprimate divergence timeof 54.8million years ago, but does
not provide an explicit estimate for the divergence time itself. We show how the pattern of diversification
through the Cenozoic can be combined with a model for speciation to give a distribution for the age of
the primates. The primate fossil record, the number of extant primate species, and information about the
structure of the primate phylogenetic tree are combined to provide an estimate for the joint distribution
of the primate and anthropoid divergence times. To take this information into account, we derive the
structure of the birth-and-death process conditioned to have a subtree originate at a particular point in
time. This process has a size-biased law and has an immortal line running from the root of the tree to
the root of the subtree, with species on the spine having modified offspring and length distributions. We
conclude that it is not possible, with this model, to rule out a Cretaceous origin for the primates.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Sam Karlin made numerous contributions to the theory of
stochastic processes. Among the earliest of these is the now-
classical Karlin–McGregor integral representation of the transi-
tion function of birth-and-death and related processes (Karlin and
McGregor, 1958) and its application to coincidence probabilities
(Karlin and McGregor, 1959a,b). For applications of the latter to
combinatorics, see Karlin (1988). Many of Sam’s results arose in
the study of evolutionary or population genetics, beginning with
a mathematical analysis of Moran’s model (Karlin and McGregor,
1962), a continuous-time analogue of the Wright–Fisher model of
gene frequency change in a finite population. A more general class
of discrete-time models obtained by conditioning branching pro-
cesses on a fixed total size was described in Karlin and McGregor
(1964). This providedmotivation for Cannings’ exchangeablemod-
els (Cannings, 1974) and their recent developments (Möhle and
Sagitov, 2001).
Several of Sam’s papers exploited compound stochastic process

arguments, in particular to study population models in which
new populations arise at the points of non-homogeneous Poisson
processes (Karlin and McGregor, 1967); we use a similar approach
in the present paper. Karlin and McGregor (1972) gave a prescient
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argument that we now recognize as a ‘‘coalescent method’’ to
derive the celebrated Ewens Sampling Formula (Ewens, 1972).
Kingman’s elegant formulation of the ancestral structure of neutral
population genetics models, the coalescent (Kingman, 1982),
appeared in 1982 and its uses are now commonplace in population
genetics (cf. Tavaré (2004), Hein et al. (2005) andWakeley (2008)).
One of us (ST) was a postdoc of Sam’s at the time computational

molecular biology was coming into its own. We still worked
on stochastic problems in population genetics (such as Karlin
and Tavaré (1982)), but DNA sequencing had become a reality
(although for awhile the data came in books—ST remembers typing
all 48,502 basepairs of bacteriophage lambda into a text file!)
and there were new problems to think about. Sam’s interests
moved towards statistical issues in sequence analysis, resulting
first in Karlin et al. (1983), and remained there for the rest of his
life. Nonetheless, he still had time for questions about stochastic
processes. With this in mind, we think Sam would have liked
the problem (and perhaps even the approach) we describe in our
paper, which we dedicate to his memory.

2. Estimating divergence times by using the fossil record

The crown divergence time of a monophyletic group of species
is the most recent time at which all the species shared a common
ancestor. Informally, one can think of the divergence time as the
point at which a single ancestor species first diverged into two
or more distinct species. Thinking in terms of phylogenetic trees,
estimating divergence times is essentially a problem of how to
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learn the depth of a tree from an incomplete snapshot of its
various parts.
In this paper we show how to date the divergence time of

a taxonomic group using the fossil record. This is an important
problem as fossil evidence is the only direct source of information
about the age of a group of species. Genetic data do not explicitly
contain any information about age; dating methods that use DNA
rely on one or more dates estimated from the fossil record in order
to calibrate the speed of mutation in a dating model (the so-called
molecular clock). Fossils, on the other hand, can be dated to provide
tangible evidence of the existence of a species at a particular point
in time. However, fossil evidence only provides a lower bound on
the age of a group, with the divergence time of a taxon bounded
above by the age of the oldest fossil. For well-sampled taxa with
relatively complete fossil records, such as marine invertebrates, it
is likely that this lower bound will be close to the true divergence
age (Raup and Sepkoski, 1982). However, for poorly sampled taxa,
a category including most terrestrial vertebrates, we intuitively
expect the temporal gap between the divergence time and the
oldest fossil discovery to be more variable and potentially much
longer than for well-sampled taxa.
While fossil data do not explicitly provide an upper bound

on the age of a clade, the pattern of fossil finds can provide
information about how the diversity (number of species) of the
clade varied through time. This signal will often be highly noisy,
and using it to infer the true diversity is complicated by not
knowing the completeness of the fossil record and by the belief
that the fossil sampling and discovery rate varies over the geologic
time scale (Raup, 1979). However, by modelling diversification
and fossil preservation we can use the fossil record, along with
other information such as the modern diversity and the known
phylogenetic structure, to estimate the divergence time of a clade.
We can then give a probability distribution for the divergence time
which represents our remaining uncertainty given the data, giving
a credibility interval for the range and estimating the most likely
divergence time.

2.1. The primate fossil record

We extend the work of Tavaré et al. (2002), estimating the
joint distribution of the primate and anthropoid divergence times.
The estimation of these divergence times merits special care and
attention because of the debate about the primate divergence
time that has taken place in recent years. The argument has been
characterized by Benton (1999) as ‘molecules versus morphology’
and concerns whether the primates coexisted with the dinosaurs
during the Cretaceous over 65 million years (My) ago. Direct
readings of the fossil record tend to place the divergence time
in the Cenozoic (Gingerich and Uhen, 1994; Kay et al., 1997),
whereas molecular dates tend to place the divergence time in
the Cretaceous (Kumar and Hedges, 1998; Arnason et al., 1996;
Hedges et al., 1996; Bininda-Emonds et al., 2007). There are
sound reasons for why some disparity is expected between the
two dating methods, as genetic dates record when inter-breeding
ceased, whereas fossils date when morphological difference arose.
However, this cannot account for the magnitude of the difference
and there is reason to believe that date estimation from fossil
evidence can be improved (Martin, 1993). The completeness of
the primate fossil record (the proportion of species preserved as
fossils) has been estimated to be less than 10% by Martin (1990)
and as noted above, for incomplete taxa the temporal gap between
oldest fossil and divergence time will be stochastically large.
Table 1 shows the available primate fossil data. It consists of

a collection of counts of the number of distinct primate species
in each of the past 14 geologic epochs, along with the number
of extant primate species (reported in Groves (2001, 2005)). It
also gives the number of anthropoid species known from the
fossil record. These data are an unpublished updated version of
the data given in Tavaré et al. (2002). The anthropoids are an
infraorder of the primates consisting of the new and old world
monkeys and the apes, and they form a monophyletic subtree
in the primate phylogeny. Further information on the primates,
along with information about the data, is available in Martin et al.
(2007). There are two important points to note from the data:
no primate fossil predating the Eocene has been found, with the
oldest primate fossil being at most 54.8 My old and no anthropoid
fossil has been found before the Late-Eocene, with the oldest
anthropoid fossil being at most 37 My old. Throughout this paper,
we let τ denote the temporal gap between the oldest primate
fossil and the primate crown divergence time, so that the primate
divergence occurred 54.8 + τ My ago. We similarly define τ ∗ to
be the temporal gap between the oldest anthropoid fossil and the
anthropoid divergence time, so that the anthropoid divergence
time was 37 + τ ∗ My ago. Fig. 1 is a simple illustration showing
this structure.
Aside from the fossil data, there are other sources of information

that can be utilized. Firstly, the modern diversity can inform
us about fossil sampling rates and the completeness of the
record. Secondly, morphological considerations can allow for the
identification of some phylogenetic structure. For example, it is
known that the anthropoids are a monophyletic subgroup of the
primates, so that the anthropoid phylogenetic tree is a subtree of
the primate tree, as shown in Fig. 1. Knowing this structure can
inform our beliefs about the placement of the root and shape of
the tree. Molecular evidence can also provide information about
the divergence time, although we do not explore that route here.
The focus in this paper is on combining the information in

the fossil record with the modern diversity and on using the
known phylogenetic structure to date multiple divergence times
simultaneously. By using this structure we hope to date two
divergence times with more accuracy than is possible in dating
a single divergence time. Also, by giving the joint distribution, it
is possible to quantify the joint distribution of the error terms,
offering a potential improvement in accuracy if these dates are
used as calibration nodes in subsequent molecular analyses. We
model both the primate and anthropoid divergence times with
the aim of learning how these times can be constrained given our
model and thedata.We take a forwardsmodelling approach, giving
a model for speciation and fossil discovery, and then fit the model
to the data to learn about the temporal gaps τ and τ ∗.

3. Modelling speciation

In order to combine the fossil record, the number of extant
species, and the known phylogenetic structure to estimate
divergence times, we need a model which incorporates all
three aspects. We take a forwards modelling approach, explicitly
modelling speciation using a simple stochastic birth-and-death
process. Although it is easy to criticize the model, it should be
borne in mind that this is an advance over previous approaches to
dating using the fossil record, which tend to have been statistical
approaches relying on correlations, rather than process models.
It is also unclear, due to the limited data available, whether a
more complex modelling approach is feasible. Our model can then
be used to asses the range of uncertainty one can expect for the
temporal gap between the oldest fossil and the divergence time.
We now describe the basic model, which is then conditioned

to account for the known phylogenetic structure. The notation
and development follow that given in Harris (1963). We consider
the birth-and-death process to be an evolving tree process, with
each lineage in the tree representing a different species. In order
to describe the dynamics of the process, it will be useful to have
the following definition of an exponential distribution with time-
varying rate.
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Table 1
A summary of the number of primate and anthropoid species known from the fossil record (Martin et al., 2007). Time during the Cenozoic is divided into 14 geologic epochs,
with the dates for each epoch given in the table in millions of years (My). Also given is the modern diversity (Groves, 2005).

Epoch k Time at base of interval k (My) Primate fossil counts,D Anthropoid fossil counts,A

Extant 0 376 281
Late-Pleistocene 1 0.15 22 22
Middle-Pleistocene 2 0.9 28 28
Early-Pleistocene 3 1.8 30 30
Late-Pliocene 4 3.6 43 40
Early-Pliocene 5 5.3 12 11
Late-Miocene 6 11.2 38 34
Middle-Miocene 7 16.4 46 43
Early-Miocene 8 23.8 34 28
Late-Oligocene 9 28.5 3 2
Early-Oligocene 10 33.7 22 6
Late-Eocene 11 37.0 30 2
Middle-Eocene 12 49.0 119 0
Early-Eocene 13 54.8 65 0
Pre-Eocene 14 0 0
Fig. 1. A sample primate speciation tree with anthropoid-subtree highlighted. Here, tree A represents the haplorhini and tree B the strepsirrhini, while subtrees 1 and 2
represent the platyrrhine and catarrhine species. Parameter τ records the distance between the base of the Eocene and the base of the primate tree, whereas τ ∗ records the
distance between the base of the Late-Eocene and the anthropoid subtree.
Definition. Let b(·) denote a positive integrable function with∫
∞

s b(t)dt = ∞ for all s. We say the random variable X has
an inhomogeneous exponential distribution begun at time s, and
write X ∼ Exps(b(·)), if X has the probability density function

πs(x) = b(s+ x) exp
(
−

∫ s+x

s
b(t)dt

)
, x > 0.

We consider the inhomogeneous birth-and-death process. Each
lineage lives for an inhomogeneous exponential period of time
with variable rate b(t) = λ(t)+ µ(t). Upon the death of a species
at time t , it is replaced with either zero (a death) or two (a birth)
new species with probabilities

p0(t) =
µ(t)

λ(t)+ µ(t)
and p2(t) =

λ(t)
λ(t)+ µ(t)

(1)

respectively. If we denote the number of species alive at time t
by Z(t), the process can be described in terms of the infinitesimal
change equations

Z(t + h) =

{Z(t)+ 1 w.p. Z(t)λ(t)h+ o(h)
Z(t)− 1 w.p. Z(t)µ(t)h+ o(h)
Z(t) w.p. 1− Z(t)(λ(t)+ µ(t))h+ o(h),

completing the description of the basic model.
In order to date two or more divergence times simultaneously,

we must be able to include any known phylogenetic structure into
themodel. The type of information that is typically available is that
a subgroup of the species form a subtree within the main tree. One
approach to using this information is to find post-hoc within the
tree, the most likely subtree; we can simulate a sample tree for the
complete phylogeny, then exhaustively search all subtrees to find
the subtree that most closely matches the data for the subgroup.
We then measure the divergence time from this optimal subtree.
The problemwith this approach is that it is difficult to interpret the
results. The optimal subtree is in some sense the closest match to
the data, but is not interpretable as a posterior distribution or in
any other standard way.
A more satisfactory approach to modelling subtree origination

is to condition the birth-and-death process to have a subtree
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originate at a given point in time. We can then draw divergence
times from their prior distributions, and simulate a sample tree
rooted at those divergence times.

3.1. Modelling subtree origination

Wenow consider the effect that conditioning a birth-and-death
process on subtree origination has on the size distribution of the
process, where the size distribution is {P(Z(t) = k), k = 0, 1, . . .}.
Values for the unconditioned process were given by Kendall
(1948). Initially, consider a process which begins from one
individual at time zero, Z(0) = 1. We can then derive the
distribution of Z(t) conditional on the event that a birth occurs at
time y > 0. Extension of the result to processes which begin with
n lineages at time 0 follows from an application of Lemma 2.
Conditioning a birth-and-death process to have a subtree

originate at time y is equivalent to conditioning the process to have
a branch die at time y and give birth to at least two new lineages.
Let B(y) denote the event that one of the branches of Z(·) dies at
time y and gives birth to at least two new lineages. The distribution
of the conditioned process is then given by P(Z(t) = k|B(y)) for
k = 0, 1, 2, . . . . As we are considering a continuous-time birth-
and-death process P(B(y)) = 0, so to calculate the conditional
probability P(Z(t) = k|B(y))we consider the limit

lim
h↓0

P(Z(t) = k|B(y, y+ h))

where B(y, y + h) is the event that a birth occurs during the time
interval [y, y + h]. To describe the distribution P(Z(t) = k|B(y)),
we make use of the following definition.

Definition (Size-Biased Random Variables). Let X be a discrete
positive random variable with P(X = j) = pj and E(X) < ∞.
Then the size-biased version, X̂ say, has distribution

P(̂X = j) =
jpj
EX
, j = 1, 2, . . . .

The following lemma, whose proof is given in the Appendix,
gives the size distribution for the conditioned process.

Lemma 1. The continuous-time birth-and-death process Z(t) start-
ing from Z(0) = 1 and conditioned to have a subtree originate at
time y has the size distribution of a size-biased process up to time y,
and a standard process from time y onwards.

P(Z(t) = j|B(y))

=
jP(Z(t) = j)

EZ(t)
for 0 ≤ t ≤ y, (2)

=

∞∑
k=1

P(Z(t) = j|Z(y) = k+ 1)
kP(Z(y) = k)

EZ(y)
for t > y.

(3)

Eq. (2) says that up until the conditioned subtree origination
at time y the conditioned process has a size-distribution which is
the size-biased version of the original distribution. Eq. (3) says that
after the conditioned birth, the process evolves as a standard birth-
and-death process begun from k+1 lineages. Note that if we write

Fi(s, u, t) =
∑
j≥0

P(Z(t) = j|Z(u) = i) sj, (4)

then the distribution on the right of (2) has probability generating
function (pgf)

F SB(s, t) =
s ddsF1(s, 0, t)

EZ(t)
, t < y. (5)
The calculations above are for the birth-and-death process
starting from a single individual at time 0. The size-process of trees
which start with more than one individual can be found using the
following lemma, proved for example in Brown (2006).

Lemma 2. Let X1, X2, . . . , Xk be independent positive random
variables with EXj = λj < ∞, and let ̂ denote the size-biasing
operator. The size-biased version of the sum S = X1 + · · · + Xk has
the following distribution:

Ŝ=d X1 + · · · + XJ−1 + X̂J + XJ+1 + · · · + Xk

where the random variable J is independent of the Xj and has
distribution

P(J = j) =
λj

λ1 + · · · + λk
, j = 1, 2, . . . , k.

The branching property says that a birth-and-death process
with Z(0) = n can be considered as the sum of n independent,
identically distributed birth-and-death processes, Z1(·), . . . , Zn(·),
with Zi(0) = 1 for each i. Lemmas 1 and 2 then imply that a birth-
and-death process with Z(0) = n conditioned to having a subtree
originate at time y, can be considered as follows:

• For t < y, the process is the sum of n−1 independent standard
birth-and-death processes starting from a single branch at time
0, and a size-biased birth-and-death process begun from a
single lineage.
• For t > y, the process evolves as a standard birth-and-death
process.

The law of the size process of the conditioned tree, P(Z(t) =
j|B(y)), is of limited value by itself, as it does not describe the
structure of the process. As will be described below, we need to
be able to simulate observations from the model in order to do
inference, and the previous results do not provide a constructive
description allowing this to be done easily. We need a more
detailed result to describe the structure of the conditioned tree
process, which we now provide.
It is possible to show thatwhenwe condition on a birth or death

at some future time y in the birth-and-death process, we create an
immortal line, or distinguished spine, from the root of the tree to
time y. Along the immortal spine, the rate of births and deaths is
different from the rates along the lineages not on the spine, and the
offspring distribution is also modified.

Theorem 1. Conditioning a birth-and-death process, rooted at time
s, to have a death (or birth) occur at time y > s, modifies the process
as follows:

1. There is an immortal line from the root of the tree to the death
(or birth) at time y. Any lineage not part of this distinguished spine
behaves as in the unconditioned process, independently of all other
lineages.

2. Lineages on the spine have amodified length distribution, living for
a period distributed as an inhomogeneous exponential distribution
with rate 2λ(t) truncated at y, i.e., the length of a lineage born at
time x on the spine has density

πx(l) = 2λ(x+ l)e−
∫ x+l
x 2λ(t)dt .Ix+l<y + e−

∫ y
x 2λ(t)dt .δy−x(l).

Here δy(x) = δ(x− y), where δ(·) is the Dirac delta function.
3. Lineages on the spine have a modified offspring distribution with
only births occurring along the spine (i.e. no deaths, so the spine
cannot die out before time y). One of the two offspring is chosen at
random as distinguished. The other offspring evolves as a standard
lineage.
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At time y, there is a death on the spine. If conditioning on birth, there is
a birth at time y on the spine. For t > y, all lineages evolve as standard
lineages.

The theorem says that the conditioned process has an spine
running from the root to time y. Deaths occur along this spine
as the points of a Poisson process with rate 2λ(t). Deaths on the
distinguished spine always lead to the birth of two new species,
one of which is distinguished. The undistinguished species evolves
as an unconditioned birth-and-death process independently of
the spine and other species. This structure has been observed
previously in size-biased trees, but under different types of
conditioning (Chauvin et al., 1991; Lyons et al., 1995).
We do not prove the theorem here, as its proof is long and

complex. But we state a corollary which follows from the theorem
by using a compounding argument akin to that described in Karlin
and McGregor (1967) and Karlin and Taylor (1981, p406ff).

Corollary 1. For t < y, the pgf of the number of species alive at time
t is given by

F FB(s, t) = s exp
{∫ t

0
2λ(u)[F1(s, u, t)− 1]du

}
. (6)

In Lemma 3 in the Appendix we show the equivalence of the
pgfs in (5) and (6)—arguably not obvious at first look! It is possible
to generalize Theorem 1 and its corollary to inhomogeneous
conditioned Markov branching processes; see Wilkinson and
Tavaré (in preparation) for details.

3.2. Modelling fossil finds

Above we described a model for speciation which allows us to
simulate sample family trees that have a subtree originating at a
specified point in time. In order to assimilate the fossil data given
in Table 1, we need a model for fossil preservation and discovery.
This model must act on the simulated trees to produce discrete
data that are directly comparable to the recorded data. We do this
through a discrete sampling of the branches of the tree. Various
models are possible, but we focus on what is perhaps the most
natural model and use a Poisson point process to superimpose
fossil finds on the branches of the tree. Each species can only be
counted once within any epoch, so multiple finds are not counted,
but the same species can be discovered in multiple epochs. If the
length of time a species lives for in epoch i is l, then under the
Poisson sampling scheme the probability that it is preserved and
discovered is 1−exp(−βil), whereβi is the sampling rate for epoch
i. There are reasons to believe that fossil preservation rates vary
through time, with fossils from more recent epochs being more
likely to be discovered than those from more distant epochs (the
‘‘pull of the recent’’ (Raup, 1979)), and so the sampling rates are
allowed to differ between each of the 14 geologic epochs. We treat
{βi, i = 1, . . . , 14} as unknown parameters and estimate them
along with the other parameters in the next section.

4. Bayesian inference for branching process models

In the previous section we specified a forwards model which
can be viewed as a stochastic map η(·) from a parameter θ
to sample data sets. Our aim is to use the data in Table 1 to
learn about θ , finding values which best fit the model and data.
In other words, we must solve the inverse problem: given η(·)
and D , which values of θ are most likely? We take a Bayesian
approach to inference, describing prior distributions for unknown
parameters, then computationally inverting the model to find
posterior distributions.
Inference for the model described in Section 3 is complicated
by the fact that the likelihood function π(D|θ) is not known
explicitly. In Kendall (1948) it was shown that the distribution of
the cumulative process of a birth-and-death process is intractable.
Without this distribution it is not possible to derive the likelihood
of the fossil data, π(D|θ), under the model. As inference is
usually performed using the likelihood function (e.g., in MCMC
and maximum likelihood estimation), we are forced here to use
a non-standard inference approach. We use a direct inference
approach (Diggle and Gratton, 1984) that only requires the ability
to simulate from the model.
Approximate Bayesian computation (ABC) methods (Beaumont

et al., 2002; Marjoram et al., 2003) are a group of Monte Carlo
algorithms used for posterior inference which do not require
explicit knowledge of the likelihood function. They use realizations
η(θ) from the model and compare these with the data D to
decide whether parameter θ belongs in the posterior sample.
Here, we use an ABC algorithm based on the rejection algorithm.
To get an approximate sample from the posterior distribution
π(θ |D) ∝ π(D|θ)π(θ)without using evaluations of π(D|θ), the
ABC algorithm can be used as follows:

1. Draw a value of the parameter from its prior θ ∼ π(·).
2. Simulate data X from the model using parameter θ , X ∼ η(θ).
3. Accept θ if ρ(D, X) ≤ ε.

Here, ρ(·, ·) is a distance measure on the output space and ε is a
tolerance level. If ε = 0 then this algorithm is exact, and accepted
values of θ are draws from the posterior distribution, whereas if
ε → ∞ the algorithm gives draws from the prior distribution. To
control the accuracy of the approximation, we take ε to be as small
as possible. The difficulty arises due to the acceptance rate, with
smaller values of ε leading to less acceptances in step 3, so that
more computation will be required to get a sample of a given size.
The focus of our analysis is on learning the primate and

anthropoid divergence times. In the model, these quantities are
represented by the two temporal gap parameters τ and τ ∗, with
the primate divergence time assumed to be 54.8 + τ My ago and
the anthropoid divergence time 37+τ ∗My ago. By rooting the tree
and subtree at these times in the computer simulation it is possible
to simulate sample fossil data generated from phylogenies with
these divergence times. To represent prior uncertainty about both
variables,weuse flat proper prior distributions,with ranges guided
by a combination of pragmatism and expert judgment (R.D.Martin,
personnel communication). The priors used were

τ ∼ U[0, 50], τ ∗ ∼ U[0, 30]

and simulation results suggest that the analysis is robust to the
range of these priors. The range suggested for τ was [0, 100] My,
but experimentation showed that the range [50, 100] contained
almost zero posterior mass, and the only effect of using [0, 100]
rather than [0, 50] was to double the computational burden. To
ensure that τ does represent the primate temporal gapwe root the
process with two species, and require that in the simulation these
species both have modern descendants. Similarly, for the subtree
originated at 37 + τ ∗ My ago, we required that both sides of the
simulated family tree have extant representatives.
Aside from the two parameters of interest, τ and τ ∗, there

are numerous other parameters that are required for the model,
but which are not of specific interest themselves. Firstly, it is
necessary to specify the birth-and-death rates, λ(t) and µ(t), for
the speciation model. This can be done by assuming a parametric
form for the expected number of species.We set the event rate b =
λ(t)+µ(t) to be constant, and then assumea logistic growthmodel
for the diversity through time. Using Eq. (8) with the branching
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Fig. 2. Marginal posterior distributions of the primate and anthropoid divergence time. The histograms are of the raw accepted ABC output, with kernel density estimates
overlaid. The horizontal lines are the prior distributions used.
Table 2
Values of the fixed ratio in which the βi are held, i.e., βi = βpi .

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10pi 25 26 22 12 5.0 2.7 4.7 3.3 1.6 6.5 18 25 41 3.3

property E(Z(t)|Z(0) = i) = iE(Z(t)|Z(0) = 1), we equate the
expected growth with the logistic growth function, obtaining

2 exp
(
b
∫ t

0
(λ(u)− µ(u))du

)
=

2
γ + (1− γ )e−ρt

for unknown parameters γ and ρ. Using the assumption that
λ(t) + µ(t) is constant, this equation can be solved for λ(t) and
µ(t) to give expressions for the birth and death rates in terms of
γ , ρ and b. We take an empirical Bayes approach for the unknown
parameters (γ , ρ, b) and hold them constant at their maximum
likelihood values, whichwere estimated in a previous analysis. We
allow different birth-and-death rates on the anthropoid subtree
and the encompassing primate tree, so as to allow for differential
rates of diversification and the explosion of the anthropoid species
sometime in the mid-Cenozoic. For the primate tree we set ρ =
0.72 and γ = 0.02, and for the anthropoid tree we set ρ = 0.265
and γ = 0.0065, and b = 3 for both trees.
For the sampling ratesβi, we followTavaré et al. (2002) andhold

the βi in a fixed ratio, so that βi = βpi for some fixed set of known
constants pi, and unknown parameter β . The values used for p are
given in Table 2 andwere estimated in a previous analysis.We treat
themultiplierβ as unknown, and give it aU[0, 1] prior distribution
and infer its posterior distribution alongwith the divergence times.
Details of how the point estimates for all of these parameters were
obtained, along with an alternative ABC approach to estimating
posterior distributions of all parameters, are given in Wilkinson
(2007).
ABC methods require a distance measure that can be used to

compare the model output with the observations. We used the
following metric

ρ(D, X) =
14∑
i=1

∣∣∣∣ DiD+ − XiX+
∣∣∣∣+ 12

∣∣∣∣ X+D+ − 1
∣∣∣∣+ 12

∣∣∣∣ X0N0 − 1
∣∣∣∣ .

Recall that D = (D1, . . . ,D14) are the fossil counts from Table 1
and that X = (X1, . . . , X14) are simulated values of these counts.
D0 and X0 are the extant number of species observed in the model,
D+ =

∑
Di and X+ =

∑
Xi. The first term in the metric

is proportional to the total variation distance between the two
vectors of proportions {Di/D+} and {Xi/X+}. The |X+/D+ − 1|
term tries ensure that the total number of fossils found in the
simulations is correct, and the |X0/D0 − 1| term ensures that the
modern diversity is included in the conditioning. Use of this metric
gives the posterior distribution of the parameter given the fossil
data and the modern diversity, π(θ |D,D0). If we were to use the
samemetric but without the |X0/D0− 1| term then we would find
the posterior distribution given the fossil counts only,π(θ |D). The
flexibility of ABC algorithmsmeans this is a simple change tomake,
and it is possible to use the same set of model runs to find both
posteriors. To calculate the two different posteriors using a full
likelihood calculation would be more difficult (if it were possible),
as we would need to calculate the joint distribution of two highly
correlated quantities D0 andD .
The complete inference algorithm used is as follows:

1. Draw a sample value of θ = (τ , τ ∗, β) from its prior
distribution.

2. Simulate a conditioned birth-and-death process starting from
two lineages rooted 54.8+τ My ago, with a subtree originating
37+ τ ∗ My ago.

3. Check both sides of the tree, and both sides of the subtree,
survive to the present. If not, return to step 1.

4. Simulate fossil finds for each epoch using sampling rates βi =
βpi.

5. Count the fossil finds X on the complete tree. If ρ(D, X) ≤ ε1,
go to step 6. Otherwise reject θ and return to step 1.

6. Count fossil finds X ′ on the subtree. If ρ(A, X ′) ≤ ε2, where A
are the anthropoid fossil counts, then accept θ into the posterior
sample. Otherwise reject θ . Return to step 1.

Step 3 is included in the algorithm so as to condition on non-
extinction and to ensure that the specified divergence times do
indeed represent the crown divergence time in the simulated
phylogeny.We choose tolerance values ε1 and ε2 by taking them as
small as is feasible given the computing resources available. Using
a cluster of 50 processors, we found ε = (0.4, 0.4) gave a decent
acceptance rate for a simulation period of about 10 hours (about
3 weeks of computing time in total), giving a posterior sample of
2185 values.
The results from the simulations are shown in Fig. 2. The

posterior 95% credibility interval for the anthropoid divergence
time is [98.9, 54.8] My ago, and the posterior 95% credibility
interval for the anthropoid divergence time is [53.2, 37] My ago.
A Cretaceous origin for the primates corresponds to a divergence
time 65 My ago or earlier. This is equivalent to the temporal gap
between the oldest fossil discovery and the divergence time, τ ,
being greater than 10.2 My. Calculating the posterior probability
of a Cretaceous origin from the posterior sample, we find P(τ >
10.2 | D) = 0.46. In other words, we find that a Cretaceous
origin for the primates is almost as likely as not. Similarly, we find
P(τ ∗ > 12 | D) = 0.21 for the posterior probability of an Early-
Eocene origin for the anthropoids.
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5. Discussion

The answer to the question concerning whether primates
existed during the Cretaceous, and hence whether they coexisted
with the dinosaurs, has tended to depend on the source of the
information held to be of primary importance. Those answering
the question who focus on molecular methods using DNA from
modernprimates have tended to conclude that primates originated
in the Cretaceous (Kumar and Hedges, 1998; Arnason et al., 1996;
Hedges et al., 1996; Bininda-Emonds et al., 2007). Conversely,
those relying on fossil evidence have tended to conclude Cenozoic
origins are more likely. The view that the first appearance of a
group of species in the fossil record is ‘‘. . . accepted as more
nearly objective and basic than opinions as to the time when the
group really originated’’ (Simpson, 1965) still holds weight. What
this work has shown is that the primate fossil evidence is not
sufficient by itself to make this conclusion. We have aimed to
utilize the fossil evidence as fully as possible, extracting structural
information and combining it with the modern diversity, and have
found Cretaceous origins have significant posterior probability.
We used uninformative flat prior distributions so as to observe
clearly the signal in the data. Strong prior distributions based on
expert opinion (from secondary data sources and accumulated
knowledge) may still lead to strong posterior beliefs that a
Cenozoic divergence time is much more likely than a Cretaceous
divergence. We have simply shown that the data alone are
insufficient for this task.
Many other models are possible, and we tried several variants

on those reported here, modelling the K-T crash 65 My ago, trying
different beliefs for the expected diversification, and different
fossil sampling models. All combinations tried retained significant
posterior probability of Cretaceous primate origins (Wilkinson,
2007). It should also be noted that the estimates reported here
were found by taking an empirical Bayes approach and fixingmany
of the unknown parameters at estimated values. This reduces the
amount of posterior uncertainty, as we have not fully accounted
for all of the uncertainty in the model. If this uncertainty is
accounted for, then the posteriors are more diffuse than those
reported here.

Appendix

Proof of Lemma 1. We assume that Z(0) = 1 in what follows.
First, consider the growth of the tree before the conditioned
subtree origination, i.e., for t < y. By conditioning on the value
Z(y) and using Bayes’ Theorem we can see that

P(Z(t) = j|B(y)) = P(Z(t) = j)

× lim
h↓0

∞∑
k=1

P(B(y, y+ h)|Z(y) = k)P(Z(y) = k|Z(t) = j)

∞∑
k=1

P(B(y, y+ h)|Z(y) = k)P(Z(y) = k)
.

Recall that for a population of size k the time to the next birth
or death has an exponential distribution with rate kb(t), where
b(t) = λ(t) + µ(t), and so khb(t) + o(h) is the infinitesimal
probability of a death of one of the k lineages in interval (t, t + h).
This gives

P(Z(t) = j|B(y)) = P(Z(t) = j)

× lim
h↓0

∑
(kb(t)h+ o(h))p2(y)P(Z(y) = k|Z(t) = j)∑

(kb(t)h+ o(h))p2(y)P(Z(y) = k)

and dividing through by h, we find that

P(Z(t) = j|B(y)) = P(Z(t) = j)
E(Z(y)|Z(t) = j)

EZ(y)
.

The branching property implies that E(Z(y)|Z(t) = j) =
jE(Z(y)|Z(t) = 1) and combining this with the tower property of
expectation, we find that

EZ(y) = E[E(Z(y)|Z(t))]
= E[Z(t)E(Z(y)|Z(t) = 1)]
= EZ(t)E(Z(y)|Z(t) = 1).

This gives the required size-biased distribution

P(Z(t) = j|B(y)) =
jP(Z(t) = j)

EZ(t)
.

Now consider the growth of the process after the conditioned
split point, i.e., for t > y. We let y+ denote the time just after the
birth B(y) and let y− represent the time just before. Then

P(Z(t) = j|B(y)) =
∞∑
k=1

P(Z(t) = j, Z(y+) = k+ 1|B(y))

=

∞∑
k=1

P(Z(t) = j|Z(y+) = k+ 1)P(Z(y−) = k|B(y))

=

∞∑
k=1

P(Z(t) = j|Z(y) = k+ 1)
kP(Z(y) = k)

EZ(y)

completing the proof. �

We now establish that the size-biased distribution given in (2)
and the corresponding distribution implicit in Theorem 1 are
indeed equivalent. Our approach is to show that the generating
functions F FB(s, t) in (6) and F SB(s, t) in (5) satisfy the same
partial differential equation, and the same boundary conditions,
and therefore are equal. First, some standard results for birth-and-
death processes: The pgf F1(s, u, t) satisfies the forward PDE

∂F1(s, τ , t)
∂t

= (s− 1)(λ(t)s− µ(t))
∂F1(s, τ , t)

∂s
,

F1(s, τ , τ+) = s, (7)

and so

m1(τ , t) ≡ E(Z(t)|Z(τ ) = 1) = exp
{∫ t

τ

(λ(t)− µ(t))du
}
. (8)

Lemma 3. F FB(s, t) = F SB(s, t), 0 ≤ s ≤ 1, 0 ≤ t ≤ y.

Proof. First we derive a PDE for

G∗i (s, τ , t) =
d
dsFi(s, τ , t)

E(Z(t)|Z(τ ) = i)
.

Using (8), note that

∂E(Z(t)|Z(τ ) = i)
∂t

= (λ(t)− µ(t))E(Z(t)|Z(τ ) = i).

It follows that

∂G∗i
∂t
=

1
E(Z(t)|Z(τ ) = i)

{
∂2Fi
∂s∂t
− (λ(t)− µ(t))

∂Fi
∂s

}
.

But from (7) we have

∂2Fi
∂s∂t

= (2λ(t)s− λ(t)− µ(t))
∂Fi
∂s
+ (s− 1)(λ(t)s− µ(t))

∂2Fi
∂s2

.
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Substituting, we get

∂G∗i
∂t
=

1
E(Z(t)|Z(τ ) = i)

{
(2λ(t)s− λ(t)− µ(t))

∂Fi
∂s

+ (s− 1)(λ(t)s− µ(t))
∂2Fi
∂s2
− (λ(t)− µ(t))

∂Fi
∂s

}
=

1
E(Z(t)|Z(τ ) = i)

{
2λ(t)(s− 1)

∂Fi
∂s

+ (s− 1)(λ(t)s− µ(t))
∂2Fi
∂s2

}
= (s− 1)

{
2λ(t)G∗i + (λ(t)s− µ(t))

∂G∗i
∂s

}
. (9)

The next step is to show that F̂(s, t) ≡ s−1F FB(s, t) satisfies the PDE
(9) with i = 1. To verify this, write

w(s, t) =
∫ t

0
2λ(u)[F1(s, u, t)− 1]du,

and note that

∂ F̂
∂t
=
∂w(s, t)
∂t

F̂ and
∂ F̂
∂s
=
∂w(s, t)
∂s

F̂ .

It follows that we need to show that

∂w(s, t)
∂t

= (s− 1)
{
2λ(t)+ (λ(t)s− µ(t))

∂w(s, t)
∂s

}
. (10)

Now

∂w(s, t)
∂s

=

∫ t

0
2λ(u)

∂F1(s, u, t)
∂s

du.

Use the forward Eq. (7) to see that the right-hand side of (10) is

(s− 1)2λ(t)+
∫ t

0
2λ(u)

∂F1(s, u, t)
∂t

du.

It remains to calculate the left-hand side of (10). But this is

∂w(s, t)
∂t

=

∫ t

0

∂

∂t
2λ(u)(F1(s, u, t)− 1)du

+ 2λ(t)(F1(s, t, t)− 1)

=

∫ t

0
2λ(u)

∂F1(s, u, t)
∂t

+ 2λ(t)(s− 1),

the last following from the boundary condition in (7). This
completes the proof. �
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