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Fisher (1943) claimed that the expected value of the sample variance of the number of species found in large
samples, each of n specimens taken from the same population, is asymptotically θ log 2. This is at odds with
the value θ log n obtained directly from the Ewens Sampling Formula (ESF), where θ specifies the rate at which
new species are found. To resolve this apparent contradiction, we assume the species frequency spectrum in the
population is determined by the ESF and that the samples are disjoint subsets drawn sequentially from this single
population. We find an explicit formula for the required expected value for p samples of arbitrary size; in the limit
of large equally-sized samples, it indeed has the value θ log 2. We obtain limit theorems for the sample variance
of p samples of size n under various limiting regimes as p,n or both tend to ∞. We discuss further the behavior of
the number of species present in all samples, and revisit Fisher’s log-series distribution as the limiting distribution
of the number of specimens observed in typical species in a future, large sample.

Keywords: Ewens Sampling Formula; log-series model; sequential sampling; exchangeability; Chinese
Restaurant Process; Poisson approximation

1. Introduction

Fisher, Corbet and Williams [14] studied the relationship between the number of species and the num-
ber of specimens found in typical ecological samples, illustrating their analysis with data from a Mi-
crolepidoptera sample from England, and another from Malayan butterflies. Despite its popularity in
the ecological literature, there remain some statistical aspects of their modeling that might benefit from
further investigation, and we provide one view here.

It is convenient to use the notation C = (C1,C2, . . .) to denote species counts, Ci denoting the number
of species observed i times in the sample; the total number of species observed is

S =C1 +C2 + · · ·

and the number of specimens is

N =C1 + 2C2 + 3C3 + · · · .

The literature now describes many models in which either, or both, of S and N are viewed as ran-
dom. For example, [29] discusses five versions of log-series models, and describes the statistical issues
involved in estimating parameters in the models for S and N . See also [19,24] and [10, Chapter 3]. We
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stay with Fisher’s [13] original limiting log-series model in which the counts Ci,i ≥ 1 are independent
Poisson random variables with means given by

mi := ECi = θ
ηi

i
(1)

for parameters η ∈ (0,1) and θ > 0. N then has a negative binomial distribution with

P(N = n) =
(
θ + n − 1

n

)
(1 − η)θηn,n = 0,1, . . . (2)

and mean

EN =
θη

1 − η,

while S has a Poisson distribution with mean

ES = −θ log(1 − η).

Fisher was concerned with estimation of the parameters θ and η based on the observed values of N
and S. He showed, inter alia, that the maximum likelihood (and moment) estimates solved the simulta-
neous equations

N =
θ̂η̂

1 − η̂ , S = −θ̂ log(1 − η̂),

and concluded with a discussion of standard errors of the estimates when the observed number of
specimens, N , is large.

Fisher was particularly concerned with the variance expected in estimated values of θ in samples
taken from the same population of species. To this end, let S1, . . . ,Sp denote the values of S observed
in p disjoint samples, and define the sample variance by

Vp =
1

p(p − 1)
∑
i< j

(Si − Sj)2 (3)

If, in fact, the samples were mutually independent and approximately identically distributed with the
same, large value of N , then EVp = var S = θ log(1 + E(N)/θ) ≈ θ log N . Fisher, however, claimed that
EVp ≈ θ log 2.

The difference between these formulae has implications for estimates of θ: Fisher’s result implies that
the expected value of the sample variance of the values of θ̂(i) ≈ Si/log N is of order θ log 2/(log N)2,
whereas the other calculation gives an estimate of order θ/log N .

The interpretation of one form of variance over the other is the key to understanding the goal of the
calculation by Fisher [13] of the ‘variation of S and N in parallel samples’. The discrepancy between the
two variance formulae was noted by F.J. Anscombe, who set out to clarify the matter at a meeting with
Fisher in April 1947, and in correspondence thereafter. Fisher’s derivation is both brief and opaque,
and his conclusion as stated is not correct, or is at least open to mis-interpretation. However, a passage
taken from [2, Section 6] suggests that what Fisher had in mind was a different notion of variability.
According to Anscombe, Fisher’s variance formula is appropriate to a special type of comparison,
namely, between estimates of α [our θ] ... derived from similar nearby traps, where it may be assumed
that the individual species have exactly the same relative abundances, and the difference between the
catches at any two traps arises solely from Poisson variation in the numbers caught of each species.
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While he appeared to accept Fisher’s claim at face value, Anscombe offered no proof. The phrasing
of his explanation, which hews closely to passages from his correspondence with Fisher, offers no
insight into the relevant paragraph of Fisher’s paper.

Watterson [29, pp. 218–219] also recognizes that Fisher’s moment calculations indicate that he had
an entirely different version of the logarithmic distribution in mind when he came to consider what
would actually appear in a sample trapping. Version 5 of the log series model in Watterson (1974)
offers a lengthy and somewhat complicated interpretation of what Fisher seems to have had in mind.
This involves a double limit in which a series is approximated by an integral, which leads to a pseudo-
generating function in which probabilities are not necessarily non-negative. From this, Watterson sug-
gests a way to make the argument more rigorous, leading eventually to Fisher’s variance formulae in
equation 2.43. The argument does not offer a confirmation of Anscombe’s interpretation, nor does it
shed light on which version is more appropriate for what purpose.

This paper offers a simple sequential rationalization of Fisher’s variance formula, which is in line
with the quote from Anscombe. More importantly, it does so by exploiting a familiar framework that
avoids the technical complications of Watterson’s derivation (version 5). However, our derivation sheds
absolutely no light on what Fisher had in mind or how he arrived at his formula.

2. A sequential sampling approach

As noted in [24], Fisher did not describe the conditional distributions of C or S given N = n, which
arguably would have made his analysis more transparent. The conditional distribution of C given N = n
is readily found from (1) and (2). For non-negative integers c1,c2, . . . ,cn satisfying c1+2c2+ · · ·+ncn =
n, one obtains

P(C1 = c1, . . . ,Cn = cn |N = n) = n!
θ(n)

n∏
j=1

(
θ

j

) c j 1
cj!
, (4)

where

θ(n) = θ(θ + 1) · · · (θ + n − 1), θ(0) = 1.

The distribution in (4) is known as the Ewens Sampling Formula [11] with parameter θ, denoted
ESFn(θ) in what follows when the sample size n needs emphasis. It arose originally in population
genetics, but is now found in many different settings. For reviews, see [17, Chapter 41], [8], and for
basic theory and applications in combinatorics, see [3,28].

The Ewens model provides a natural setting for Fisher’s species sampling problem; n, the number of
specimens sampled, is deterministic, and S, the number of species observed, is random. Increasing the
sample size corresponds to sampling more of the population. We take a sequential view, in which Si :=
Si(ni) denotes the number of species found in a sample of size ni forming the ith of p disjoint samples,
and ask what can be said about the sample variance of S1, . . . ,Sp . The species counts are evidently
not independent, as later samples may well have contained species that have already been found. It is
understanding this dependence that leads, among other things, to a reinterpretation of Fisher’s result.

The sequential sampling may be thought of in different ways. For example, [12] considers the result
of two investigators taking distinct samples of equal size from the same population at the same time,
and [5], in a study of genetic variation in tumours, generalizes this scheme to an arbitrary number of
samples of any size.
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To set the scene, we note that Ewens [11] gave the distribution of S = S(n), the number of species
observed in a sample of size n, as

P(S(n) = k) =
θk
[n
k

]
θ(n)

, k = 1, . . . ,n, (5)

where
[n
k

]
denotes the unsigned Stirling number of the first kind. He showed that the maximum likeli-

hood estimator θ̂ of θ is asymptotically given by θ̂ = Sn/log n, and that the variance of this estimator is
asymptotically θ/log(n). Thus the expected value of the between-sample variance of p independent θ
estimates is, from (3), asymptotically θ/log n, as given in the introduction.

For the sequential sampling setting in which p samples of equal size n are taken, the counts Si are
exchangeable, and so the expected value of the sample variance is

EVp,n = var S1 − cov(S1,S2).

As a consequence of Theorem 1 we show, among other results, that

EVp,n =

2n−1∑
r=n

θ

θ + r
− θn!
θ(2n)

n∑
r=1

1
r
θ(2n−r)
(n − r)!

n−1∑
i=n−r

θ

θ + i
. (6)

It follows that, as n →∞,

EVp,n → θ log 2,

as shown in [12] for p = 2 and [5] for arbitrary p, and confirming Fisher’s approximate formula for the
expected sample variance of estimators of θ.

The paper is laid out as follows. In Section 3 we derive a formula for the covariance of the species
counts from two samples, of size m and n respectively, and describe the asymptotics in the regime
in which n/m → β as n,m → ∞. Section 4 sets the scene for the multiple sample case by drawing
on notions of exchangeability. This provides the ingredients for studying, in Section 5, the asymptotic
distributional behavior of Vp,n when p sequential samples of size n are taken, and one or both of p and
n tend to infinity in a prescribed way. Section 6 takes a further look at the number of species found in
all the samples, and Section 7 comes full circle to describe another appearance on Fisher’s log-series
distribution.

3. Results for two sequential samples

We begin by reminding the reader about the Chinese Restaurant Process, described here as a model for
sampling specimens from different species, a coupling that may be used to generate observations having
the distribution of ESFn(θ) for any value of n. To this end let ξ1, ξ2, . . . be a sequence of independent
Bernoulli random variables satisfying

P(ξi = 1) = θ

θ + i − 1
= 1 − P(ξi = 0).

The parameter θ ∈ (0,∞) represents the rate at which new species are discovered, and ξi = 1 means
that specimen i is from a new species, while ξi = 0 means that specimen i is of a species that has
already been sampled. To complete the description of the dynamics, we use auxiliary randomization:
we assume that if an old species is sampled, that species is chosen at random from the existing species
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in proportion to the number of that species already observed. The joint distribution of the counts Cj (n)
of species represented by j specimens is ESFn(θ), and S(n) =

∑n
i=1 ξi , so that

ES(n) =
n∑
i=1

θ

θ + i − 1
, var S(n) =

n∑
i=1

θ(i − 1)
(θ + i − 1)2

. (7)

3.1. The expected number of species shared by two samples

We address first a seemingly less general problem, namely the case of two samples, the first composed
of n1 =m specimens, labelled 1,2,. . . ,m, the second composed of n2 = n specimens, labelled m+ 1,m+
2, . . . ,m + n, chosen according to the model described above. The first m specimens produce species
counts of C1(m),C2(m), . . . ,Cm(m), and a total of S1 = S1(m) :=

∑m
j=1 ξj =C1(m)+ · · ·+Cm(m) species;

the distribution of S1 is given by (5) with n there replaced by m. The second sample is collected one
specimen at a time, each resulting in either a species that has been found in the first m specimens, or
a new species. It is the interaction between the species found in the first m specimens, and the number
of those species also found in the second sample that forms the basis of our results. Our approach is in
the spirit of [20,21] and [26] but with a different focus.

To analyse this interaction we need some notation. We denote by Tmn the number of species found
in the second sample that were not found in the first sample, and by Kmn the number of species found
in the second sample that were also present in the first sample. Clearly,

Tmn =

m+n∑
j=m+1

ξj,

while the number of species S2 = S2(n) in the second sample is given by

S2 = Kmn +Tmn .

We will see later that the distribution of S2 is that of a typical sample of size n, given in (5), so that

ES2 =

n−1∑
j=0

θ

θ + j
= EKmn + ETmn = EKmn +

m+n−1∑
j=m

θ

θ + j
.

It follows that

EKmn =mθ
n−1∑
j=0

1
(θ + j)(θ +m + j) . (8)

We note that EKmn = EKnm, as can be verified by interchanging the roles of m and n in (8). An
alternative derivation is a consequence of the preliminary results given in Section A.1 to establish
Theorem 1; see Lemma 6.

3.2. The covariance of S1 and S2

The main result of this section is contained in Theorem 1. Many of the details of the proof are relegated
to Section A.1 of the Appendix.
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Theorem 1.

cov(S1(m),S2(n)) = var S1(m) −
n+m−1∑
r=n

θ

θ + r
+
θm!
θ(m+n)

m∑
r=1

1
r
θ(m+n−r)
(m − r)!

m−1∑
i=m−r

θ

θ + i
. (9)

Proof. Notice that cov(S1,S2) = cov(S1,Kmn +Tmn) = cov(S1,Kmn) since S1 and Tmn are independent.
From (40),

ES1 EKmn = (ES1)2 − ES1
m!θ
θ(m+n)

m∑
r=1

1
r
θ(m+n−r)
(m − r)! .

Combining this with the result of (45) and (41), we see that

cov(S1,Kmn) = ES1Kmn − ES1EKmn

= var S1 −
θm!
θ(m+n)

m∑
r=1

1
r
θ(m+n−r)
(m − r)!

(
1 +

m−r−1∑
i=0

θ

θ + i
− ES1

)

= var S1 −
θm!
θ(m+n)

m∑
r=1

1
r
θ(m+n−r)
(m − r)!

(
1 −

m−1∑
i=m−r

θ

θ + i

)
,

which completes the proof.

Remark. It is true, though it seems difficult to establish directly, that (9) is a symmetric function of m
and n. See Lemma 2 below.

Remark. Applying (9) with m = n, we obtain EV2,n = var S1 − cov(S1,S2), which reduces to the result
in (6) for p = 2.

3.3. Asymptotics for the covariance

In the next lemma, we examine the asymptotic behavior of the covariance in (9) in the regime in which
m,n →∞ such that

n/m → β ∈ (0,∞);

its proof is given in the Appendix.

Lemma 1.

cov(S1(m),S2(n)) = var S1(m) + θ log
( n

m + n

)
+
θ2

n
+

m
m + n

·
θ(θ − 1

2 )
n

+O(m−2),

where var S1(m) is given in (7) with n there replaced by m.

Remark. The last lemma indicates that

cov(S1(m),S2(n)) ≈ var S1(m) + θ log
(
β

1 + β

)
+

1
βm

(
θ(θ − 1

2 )
1 + β

+ θ2

)
.
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4. Multiple samples

In this section we exploit the exchangeable random partition feature of the Ewens Sampling Formula to
establish the behavior of multiple samples, as opposed to the two considered above. Assume, then, that
we take p samples sequentially, of sizes n1,n2, . . . ,np; the case treated above corresponds to p = 2,n1 =

m,n2 = n. In particular, we will see that when n1 = n2 = · · · = np = n the sample counts S1,S2, . . . ,Sp
are exchangeable, and therefore from Lemma 2

E

⎧⎪⎪⎨⎪⎪⎩
1

p − 1

p∑
j=1

(Sj − S̄)2
⎫⎪⎪⎬⎪⎪⎭ =

1
p(p − 1)

∑
i< j

E(Si − Sj)2

=
1
2
E(S1 − S2)2

=

2n−1∑
r=n

θ

θ + r
− θn!
θ(2n)

n∑
r=1

1
r
θ(2n−r)
(n − r)!

n−1∑
i=n−r

θ

θ + i
,

as claimed in (6).
We write n+ = n1+ · · ·+np for the total number of specimens sampled, and we label the n+ specimens

1,2, . . . ,n+, and set n0 = 0. We generate a random partition X of specimens into species by running the
sampling model for these n+ specimens. For i = 1, · · · ,p, as before let Si be the number of species
identified in the ith sample.

Now suppose we rearrange the order in which these n+ specimens are sampled. Let σ be a permu-
tation on [n+] := {1,2, . . . ,n+}, and consider the new sampling scheme where the order of sampling is
given by σ(1),σ(2), · · · ,σ(n+). In other words, at time k, the specimen labeled σ(k) is sampled and is
either of a new species, or an existing species, chosen according to the existing species counts. Denote
by Xσ the random partition generated by the sampling process with the rearranged sampling order σ.

For a subset A = {�1, · · · ,�k } ⊆ [n+], let σA = {σ(�1), · · · ,σ(�k )}, and also for a partition π =
{R1, · · · ,Rb} of [n+] define the partition σπ := {σR1, · · · ,σRb}. It is clear from the definition that
for any partition π of [n+],

P(Xσ = π) = P(X = σ−1π) = P(σX = π) = P(X = π), (10)

the last equality coming from the exchangeability of X; see Aldous [1, pp. 85, 92], Pitman [25, p. 56].
Indeed, from exchangeability, it is clear that rearranging the order of the samples does not effect the

correlation and the joint distribution of each pair of samples. To be more precise, for 1 ≤ i � j ≤ p,
consider a permutation σi j that rearranges the order in which the specimens are sampled in such a way
that the specimens in sample i, in order of their labels, are sampled first, then specimens of sample j, in
order of their labels, are sampled next, and after these two samples are taken, the other specimens are
sampled in order of their labels. From (10), X ∼ Xσi j ∼ Xσj i . In particular, the joint distribution of the
number of species found in specimens ni−1 + 1, · · · ,ni and the number of species found in specimens
nj−1+1, · · · ,nj does not depend on the order in which the specimens are sampled. The following lemma
is an immediate consequence of exchangeability and symmetry.

Lemma 2. For 1 ≤ i < j ≤ p, L(Si(ni),Sj(nj)) = L(S1(ni),S2(nj )). In particular

(i) cov(Si(ni),Sj(nj )) = cov(S1(ni),S2(nj)) = cov(S1(nj),S2(ni)),
(ii) E(Si(ni) − Sj(nj ))2 = E(S1(ni) − S2(nj ))2 = E(S1(nj) − S2(ni))2.
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Remark. Lemma 2 indicates that the covariance formula in (9) given in Theorem 1 is, indeed, sym-
metric with respect to m and n. Also, similar lines of argument to those indicated before Lemma 2
imply that for ni = n for i ∈ N, (S1,S2, · · · ) is exchangeable.

The following symmetries can also be deduced immediately from exchangeability. Let T ′
mn :=

S1(m) − Kmn be the number of species in the first sample of specimens 1, . . . ,m who are not present
in the second sample. Note that Tnm and Knm are defined by switching the roles of m and n in the
original definitions such that the first and the second samples include n and m specimens, respectively.
From exchangeability, T ′

mn ∼ Tnm and Kmn ∼ Knm in distribution. This can be established by letting
the specimens of the second sample m + 1, · · · ,m + n be sampled first and the specimens of the first
sample 1, · · · ,m next. As a result, EKmn = EKnm, and hence the formulae (8) and (40) are symmetric
with respect to m and n, a fact that is also clear from the last equality in (41).

5. Asymptotics for the sample variance
We note that the value of

E

⎧⎪⎪⎨⎪⎪⎩
1

p − 1

p∑
j=1

(Sj − S̄)2
⎫⎪⎪⎬⎪⎪⎭ =

1
p(p − 1)

∑
i< j

E(Si − Sj)2 (11)

for arbitrary sample sizes n1,n2, . . . ,np may be found from Theorem 1 by substitution of the appropriate
sample sizes. Here, we record the asymptotic behavior in the case ni = lqi for i = 1, . . . ,p where 0 <
qi < 1 and q1 + · · · + qp = 1, as l →∞. Using Lemma 1 we see that for i < j,

cov(Si,Sj) ∼ θ log(l) + θ log(qi) + θ log(qj/(qi + qj))

and hence

E(Si − Sj)2 = var Si + var Sj − 2 cov(Si,Sj) + (ESi − ESj)2

∼ −θ log
(

qi
qi + qj

)
− θ log

(
qj

qi + qj

)
+ θ2(log(qi/qj))2

= θ2(log(qi/qj))2 + θ log

(
(qi + qj)2

qiqj

)
.

Substituting this into (11), we see that as l →∞,

1
p(p − 1)

∑
i< j

E(Si − Sj)2 ∼
1

p(p − 1)
∑
i< j

{
θ2(log(qi/qj))2 + θ log

(
(qi + qj)2

qiqj

) }
.

This formula was found by [5] by a Poisson process argument, without recourse to the pre-limiting
formula we obtained here.

In the sequel, we focus on a more detailed analysis of the sample variance in the case of equal sample
sizes, ni = n, i ∈ N, where as already noticed, the sequence S1,S2, · · · is exchangeable. We have seen so
far that the expected value of the sample variance of S1,S2, . . . ,Sp , denoted by

Vp,n =
1

2p(p − 1)

p∑
i, j=1

(
Si − Sj

) 2
,
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is approximately θ log 2 when n is large. In this section, we study the asymptotic behavior of Vp,n when
n is fixed and p tends to infinity (Section 5.1), when p is fixed and n tends to infinity (Section 5.2),
and when n and p = pn both tend to infinity under some asymptotic regime (Section 5.3). Using the
Poisson approximation provided in [5], for i � j ∈ N, we construct some correlated random variables
πi j ∼ Po(θ log 2), arising as the weak limit of the number of species identified in the ith sample that are
absent in the jth sample, and show that, for fixed p, the sample variance converges in distribution to

Φp :=
1

2p(p − 1)
∑

1≤i�j≤p
(πi j − πji)2.

In addition to providing a useful analysis of this Poisson system, under certain asymptotic regimes,
when there exist bn, for n ∈ N, such that

pn,bn →∞,

bn/n → 0,

p2
ne−

bn
pn /bn → 0,

(12)

as n → ∞, we prove that Vp,n converges in distribution to a random variable with mean θ log 2 and
variance θ log(9/8). To establish this, let Ψn = E[V2,n | F (n)

∞ ] and Φ := E[Φ2 | F∞], where F (n)
∞ =

∩p≥2σ(Vi,n : i ≥ p) and F∞ = ∩p≥2σ(Φi : i ≥ p). The main goal of this section is to prove the
following result.

Theorem 2. Under conditions (12),

Vpn ,n ⇒Φ, n →∞.

Moreover, we have the following commutative convergence diagram:

Vp,n
a.s.,L1

−−−−−−→ Ψn��� ====⇒ ���
Φp −−−−−−→

a.s.,L1
Φ

as n,p →∞ appropriately.

The distribution of Φ is determined by its moments which can be computed from Lemma 4 and the
definition of πi j in (22) and (23). The expected value and the variance of Φ is computed in Proposi-
tion 2. To prove Theorem 2 (Section 5.3), we make use of some basic tools for exchangeable random
variables and the Poisson approximation provided in [5].

5.1. Limit of sample variance when n is fixed and p→∞

Consider a map g : R→ R s.t. |g(S1)| is integrable. From de Finetti’s theorem for the exchangeable
sequenceSn = (Si)i≥1 ([18, Theorem 11.10], [1, Theorem 3.1]), we have as p →∞,

p−1
p∑
i=1

g(Si) → ḡ(νn) :=
∫
R+

g(x)νn(dx), a.s., (13)
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where νn is the random measure on R, a.s. uniquely determined by P(S(n) ∈ · | νn) = ν⊗Nn (·). Equiva-
lently, from the Glivenko-Cantelli Theorem [18, Proposition 4.24], [1, p. 15], νn may be defined as the
a.s. limit of the random empirical measures p−1∑p

i=1 δSi , in the weak topology of measures. Further-
more for � ∈ N, i = 1, · · · ,� and gi : R→ R, |

∏�
i=1 gi(Si)| integrable, we have

E[
�∏
i=1

gi(Si) | νn] =
�∏
i=1

ḡi(νn) a.s.,

E[
�∏
i=1

gi(Si)] = E[
�∏
i=1

ḡi(νn)], (cf. [1, (2.22)]).

(14)

Letting m(νn) :=
∫
R+

x νn(dx), from (14), we have E(m(νn)) = ES1 and

var m(νn) = ES1S2 − (ES1)2 = cov(S1,S2).

Applying g(x) = xr in (13), for r = 1,2, and setting S̄p = S̄p(n) := p−1∑p
i=1 Si , it follows that

Vp,n =
1

p − 1

(
p∑
i=1

S2
i − pS̄2

p

)
−→ Ψ̃n :=

∫
R+

x2 νn(dx) −
(∫
R+

x νn(dx)
) 2

a.s., (15)

as p →∞. From (14), we have

EΨ̃n = ES2
1 − ES1S2 = var S1 − cov(S1,S2),

which is computed in Theorem 1. Applying (14) again gives

EΨ̃2
n = E(S1S2)2 + ES1S2S3S4 − 2ES2

1 S2S3, (16)

and from (16), or directly from the pre-limit, we get

var(Ψ̃n) = lim
p→∞

var(Vp,n) = cov
(

1
2
(S1 − S2)2 ,

1
2
(S3 − S4)2

)
. (17)

The right hand side of (17) can be calculated using the frequency spectrum function method introduced
in [11]. We omit the details here, as the calculation is somewhat involved.

The limit in (15) can also be obtained from the so-called weak exchangeability property of S =
(Si j)i�j∈N, where Si j = Si j (n) = (Si − Sj)2/2. Say a random array (Xi, j)i�j∈N is weakly exchangeable
if Xi, j is symmetric with respect to i and j, for any i, j ∈ N, and if for any finite permutation σ in the
infinite symmetric group

(Xi, j )i�j∈N ∼ (Xσ(i),σ(j))i�j∈N,

in distribution. It is clear from the definition that S is weakly exchangeable. Letting F (n)
r := σ(Vi,n :

i ≥ r) and recalling F (n)
∞ = ∩r≥2F (n)

r , [9] observed that Vp,n = E(S1,2 | F (n)
p ) and hence it is a reversed

martingale with respect to filtration F (n)
p , p ≥ 2. Then from [9, Theorem 3], we have

Vp,n
a.s.,L1

−−−−−−→ Ψn = E(S1,2 | F (n)
∞ ), (18)

and therefore Ψn = Ψ̃n, a.s.. See [9, Theorem 4] for a central limit theorem. The proof of the following
lemma is given in Section A.3 of the Appendix.
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Lemma 3. For any k ∈ N,

E[Ψk
n] = E[

k∏
i=1

S2i−1,2i]. (19)

Remark. The null distribution of Vp,n for small n and p was used in [5] as a test of homogeneity of
the different samples. When p is large, the necessary simulation to find the required distribution is
often impractical. We can, however, effectively simulate the moments in (19) for small values of k and
then use these to approximate the tails of the distribution of Ψn (see [22,23] for example). A plug-in
estimator might be used for the unknown parameter θ.

5.2. Poisson approximation for large n

For p ∈ N and ∅ � A � [p], let T̄ (p)
A
= T̄ (n,p)

A
be the number of those species who are present in every

sample i ∈ A and absent in every sample j ∈ [p] \ A. We denote by Ti j = T (n)
i j the number of all those

species who are present in sample i, but absent in sample j, that is T (n)
12 = Tnn, and from exchangeability

T (n)
i j ∼ Tnn in distribution, for any i � j. The definition of Ti j does not depend on the number of samples

p, and we can, in fact, consider an infinite number of samples S1,S2, . . .. In other words, for any p ∈ N,

Ti j =
∑

A�[p]:i∈A, j�A
T̄ (p)
A
. (20)

As Si − Sj = Ti j − Tji , to study the asymptotic behavior of the sample variance, it is most convenient
to study that of (T̄ (p)

A
: ∅ � A � [p]). We find the expected value of T̄A. Again from exchangeability, the

distribution of T̄A depends on the cardinality of A, not A itself. By the inclusion-exclusion principle,
for |A| = r , we have

E[T̄ (p)
A

] =
r−1∑
�=0

(−1)�
(
r
�

)
ETn(p−r+�),n(r−�)

=

r−1∑
�=0

(−1)�
(
r
�

) n+∑
i=n(p−r+�)+1

θ

θ + i − 1

=

r−1∑
�=0

qr ,�
n(p−r+�+1)∑

i=n(p−r+�)+1

θ

θ + i − 1
,

where, for 0 ≤ � < r

qr ,� :=
�∑
j=0

(−1)j
(
r
j

)
.
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Thus

λ̃
(p)
r = λ̄

(p)
A

:= lim
n→∞

E[T̄ (n,p)
A

] = θ
r−1∑
�=0

qr ,� log
(

p − r + � + 1
p − r + �

)
= θ

r∑
�=0

(−1)�+1
(
r
�

)
log(p − r + �),

since qr ,�−1 − qr ,� = (−1)�+1 (r
�

)
for � = 1, · · · ,r − 1, qr ,0 =

(r
0
)

and

qr ,r−1 =

r−1∑
j=0

(−1)j
(
r
j

)
= 0 − (−1)r

(
r
r

)
= (−1)r+1

(
r
r

)
.

For example, for p = 4 we have λ̃(4)1 = θ log(4/3), λ̃(4)2 = θ log(9/8) and λ̃(4)3 = θ log(32/27).
Consider independent Poisson random variables Πp := (π̄(p)

A
: ∅ � A � [p]) with π̄(p)

A
∼ Po(λ̄(p)

A
).

For a given p, Barbour and Tavaré [5] showed that TTTn,p := (T̄ (n,p)
A

: ∅ � A � [p]) are asymptotically
independent and

dTV (L(TTTn,p),L(Πp)) ≤
bcp
np
+

p2(3θ + 1/e)(1 − 1/p)b+1

b+ 1
, (21)

where 4(b+ 1) ≤ np and cp =max(4,4θ(p+ 1+ θ)/3). Taking b = bn such that bn →∞ and bn/n → 0,
as n →∞, guarantees that

TTTn,p ⇒ Πp, n →∞.

We discuss the case n,p →∞ later. Inspired by (20), we define

π
(p)
i j :=

∑
A�[p]:i∈A, j�A

π̄
(p)
A
. (22)

It is not hard to see that the distributions of π(p)i j do not depend on p (cf. Proposition 1). In fact, for
any p

(π(p)i j )i�j≤p ∼ (π(p+1)
i j )i�j≤p,

and thus there exists a projective limit sequence (πi j)i�j∈N such that

(πi j )i�j≤p ∼ (π(p)i j )i�j≤p, (23)

for any p. It is clear from (21) that (T (n)
i j )i�j≤p converges weakly to (πi j )i�j≤p as n →∞, for any given

p ∈ N, and therefore

(T (n)
i j )i�j∈N⇒ (πi j)i�j∈N, n →∞.

To ease the notation, for A = {i1, · · · ,i�}, we let π̄(p)
i1 · · ·i� = π̄

(p)
A

; e.g. π̄(4)12 stands for π̄(4){1,2}.

Proposition 1. For any different natural numbers i, j, k, l, we have πi j ∼ Po(θ log(2)), and

i) cov(πi j, πkl) = θ log(9/8),
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ii) cov(πi j, πik) = θ log(3/2),
iii) cov(πi j, πk j ) = θ log(4/3),
iv) cov(πi j, πjk) = 0.

Proof. We first show that, for any p ∈ N, π(p)i j ∼ π(p+1)
i j . We need to show that λ(p)i j = λ

(p+1)
i j , where

λ
(p)
i j :=

∑
A�[p]:i∈A, j�A

λ̄
(p)
A
=

p−2∑
r=0

(
p − 2

r

)
λ̃
(p)
r+1

for i � j ∈ [p]. But for |A| = r < p this follows from

λ̄
(p+1)
A

+ λ̄
(p+1)
A∪{p+1} =θ

r+1∑
�=0

(−1)�+1
(
r + 1
�

)
log(p − r + �)

+ θ

r∑
�=0

(−1)�+1
(
r
�

)
log(p + 1 − r + �)

=θ

r+1∑
�=0

(−1)�+1
( (

r + 1
�

)
−
(

r
� − 1

) )
log(p − r + �) = λ̄(p)

A
,

since
(r+1

�

)
−
( r
�−1
)
=
(r
�

)
. Therefore, for any p ∈ N, λ(p)i j = λ

(2)
12 = θ log 2, and this yields π(p)i j ∼

Po(θ log 2). So πi j ∼ Po(θ log 2). To prove (i), note that from symmetry and the independence of π̄(p)
A

,
for A � [p], we have

cov(πi j, πkl) =cov(π12, π34)

=cov(π̄(4)1 + π̄
(4)
13 + π̄

(4)
14 + π̄

(4)
134, π̄

(4)
3 + π̄

(4)
13 + π̄

(4)
23 + π̄

(4)
123)

=var(π̄(4)13 ) = θ log(9/8).

Similarly, we have

cov(πi j, πik ) = cov(π12, π13) = cov(π̄(3)1 + π̄
(3)
13 , π̄

(3)
1 + π̄

(3)
12 ) = var(π̄(3)1 ) = θ log(3/2),

cov(πi j, πk j ) = cov(π12, π32) = cov(π̄(3)1 + π̄
(3)
13 , π̄

(3)
3 + π̄

(3)
13 ) = var(π̄(3)13 ) = θ log(4/3),

and

cov(πi j, πjk) = cov(π12, π23) = cov(π̄(3)1 + π̄
(3)
13 , π̄

(3)
2 + π̄

(3)
12 ) = 0.

Let ϕi j := πi j − πji, φi j := ϕ2
i j/2, and recall that

Φp :=
1

p(p − 1)
∑

1≤i�j≤p
φi j .

Note that, similarly to Si j in the previous section, φi j are weakly exchangeable, and from [9, Theorem 3]
and the above discussion

Φp
a.s.,L1

−−−−−−→Φ = E[φ1,2 | F∞], p →∞, (24)
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where as defined before F∞ = ∩r≥2σ(Φi : i ≥ r). From [9, Theorem 4] we find
√

p(Φp −Φ) ⇒N∗, p →∞,

where the law of N∗ is the mixture of standard normal distributions with characteristic function

t �→ E[exp{−2t2cov(φ1,2, φ1,3 | F∞)}].

The law of ϕi j , which is the difference of two independent Poisson-distributed random variables, is
called the Skellam distribution [16,27]. From [16],

P(ϕi j = r) = e−2θ log 2Ir (2θ log 2),

where Ir is the modified Bessel function of the first kind defined by

Ir (x) =
( x

2

) r ∞∑
j=0

x2j

4j j!(r + j)!
.

The moment generating function of ϕi j is given by

Mi j(t) := E[etϕi j ] = exp{2θ log(2)(cosh(t) − 1)}, (cf. [16]).

We finish this section with the following results, whose proofs are given in the Appendix.

Lemma 4. The distribution of Φ is determined by its moments, and for k ∈ N

E[Φk] = 1
2k
E

[
k∏
i=1

(π2i−1,2i − π2i,2i−1)2
]
. (25)

Proposition 2. EΦ = θ log 2, and var(Φ) = limp→∞ var(Φp) = cov(φ1,2, φ3,4) = θ log(9/8).

Remark. Following the remark after (19), the moments in (25) may be simulated and used to approx-
imate the tails of the distribution of Φ.

5.3. Limit diagram for the sample variance

Before giving the proof of Theorem 2, we analyze the upper bound (21) for the total variation distance a
bit more. Consider the case that b = bn,p = pn →∞ as n tends to infinity. For large n, the upper bound
in (21) can be approximated by

4θbn
3n
+
(3θ + e−1)p2

n(1 − 1
pn

)bn

bn
.

In order for this expression to converge to 0, it suffices to have b = bn such that (12) holds as n →∞.
But it is not hard to see that (12) holds if pn = O(n1−ε), for some 0 < ε < 1. This can be handled by
letting bn = n1−ε′ for 0 < ε′ < ε. On the other hand, although pn = o(bn) and pn = o(n) are necessary
conditions for (12), neither of them is sufficient. To see this, let bn/pn = log log n. Then

p2
ne−

bn
pn

bn
=

pne− log logn

log log n
=

pn
log n log log n

, (26)
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tending to ∞, as n → ∞, for an appropriate choice of pn. In particular, for pn = n/log n and bn =
n log log n/log n, for any 0 < ε < 1, we get n1−ε � pn � bn � n, but in this case, the right of (26) is
n/{(log n)2 log log n} →∞, as n →∞.

Proof of Theorem 2. The a.s. and L1 convergence is discussed in (15), (18), and (24). Letting b = bn
in (21) such that bn →∞ and bn/n → 0, as n →∞, we get TTTn,p ⇒ Πp , and hence from the continuous
mapping theorem, Vp,n ⇒Φp , as n →∞. On the other hand, it follows from (19) and Lemma 4 that

E[Ψk
n] =E

[
k∏
i=1

1
2
(S2i−1 − S2i)2

]

=E

[
k∏
i=1

1
2
(T (n)

2i−1,2i − T (n)
2i,2i−1)

2

]

→E
[

k∏
i=1

φ2i−1,2i

]
= E[Φk ],

for any k ∈ Z+, and hence we conclude Ψn ⇒Φ, as n →∞. Finally, taking bn,pn such that the condi-
tions (12) hold, the diagonal weak convergence follows from dTV (Vpn ,n,Φpn ) → 0 and Φpn ⇒ Φ, as
n →∞.

6. Species present in all samples

Let p and n be the number of samples and the number of specimens for each sample, respectively.
We study the number Kn,p of species that are present in all these p samples. To find the limit of
Si(n) − Kn,p, we explore the behavior of

π
(p)
i
=

∑
i∈A�[p]

π̄A,

for large n. From independence of the Poisson r.v. π̄A, π(p)i = Po(θαp), where

αp =

p−2∑
�=0

(
p − 1
�

)
λ̃
(p)
�+1,

and in fact

α∞ := lim
p→∞

αp =

∞∑
p=2

λ̃
(p)
p−1.

The limit of π(p)i , namely πi , exists and is Po(θα∞)-distributed if and only if α∞ <∞. But determining
α∞ from the above sums does not seem easy. For fixed n and p, by the inclusion-exclusion principle,
we calculate instead

E[Kn,p] = E[S1(n)] −
p−1∑
�=1

(−1)�+1
(
p − 1
�

)
E[T�n,n],
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so that

θαp = lim
n→∞

p−1∑
�=1

(−1)�+1
(
p − 1
�

)
E[T�n,n]

=θ

p−1∑
�=1

(−1)�+1
(
p − 1
�

)
log

(
1 +

1
�

)
.

The next result, whose proof appears in the appendix, shows that αp →∞ as p →∞.

Proposition 3. For any p > 1,

αp = log log p + γ +
γ

log p
+

1
p log p

+O(log−2 p),

where γ = 0.57721 · · · is Euler’s constant.

Choose pn so that conditions (12) hold. It then follows from (21) that, for any i ∈ [pn]

dTV (Si(n) − Kn,pn ,Xn) → 0, n →∞, (27)

where Xn = Xn,pn ∼ Po(αpn ). Letting An,pn be the number of species who are absent in at least one
of the pn samples, (27) indicates that for large n, An,pn can be approximated by a Poisson random
variable with parameter

βn = βn,pn :=
npn−1∑
i=0

θ

θ + i
−
(
n−1∑
i=0

θ

θ + i
− αpn

)
∼θ{log(npn) − (log(n) − αpn )}

∼θ{log pn + log log pn + γ},

while Kn,pn can be approximated by a Poisson random variable of parameter θ(log(n) − αpn ), which,
roughly speaking, means the majority of the species in pn samples are present in all samples as n grows.
The next theorem follows immediately.

Theorem 3. Suppose n and pn satisfy in conditions (12). Then as n →∞,

Kn,pn − θ log n√
θ log n

=⇒N,

An,pn − θ log pn√
θ log pn

=⇒N,

Si(n) − Kn,pn − θ log log pn√
θ log log pn

=⇒N,

where N ∼ N(0,1).

Proof. It is well-known that (see [4])

S1(n) − θ log n√
θ log n

⇒N,n →∞.
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From (12), we must have pn = o(n), so that log log pn/
√

log n → 0, as n →∞. Therefore, from Cheby-
shev’s inequality we get

Xn√
θ log n

p
−−→ 0,

and hence (27) and Theorem 25.4 in [6] imply the first limit. For the second and third limits, note that
from (21),

dTV (An,pn ,Yn) → 0; n →∞, (28)

where Yn ∼ Po(βn). The second and third limits follow as a result of the total variation estimates (27)
and (28), and weak convergence of (Xn − θ log log pn)/

√
θ log log pn and (Yn − θ log pn)/

√
θ log pn to

N .

7. Fisher’s log-series distribution revisited

In this section we consider the behavior of the species newly discovered in a second sample of size n
following a first sample of size m. We focus in particular on the asymptotic regime described earlier, in
which

m →∞,n →∞,n/m → β ∈ (0,∞). (29)

We show inter alia that, asymptotically, the distribution of the number of specimens that belong to each
species not found among the first m specimens behaves like a sample from a sequence of independent
and identically distributed log-series random variables. This result is made precise in Theorem 4 below.

First we identify the distribution of the number of specimens m + 1, . . . ,m + n that belong to species
not found in specimens 1,2, . . . ,m. Defining Vmn to be the number of extra specimens who are of new
species, excluding the Tmn which are the type specimen for their species, we have, for 0 ≤ t ≤ n,0 ≤
v ≤ n − t,n = 1,2, . . .

P(Tmn = t,Vmn = v) =
θt

(θ +m)(n)
m(n−t−v)

(
n

t + v

) [
t + v

t

]
. (30)

This may be derived from [21, Eqn. (10)]; see also [26] for the connection to the three-parameter
generalized Stirling numbers. We provide a simple, direct combinatorial proof. Consider specimens
m + 1, . . . ,m + n arriving according to the sampling process. The probability of any given assignment
of the n specimens to species, with t new species, is θt/(m + θ)(n). There are

( n
t+v

)
different sets of

specimens who can be chosen to be of the new species, and
[t+v

t

]
ways these specimens can be formed

into the t identified species. Finally, there are m(n−t−v) ways in which the n − t − v specimens who are
of the species identified in the first m specimens can be allocated. Multiplying these together gives the
result.

It follows that

P(Tmn = t) = θt

(m + θ)(n)

n∑
j=t

(
n
j

)
m(n−j)

[
j
t

]
, t = 0,1, . . . ,n.

Letting Dmn = Tmn +Vmn denote the number of specimens m+1, . . . ,m+n who represent new species,
it follows from (30) that the distribution of Dmn is hypergeometric: for d = 0,1, . . . ,n,

P(Dmn = d) =
(
n
d

)
m(n−d) θ(d)
(m + θ)(n)
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=

(
θ + d − 1

d

) (
m + n − d − 1

n − d

) / (
m + n + θ − 1

n

)
(31)

The mean and variance of Dmn are given by

EDmn =
nθ

m + θ
, var Dmn =

θnm
(θ +m)2

θ +m + n
θ +m + 1

.

It follows from (30) that, for 0 ≤ t ≤ d ≤ n,

P(Tmn = t,Dmn = d) = θt

(θ +m)(n)
m(n−d)

(
n
d

) [
d
t

]
, (32)

and so

P(Tmn = t | Dmn = d) =
θt
[d
t

]
θ(d)

, t = 1,2, . . . ,d.

This shows that, given there are d specimens identified as species not found in the first m specimens,
the number of distinct new species has the same distribution as that arising from an ESF with sample
size d. This is a consequence of exchangeability, and in fact the distribution of the number of new
species represented once, twice, . . . has the ESF(θ) distribution with sample size d; cf. [21]. This setting
provides a natural example where, in the language of the introduction, the number of species (S) and
the number of specimens (N) are both random.

Under the limiting regime in (29), the asymptotic joint distribution of (Tmn,Dmn) is given by

Lemma 5. As m →∞,n →∞ and n/m → β,

(Tmn,Dmn) ⇒ (Tβ,Dβ)

where

P(Tβ = t,Dβ = d) =
θt
[d
t

]
d!

(
1

1 + β

) θ (
β

1 + β

) d
, 0 ≤ t ≤ d,d = 0,1, . . . (33)

The marginal distribution of Dβ is negative binomial, with

P(Dβ = d) =
θ(d)
d!

(
1

1 + β

) θ (
β

1 + β

) d
, d = 0,1, . . .

and the marginal distribution of Tβ is Poisson, with

P(Tβ = t) = e−λ
λt

t!
, t = 0,1, . . . , (34)

where

λ = θ log(1 + β).

Proof. Note first that for fixed d,

n!
(n − d)!

m(n−d)
(θ +m)(n)

=
Γ(n + 1)
Γ(n + 1 − d)

Γ(m + n − d)
Γ(m + n + θ)

Γ(m + θ)
Γ(m)
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∼ n1−(1−d) mθ (m + n)−d−θ

→
(

1
1 + β

) θ (
β

1 + β

) d
.

Substituting this into (32) shows that

P(Tmn = t,Dmn = d) → P(Tβ = t,Dβ = d), given in (33).

Summing (33) over t = 0, . . . ,d gives

P(Dβ = d) = 1
d!

(
1

1 + β

) θ (
β

1 + β

) d d∑
t=0

θt
[
d
t

]
=
θ(d)
d!

(
1

1 + β

) θ (
β

1 + β

) d
,

while summing (33) over d ≥ t gives

P(Tβ = t) =
(

1
1 + β

) θ
θt
∑
d≥t

1
d!

[
d
t

] (
β

1 + β

) d
=

(
1

1 + β

) θ
θt

logt (1 + β)
t!

= e−θ log(1+β) (θ log(1 + β))t
t!

, t = 0,1, . . . ,

completing the proof of the lemma.
The mean and variance of Dβ are given by

EDβ = βθ, varDβ = θβ(1 + β).

We have seen that asymptotically the number of new species Tβ identified in specimens m+1, . . . ,m+
n has a Poisson distribution with mean θ log(1 + β). Of course, each of these species has a number of
representatives, so that the total number of specimens belonging to new species is a random sum of the
form Dβ = X1 + · · · + XTβ . We ignore the trivial case in which Tβ = 0, as then Dβ = 0 as well. In this
section we establish

Theorem 4.

(a) Write Ai(m,n) for the number of specimens belonging to the ith new species discovered among
specimens m + 1, . . . ,m + n. Then for a1 ≥ 1,a2 ≥ 1, . . . ,at ≥ 1,a1 + · · · + at = d,1 ≤ t ≤ d ≤ n,

P(A1(m,n) = a1, . . . ,At (m,n) = at,Tmn = t,Dmn = d) =
θtn!

(θ +m)(n)
m(n−d)
(n − d)!

1
at (at + at−1) · · · (at + · · · + a1)

.

(b) As m,n →∞,n/m → β ∈ (0,∞),

P(A1(m,n) = a1, . . . ,At (m,n) = at,Tmn = t,Dmn = d)
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→ P(A1 = a1, . . . ,At = at,Tβ = t,Dβ = d)

= θt
(
β

1 + β

) d ( 1
1 + β

) θ 1
at (at + at−1) · · · (at + · · · + a1)

. (35)

(c) It follows that, for t ≥ 1,

P(A1 = a1, . . . ,At = at,Dβ = d | Tβ = t) =(
β

1 + β

) d t!
logt (1 + β)

1
at (at + at−1) · · · (at + · · · + a1)

(36)

(d) The distribution in (36) is the size-biassed law of t independent, identically distributed random
variables X1, . . . ,Xt , each having Fisher’s log-series distribution

P(Xi = l) = 1
log(1 + β)

(
β

1 + β

) l 1
l
, l = 1,2, . . . .

Proof. (a) We have

P(A1(m,n) = a1, . . . ,At (m,n) = at,Tmn = t,Dmn = d)

= P(A1(m,n) = a1, . . . ,At (m,n) = at,Tmn = t | Dmn = d)P(Dmn = d)

=

{
θt

θ(d)

d!
at (at + at−1) · · · (at + · · · + a1)

}
θ(d)
d!

m(n−d)
(n − d)!

n!
(θ +m)(n)

=
θtn!

(θ +m)(n)
m(n−d)
(n − d)!

1
at (at + at−1) · · · (at + · · · + a1)

,

the second equality coming from (31) and the distribution of the lengths of the ordered species counts
in the ESF, given in Arratia, Barbour and Tavaré [3, Section 5.4].

(b) This follows using the same steps as the proof of Lemma 5.
(c) Divide (35) by P(Tβ = t) given in (34) and simplify.
(d) Assume that Tβ = t ≥ 1, and fix a1 ≥ 1, . . . ,at ≥ 1 and let d = a1 + · · · + at . Let X1, . . . ,Xt be

i.i.d. log-series-distributed random variables. The probability that X1,X2, . . . ,Xt result in observations
{a1, . . . ,at } in some order is

t!
t∏

i=1

1
log(1 + β)

(
β

1 + β

) ai 1
ai
=

t!
logt (1 + β)

(
β

1 + β

) d 1
a1 · · · at

,

so we can write (36) in the form

P(A1 = a1, . . . ,At = at,Dβ = d | Tβ = t) =

t!
logt (1 + β)

(
β

1 + β

) d 1
a1a2 · · · at

{
a1a2 · · · at

at (at + at−1) · · · (at + · · · + a1)

}
. (37)

The term in {} on the right of (37) may be written as

a1

d
a2

d − a1

a3

(d − a1 − a2)
· · · at−1

d − a1 − · · · − at−2

at
at
,

the probability that a size-biassed sample results in choosing A1 = a1,A2 = a2, . . . ,At = at , as required.
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Appendix

In the next section we collect a number of technical results that are used in the proof of Theorem 1.

A.1. Results for proving Theorem 1

We collect together the ingredients we need to compute the covariance of S1(m) and S2(n). Consider
a species represented by a specimens in the first sample. The probability that no further specimens of
this species are found in specimens m + 1,m + 2, . . . ,m + n is

n−1∏
l=0

θ +m + l − a
θ +m + l

=
(θ +m − a)(n)
(θ +m)(n)

. (38)

Suppose we are given S1(m) = k, the first species detected having A1(m) = a1 specimens, the second
A2(m) = a2, the kth having Ak (m) = ak , where a1 ≥ 1, . . . ,ak ≥ 1 and a1 + · · · + ak =m. Let Mj denote
the number of specimens m + 1, . . . ,m + n of species j found in the first sample. Then

Kmn =

S1(m)∑
j=1

1l(Mj > 0) :=
S1(m)∑
j=1

ξ ′j,

where ξ ′j = 1l(Mj > 0). From (38) it follows that

P(ξ ′j = 0 | Aj (m) = a) =
(θ +m − a)(n)
(θ +m)(n)

Given S1(m) = k, it follows that

E(S1(m) − Kmn | S1(m) = k) = E &'(
k∑
j=1

(θ +m − Aj (m))(n)
(θ +m)(n)

| S1(m) = k)*+
= E

(
m∑
r=1

Cr (m)
(θ +m − r)(n)
(θ +m)(n)

| S1(m) = k

)
=

m∑
r=1

(θ +m − r)(n)
(θ +m)(n)

E(Cr (m) | S1(m) = k)

=

m∑
r=1

(θ +m − r)(n)
(θ +m)(n)

m!
[m−r
k−1

]
r (m − r)!

[m
k

]
=

m!
(θ +m)(n)

[m
k

] m∑
r=1

(θ +m − r)(n)
[m−r
k−1

]
r (m − r)! , (39)

the last-but-one line coming from [29, (2.30)], which shows that

E(Cj (m) | S(m) = k) = 1
j

m![m
k

] [m−j
k−1

]
(m − j)! , j = 1,2, . . . ,m − k + 1.
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We can use this to compute EKmn given in (8) in another way, obtaining

Lemma 6.

EKmn = θn
m−1∑
j=0

1
(θ + j)(θ + n + j) .

Proof. First, we show that

EKmn = ES1(m) − m!θ
θ(m+n)

m∑
r=1

1
r
θ(m+n−r)
(m − r)! (40)

To establish (40), we average (39) over the distribution of S1(m) to obtain

EKmn = ES1(m) −
m∑
k=1

θk
[m
k

]
θ(m)

m!
(θ +m)(n)

[m
k

] m∑
r=1

(θ +m − r)(n)
[m−r
k−1

]
r (m − r)!

= ES1(m) − m!
θ(m+n)

m∑
r=1

(θ +m − r)(n)
r (m − r)!

m∑
k=1

θk
[
m − r
k − 1

]
= ES1(m) − m!

θ(m+n)

m∑
r=1

(θ +m − r)(n)θ θ(m−r)
r (m − r)!

= ES1(m) − θm!
θ(m+n)

m∑
r=1

θ(m+n−r)
r (m − r)! .

This provides a simple formula for the sum on the right of (40). We saw in (8) that

EKmn =

n−1∑
r=0

θ

θ + r
−

n−1∑
r=0

θ

θ +m + r

Comparing this to (40), we see that

m!θ
θ(m+n)

m∑
r=1

1
r
θ(m+n−r)
(m − r)! =

m−1∑
r=0

θ

θ + r
−

n−1∑
r=0

θ

θ + r
+

n−1∑
r=0

θ

θ +m + r

=

n+m−1∑
r=n

θ

θ + r
, (41)

so that

EKmn =

m−1∑
r=0

θ

θ + r
−

n+m−1∑
r=n

θ

θ + r
,

which completes the proof.
Next we evaluate ES1(m)Kmn.
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Lemma 7.

ES1(m)Kmn = E(S1(m))2 −
n+m−1∑
r=n

θ

θ + r
− θm!
θ(m+n)

m∑
r=1

1
r
θ(m+n−r)
(m − r)!

m−r−1∑
i=0

θ

θ + i
. (42)

Proof. Multiplying the identity (39) and averaging over the distribution of S1(m), we have

E(S1(m)Kmn) = E(S1(m))2 −
m∑
k=1

θk
[m
k

]
θ(m)

k
m∑
r=1

(θ +m − r)(n)
(θ +m)(n)

m!
[m−r
k−1

]
r(m − r)!

[m
k

]
= E(S1(m))2 − m!

θ(m+n)

m∑
r=1

(θ +m − r)(n)
r(m − r)!

m∑
k=1

kθk
[
m − r
k − 1

]
. (43)

The inner sum is

θ

m−r+1∑
k=1

kθk−1
[
m − r
k − 1

]
= θ
∂

∂θ

m−r+1∑
k=1

θk
[
m − r
k − 1

]
= θ
∂

∂θ
(θ · θ(m−r))

= θ

{
θ
∂θ(m−r)
∂θ

+ θ(m−r)

}
= θ θ(m−r)

{
1 +

m−r−1∑
i=0

θ

θ + i

}
. (44)

Substituting (44) into (43), we get

E(S1(m)Kmn) = E(S1(m))2 − θm!
θ(m+n)

m∑
r=1

θ(m+n−r)
r(m − r)!

{
1 +

m−r−1∑
i=0

θ

θ + i

}
, (45)

which reduces to (42) using the identity (41), as was to be shown.

A.2. Proof of Lemma 1

Proof. First, we estimate the third term on the right of (9), by proving that

θm!
θ(m+n)

m∑
r=1

θ(m+n−r)
(m − r)!

1
r

m−1∑
i=m−r

θ

θ + i
=
θ2

n
+O(m−2). (46)

To see this, we rewrite the inner sum as

1
r

r∑
i=1

θ

θ +m − i
=

1
r

(
rθ

θ +m − 1
+

r∑
i=1

(
θ

θ +m − i
− θ

θ +m − 1

) )
=

θ

θ +m − 1
+

θ

r(θ +m − 1)

r∑
i=1

i − 1
θ +m − i

.
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Since

r(r − 1)
2(θ +m − 1) ≤

r∑
i=1

i − 1
θ +m − i

≤ r(r − 1)
2(θ +m − r) ,

we have

1
r

m−1∑
i=m−r

θ

θ + i
=

θ

θ +m − 1
+

θ(r − 1)
2(θ +m − 1)2

+ δr , (47)

where

0 ≤ δr ≤
θ(r − 1)

2(θ +m − 1)(θ +m − r) . (48)

Using the fact that for any b and integer k,
∑k

j=0 b(j)/ j! = (b+ 1)(k)/k!, it follows that

θm!
θ(m+n)

m∑
r=1

θ(m+n−r)
(m − r)! =

θm
θ + n

(49)

It then follows from (49) and (47) that

θm!
θ(m+n)

m∑
r=1

θ(m+n−r)
(m − r)!

1
r

m−1∑
i=m−r

θ

θ + i
=

m
θ + n

θ2

θ +m − 1
+
θm!
θ(m+n)

m∑
r=1

θ(m+n−r)
(m − r)!

(
θ(r − 1)

2(θ +m − 1)2
+ δr

)
.

Now, note that there exist b,b′ > 0 such that for any m ≥ 2,

θ2b′

2(θ +m + n − 1)(θ +m + n − 2) ≤
θm!
θ(m+n)

m∑
r=1

θ(m+n−r)
(m − r)!

θ(r − 1)
2(θ +m − 1)2

≤ θ2b
2(θ +m + n − 1)(θ +m + n − 2)

∞∑
r=1

(r − 1)
( m
θ +m + n − 1

) r−2

=
θ2b

2(θ +m + n − 1)(θ +m + n − 2)

(
θ +m + n − 1
θ + n − 1

) 2

,

where the first inequality follows from considering the first two terms of the sum, and the second
inequality follows from (m − r)/(θ +m + n − r − 1) ≤ m/(θ +m + n − 1), for r ≤ m. Finally, using (48)
and finding similar bounds for the term involving δr , we get

θm!
θ(m+n)

m∑
r=1

θ(m+n−r)
(m − r)!

1
r

m−1∑
i=m−r

θ

θ + i
=

m
θ + n

θ2

θ +m − 1
+O(m−2),

which completes the proof of (46).
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The next step is to estimate the second term on the right-hand side of (9). We show

−
m+n−1∑
r=n

θ

θ + r
= θ log

( n
m + n

)
+
θ(θ − 1/2)m

n(m + n) +O(m−2). (50)

To establish this, using the Euler-Maclaurin summation formula, we can write

−
m+n−1∑
r=n

θ

θ + r
= θ log

(
θ + n − 1
θ +m + n − 1

)
+

θm
2(θ + n − 1)(θ +m + n − 1) +O(m−2). (51)

On the other hand, from the Taylor expansion of log(1 + x)

log
(
θ + n − 1
θ +m + n − 1

)
− log

( n
m + n

)
= log

(
1 +
θ − 1

n

)
− log

(
1 +
θ − 1
m + n

)
=
θ − 1

n
− θ − 1

m + n
+O(m−2)

=
(θ − 1)m
n(m + n) +O(m−2).

(52)

Thus, (51) and (52) imply (50). The lemma now follows by combining (46) and (50).

A.3. Proof of Lemmas 3 and 4

To establish Lemma 3, we have

E[Ψk
n] =E

(∫
R+

x2νn(dx) −
(∫
R+

xνn(dx)
) 2
) k

=

k∑
i=0

(−1)i
(
k
i

)
E

[ (∫
R+

x2νn(dx)
) k−i (∫

R+

xνn(dx)
) 2i
]

=

k∑
i=0

(−1)i
(
k
i

)
E[

k−i∏
j=1

S2
j

i∏
j=1

Sk−i+2j−1Sk−i+2j]

=

k∑
i=0

(−1)i
(
k
i

)
1
2k
E[

k−i∏
j=1

(S2
2j−1 + S2

2j )
k∏

j=k−i+1

2S2j−1S2j ]

=E[
k∏
i=1

1
2
(S2i−1 − S2i)2].

To establish Lemma 4, note that for p ≥ 2k, it follows from weak exchangeability of (φi j )i�j∈N
that the number of terms in the expansion of E[(

∑
i�j φi j)k ] which are equal to E[

∏k
i=1 φ2i−1,2i] is
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p(p−1) · · · (p−2k +1) ∼ (p(p−1))k , for large p. Recalling that a Skellam distribution always has finite
moments of all orders, this implies that

E[Φk
p] → E[

k∏
i=1

φ2i−1,2i] ≤ max
i=1, · · · ,k

E[φk2i−1,2i] = E[φ
k
1,2] =

1
2k
E[ϕ2k

1,2] <∞,

as p → ∞, where the central inequality follows from Hölder’s inequality. Therefore, [6, Corollary
to Theorem 25.12] gives the moment equality in the statement of Lemma 4. In order to see that
the distribution of Φ is determined by its moments, it suffices to show there exists s > 0 such that
E[exp{sΦ}] < ∞ [6, Theorem 30.1]. Note that, from exchangeability and Hölder’s inequality, there
exists s > 0 such that for any p ≥ 2

E[esΦp ] ≤ max
i�j≤p

E[esφi j ] = E[esφ1,2 ] = E[e
s
2 ϕ

2
1,2] <∞.

Thus, from the continuous mapping theorem and Fatou’s lemma, we deduce

E[esΦ] ≤ lim inf
p
E[esφp ] ≤ E[e

s
2 ϕ

2
1,2] <∞.

A.4. Proofs of Propositions 2 and 3

Proof of Proposition 2. The expected value of Φ may be easily obtained from Lemma 4. Applying
Lemma 4 for the variance, note that limp→∞ varΦp = var (Φ) = Eφ12φ34 − (Eφ12)2 = cov(φ12, φ34).
Hence, it suffices to prove

cov(φi, j, φk ,l) = cov(φ1,2, φ3,4) = θ log(9/8).

From the symmetry of πi j

cov(φ1,2, φ3,4) = cov(π2
12, π

2
34) − 2cov(π2

12, π34π43) + cov(π12π21, π34π43). (53)

In order to compute the right hand side of (53), for 1 ≤ i � j ≤ 4, we can write from (22) and (23)

πi j = π
(4)
i + π

(4)
ir + π

(4)
is + π

(4)
irs,

where {r � s} = {1,2,3,4} \ {i, j}. To ease the notation, in the sequel, we drop the superscript (4) from
πA. From the symmetry and independence of πA, we obtain

cov(π2
12, π

2
34) = cov(π2

13 + 2π13(π1 + π14 + π134), π2
13 + 2π13(π3 + π23 + π123))

= var π2
13 + 4cov(π2

13, π13(π3 + π23 + π123))

+4cov(π13(π1 + π14 + π134), π13(π3 + π23 + π123))

= Eπ4
13 − (Eπ2

13)
2 + 4(Eπ3

13 − Eπ
2
13Eπ13)E[π3 + π23 + π123]

+4var (π13)(E[π1 + π14 + π134])2. (54)
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Similarly, one can derive

cov(π2
12, π34π43) = 2(Eπ3

13 − Eπ
2
13Eπ13)(Eπ14 + E[π4 + π24 + π124])

+4var (π13)E[π4 + π24 + π124](Eπ14 + E[π1 + π134])

+4var (π13)E[π1 + π134]Eπ14 + 2(Eπ2
13)

2 − 2(Eπ13)4 (55)

and

cov(π12π21, π34π43) = 12var (π13)(Eπ13)2 + 16var (π13)E[π2 + π234]Eπ14

+2var (π13π24) + 4var (π13)(E[π2 + π234])2. (56)

Substituting (54),(55) and (56) into (53) and simplifying, we get

cov(φ1,2, φ3,4) = Eπ13 = λ̃
(4)
2 = θ log(9/8).

Proof of Proposition 3. We write αp in the form

αp =

p−1∑
r=1

(−1)r
(
p − 1

r

)
log r −

p−1∑
r=1

(−1)r
(
p − 1

r

)
log(1 + r)

=: α1p − α2p

First, consider α2p . Note that(
p − 1

r

)
=

(p − 1)!
(p − 1 − r)!r!

=
1 + r

p
p!

(p − [r + 1])!(r + 1)!

=
1 + r

p

(
p

r + 1

)
,

so that

α2p =
1
p

p∑
r+1=2

(−1)r+1−1
(

p
r + 1

)
(r + 1) log(r + 1)

=
1
p

p∑
l=2

(−1)l−1
(
p
l

)
l log(l)

= −1
p

p∑
l=1

(−1)l
(
p
l

)
l log(l)

We can use [7], which shows that as p →∞
p∑

k=1

(−1)k
(
p
k

)
k log k =

1
log p

+O(1/(log p)2)

to see that

α2p = −
1

p log p
+O(1/(p log2 p)).
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For α1p we have the result from [15] that gives

α1p = log log(p − 1) + γ + γ

log(p − 1) +O(1/log2(p − 1)).

Putting it together, we get

αp = log log p + γ +
γ

log p
+

1
p log p

+O(log−2 p),

as claimed.
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