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Abstract

We study derangements of {1, 2, . . . , n} under the Ewens distribution with parameter θ . We give
basic properties of derangements, such as the moments and marginal distributions of the cycle counts,
the number of cycles, and asymptotic distributions for large n, and we construct, for any given n,
a {0, 1}-valued non-homogeneous Markov chain ⃗η(n) with the property that the counts of lengths of
pacings between the 1s have the same distribution as the cycle counts of the random derangement of
ize n. Unlike the Feller Coupling, this chain does not couple realizations for different values of n –
he chain must be rerun to get derangements of other sizes. To resolve this issue we construct another
0, 1}-valued Markov chain η whose law coincides with that of the Feller Coupling conditional on no
onsecutive 1s. The distribution of η, the so-called “Feller Coupling for random derangements", arises
s the weak limit as n → ∞ of the distributions of ⃗η(n). Consequently, the asymptotic behavior of finite
andom derangements may be studied via this coupling. The rate of convergence of ⃗η(n) to η is studied
ia an estimate of their total variation distance. We provide extensive comparisons of these methods,
nd show that the Markov chain methods generate derangements in time independent of θ for a given
and linear in the size of the derangement.
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1. Introduction

The Ewens Sampling Formula [10] arose in population genetics as the joint probability
istribution of the number of selectively neutral alleles C j (n) represented j times in a sample of
genes, for j = 1, 2, . . . , n. For non-negative integers c1, c2, . . . , cn satisfying

∑n
j=1 jc j = n,

we have

Pθ (C1(n) = c1, . . . , Cn(n) = cn) =
n!

θ(n)

n∏
j=1

(
θ

j

)c j 1
c j !

, (1)

or θ ∈ (0, ∞), θ(n) := θ (θ + 1) . . . (θ + n − 1) = Γ (n + θ )/Γ (θ ), n ≥ 1. We set
(0) = 1, θ(−k) = 0, k ∈ N. In its original formulation, θ is a parameter related to the rate at
hich novel alleles appear. In what follows we denote the law in (1) by ESFn(θ ); to simplify

he notation, we suppress the θ in Pθ in what follows, where there is no cause for confusion.
The ESF has been studied extensively, and it arises in many different settings in probability

nd statistics. [13, Chapter 41] provides an overview, [6] describes numerous applications
n combinatorics, and [9,20] provide many other examples. Of particular interest here is its
ppearance as the distribution of the cycle counts of a θ -biased permutation. Let π be a
ermutation of {1, 2, . . . , n} decomposed as a product of cycles. If π is chosen uniformly with
robability 1/n!, then Cauchy’s formula establishes that the cycle counts (C1(n), . . . , Cn(n))
ave the ESFn(1) law [12], and if a permutation π having k cycles is chosen with probability
roportional to θ k , then the cycle counts have the ESFn(θ ) law. In this case,

P(π ) =
θ k

θ(n)
, (2)

f the permutation π has k cycles. See [6, Chapters 1 and 2.5] for more detailed discussion and
history. We note that the number Kn of cycles has probability generating function given by

E(sKn ) =
(θs)(n)

θ(n)
, 0 ≤ s ≤ 1. (3)

The Feller Coupling was introduced in [5] as a way to generate the cycles in a growing
permutation one at a time, and it has proved very useful in the study of the asymptotics of
properties of the ESF; [7] illustrates some of these. To describe the Feller Coupling, define
independent Bernoulli random variables ξi satisfying

P(ξi = 1) =
θ

θ + i − 1
, P(ξi = 0) =

i − 1
θ + i − 1

, i ≥ 1.

he cycle counts for a permutation of size n are determined by the spacings between the 1s in
ealizations of ξn, ξn−1, . . . , ξ1 = 1, starting from a 1 placed at position n + 1. If we define

C j (n) = number of spacings of length j between the 1s in 1ξnξn−1 . . . ξ21, (4)

hen

(i) The law of (C1(n), . . . , Cn(n)) is ESFn(θ );
(ii) Z j = C j (∞) = the number of spacings of length j between the 1s in 1ξ2ξ3 . . . are

independent Poisson-distributed random variables having EZ j = θ/j .
(iii) To generate a particular permutation, we can use auxiliary randomization; cf. [6, page
95].
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Further details may be found in [5] and [6, Chapter 5].
In this paper we study the behavior of the cycle counts of derangements, permutations with

o fixed points, obtained from ESFn(θ ), conditional on having no cycles of length 1, via the
elation

Lθ (C̃2(n), . . . , C̃n(n)) = Lθ (C2(n), . . . , Cn(n) | C1(n) = 0), (5)

here C̃ j (n) denotes the number of cycles of length j in the derangement. After recording some
asic properties of random derangements in Section 2, our focus in Section 3 is to construct
Markov chain ⃗η(n)

= ( ⃗η(n)
n = 0, . . . , ⃗η

(n)
1 = 1) that allows us to generate the cycle counts via

the analog of (4):

C̃ j (n) = number of spacings of length j between the 1s in 1, ⃗η(n)
n , . . . , ⃗η

(n)
1 = 1.

We show that the law of the resulting cycle counts is indeed given by (5).
In contrast to the Feller coupling, which, as its name suggests, allows generation of the

ycles sequentially for each n from a single observation of 1 = ξ1, ξ2, ξ3 . . ., the chains ⃗η(n) have
o be rerun for each n to produce derangements of different sizes. The main results of this paper,
n Section 4, concern the asymptotic behavior of derangements, and provide a coupling that can
e used to generate derangements sequentially from a single run of a Markov chain. We analyze
he behavior of this chain in some detail. In Section 5 we discuss methods for simulating
erangements, and in Section 6 provide a number of examples of properties of derangements,
or some of which explicit results for finite n are known, for some of which asymptotics are
nown, and for some of which simulation seems to be the only recourse. Section 7 provides
ome numerical experiments, and the paper concludes with a brief discussion.

. Derangements

Students of probability often meet derangements in the context of (versions of) the so-called
at-check problem [11, Chapter IV]: n diners leave their hats at a restaurant before their meal

and hats are returned at random after the meal. What is the probability that no diner gets
back their own hat? Label the diners 1,2,. . . , n and construct a permutation π by setting π j

to be the label of the diner whose hat was returned to j . The question asks us to evaluate the
probability that π has no singleton cycles, and inclusion-exclusion is typically used to show
that the required probability is

P1(C1(n) = 0) =
Dn

n!
=

n∑
l=0

(−1)l 1
l!

, (6)

here Dn is the nth derangement number, the number of n-permutations with no fixed points.
he cycles of a derangement describe groups of diners who share hats among themselves, with
o diner getting his own. The distribution of the cycle counts (C̃2(n), . . . , C̃n(n)) is given by (5)
ith θ = 1. For arbitrary θ , the distribution (5) is determined by ESFn(θ ), and (6) is replaced
y

λn(θ ) := Pθ (C1(n) = 0) =
n!

θ(n)

n∑
j=0

(−1) j θ
j

j !
θ(n− j)

(n − j)!
, n = 2, 3, . . . (7)

ith λ0(θ ) = 1, λ1(θ ) = 0; cf. [13, eqn. (41.10)] We will see later that λn(θ ) can be represented
s a confluent hypergeometric function. We can also see that, for any given n, the mapping
1141



P.H. da Silva, A. Jamshidpey and S. Tavaré Stochastic Processes and their Applications 150 (2022) 1139–1164

c

t
a
i

T
w
(

2

f

2

d
2

w
L
e

θ ↦→ λn(θ ) is decreasing. To show this, for j ∈ N let

∆∗

j =

{
(a j , a j−1, . . . , a1) ∈ {0, 1}

j
: a j +

j−1∑
i=1

ai ai+1 = 0

}
,

onsisting of all (0, a j−1, . . . , a1) with no consecutive 1’s, and let

∆ j = {(a j , a j−1, . . . , a1) ∈ ∆∗

j : a1 = 1}.

Note that ∆1 = ∅. In particular, λn(θ ) = P((ξn, . . . , ξ1) ∈ ∆n). Now, let 0 < θ1 ≤ θ2, and for
he moment, denote by ξ θ1 = (ξ θ1

i )∞i=1, ξ θ2 = (ξ θ2
i )∞i=1 the Feller couplings with parameters θ1

nd θ2, respectively. Note that θ1
θ1+i ≤

θ2
θ2+i , for i ∈ N. The idea is to couple ξ

θ1
i and ξ

θ2
i for

∈ N such that

P(ξ θ1
i = 1, ξ

θ2
i = 1) =

θ1

θ1 + i
,

P(ξ θ1
i = 0, ξ

θ2
i = 1) =

θ2

θ2 + i
−

θ1

θ1 + i
,

P(ξ θ1
i = 0, ξ

θ2
i = 0) =

i
θ2 + i

.

hus, it is clear that ξ θ1 and ξ θ2 are Feller couplings with parameters θ1 and θ2 such that
henever ξ

θ2
i = 0, we have ξ

θ1
i = 0, but not vice versa, that is if (ξ θ2

n , . . . , ξ
θ2
1 ) ∈ ∆n , then

ξ
θ1
n , . . . , ξ

θ1
1 ) ∈ ∆n . Hence λn(θ2) ≤ λn(θ1), from the definition of λn .

.1. Properties of derangements

In the following sections we collect some results for derangements obtainable directly
rom (5).

.1.1. Factorial moments of the cycle counts
The falling factorial moments are straightforward to compute. For x ∈ R and r ∈ Z+,

efine x [r ]
= x(x − 1) . . . (x − r + 1), r ≥ 1 with x [0]

= 1. For r2, r3, . . . , rb ≥ 0 with
r2 + · · · + brb = m ≤ n,

λn(θ )E(C̃ [r2]
2 · · · C̃ [rb]

b ) =

∑
′ c[r2]

2 · · · c[rb]
b

n!

θ(n)

n∏
j=2

(
θ

j

)c j 1
c j !

,

here the sum in
∑

′ is over 2c2 + · · · + ncn = n, c2 ≥ r2, . . . , cb ≥ rb, cb+1, . . . , cn ≥ 0.
etting c′

j = c j − r j , for j ≤ b, and noting that 1/c′

j ! = c
[r j ]
j /c j !, the r.h.s. of the last equality

quals to

n!

θ(n)

b∏
j=2

(
θ

j

)r j θ(n−m)

(n − m)!

∑
′′

(n − m)!
θ(n−m)

b∏
j=2

(
θ

j

)c′
j 1

c′

j !

n∏
j=b+1

(
θ

j

)c j 1
c j !

=
n!

θ(n)

b∏
j=2

(
θ

j

)r j θ(n−m)

(n − m)!
λn−m(θ ),

since the last sum is just the probability that a random permutation of (n − m) objects is a
derangement; the sum

∑
′′ is over c′ , . . . , c′ , c , . . . , c ≥ 0 satisfying 2c′

+ · · · + bc′
+
2 b b+1 n 2 b
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(b + 1)cb+1 + · · · + ncn = n − m. Hence

E(C̃ [r2]
2 · · · C̃ [rb]

b ) = 1(m ≤ n)
n!

λn(θ )θ(n)

λn−m(θ )θ(n−m)

(n − m)!

b∏
j=2

(
θ

j

)r j

. (8)

n particular, for j = 2, . . . , n,

EC̃ j (n) =
n!

λn(θ )θ(n)

λn− j (θ )θ(n− j)

(n − j)!
θ

j
. (9)

ote that P(C̃n−1(n) = 0) = 1, and indeed EC̃n−1(n) = 0.

.1.2. Distribution of the cycle counts
To compute the distribution of the cycle counts, suppose that X is a discrete random variable

aking values in {0, 1, 2, . . . , n}, with distribution pl = P(X = l), 0 ≤ l ≤ n. Define

u j = EX [ j]
=

n∑
l= j

l [ j] pl , j = 1, 2, . . . , n,

here u0 = 1. Inverting this relationship gives

pr =
1
r !

n−r∑
l=0

(−1)l 1
l!

ur+l =
1
r !

n∑
i=r

(−1)i−r 1
(i − r )!

ui .

Using the result in (8), choose j ∈ {2, . . . , n}, i ≤ ⌊n/j⌋ and set

ui = EC̃ j (n)[i]
=

n!

λn(θ )θ(n)

λn− j i (θ )θ(n− j i)

(n − j i)!

(
θ

j

)i

.

hen for 0 ≤ r ≤ ⌊n/j⌋,

P(C̃ j (n) = r ) =

(
θ

j

)r 1
r !

n!

λn(θ )θ(n)

×

⌊n/j⌋∑
i=r

(−1)i−r 1
(i − r )!

λn− j i (θ )θ(n− j i)

(n − j i)!

(
θ

j

)i−r

.

he special case j = n, r = 1 is used in Section 6.1.

emark 1. Many of these results are well known in the case of random derangements, for
hich θ = 1. For example,

P1(C̃2(n) = 0) =
n!

Dn

⌊n/2⌋∑
i=0

(−1)i 1
i !

(
1
2

)i D(n−2i)

(n − 2i)!
.

he integers

a(n) = Dn P1(C̃2(n) = 0), n = 1, 2, 3, . . .

ive the number of derangements of n objects that have all cycles of length at least 3; computing
he first few values gives

a(2) = 0, a(3) = 2, a(4) = 6, a(5) = 24, a(6) = 160, a(7) = 1140, a(8) = 8988, . . . .

t is readily checked that this is (the start of) sequence A038205 in the Online Encyclopedia
f Integer Sequences [18], where other formulae are provided.
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2.1.3. The number of cycles
The distribution of the number of cycles, K̃n , may be found from the fact that the number

D(n, k) of derangements of size n having k cycles is

D(n, k) =

k∑
l=0

(−1)l
(

n
l

)[
n − l
k − l

]
,

where
[n

k

]
is the unsigned Stirling number of the first kind. Letting |π | denote the number of

cycles in π , it follows that

P(K̃n = k) =
1

λn(θ )

∑
π :|π |=k

π a derangement

P(π )

=
1

λn(θ )

∑
π :|π |=k

π a derangement

θ k

θ(n)
(from (2))

=
θ k D(n, k)
λn(θ )θ(n)

, k = 1, 2, . . . , ⌊n/2⌋.

The probability generating function of K̃n satisfies

Es K̃n =
λn(θs)
λn(θ )

EsKn , (10)

hich follows from the fact that

Es K̃n =

n∑
k=1

Pθ (K̃n = k)sk
=

n∑
k=1

(θs)k D(n, k)
λn(θ )θ(n)

=
1

λn(θ )θ(n)

n∑
k=1

k∑
ℓ=0

(−1)ℓ
(

n
ℓ

)[
n − ℓ

k − ℓ

]
(θs)k

=
1

λn(θ )θ(n)

n∑
ℓ=0

(−1)ℓ
(

n
ℓ

)
(θs)ℓ

n∑
k=ℓ

[
n − ℓ

k − ℓ

]
(θs)k−ℓ

=
1

λn(θ )θ(n)

n∑
ℓ=0

(−1)ℓ
(

n
ℓ

)
(θs)ℓ(θs)(n−ℓ)

=
1

λn(θ )θ(n)
(θs)(n)λn(θs), from (7)

=
λn(θs)
λn(θ )

EsKn , from (3).

he mean of K̃n is given by

EK̃n = E(C̃2(n) + · · · + C̃n(n)) =
1

λn(θ )
n!

θ(n)

n∑
j=2

λn− j (θ )
θ(n− j)

(n − j)!
θ

j
.

t follows from (10) that

EKn − EK̃n = −
θλ′

n(θ )
λn(θ )

> 0,

ince λ (θ ) is a decreasing function of θ for fixed n, in agreement with one’s intuition.
n
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2.1.4. Properties derived from the conditioning relation
ESFn(θ ) may be represented as the law of independent Poisson random variables Z1, Z2,

. . , Zn with

EZ j = x jθ/j for any x > 0, (11)

onditioned on Tn := Z1 + 2Z2 + · · · + nZn = n. This is known as the Conditioning Relation,
nd is exploited in the context of combinatorial structures in [6]. The same relationship holds
or derangements too: defining T1n = 2Z2 + · · · + nZn , we have

L(C̃2(n), . . . , C̃n(n)) = L(Z2, . . . , Zn | T1n = n). (12)

o see this, note that for c2 ≥ 0, . . . , cn ≥ 0 satisfying 2c2 + · · · + ncn = n,

P(Z2 = c2, . . . , Zn = cn | T1n = n) =

=
P(Z2 = c2, . . . , Zn = cn, T1n = n)P(Z1 = 0) /P(Tn = n)

P(T1n = n)P(Z1 = 0) /P(Tn = n)

=
P(Z1 = 0, Z2 = c2, . . . , Zn = cn | Tn = n)

P(Z1 = 0 | Tn = n)

=
P(C1(n) = 0, C2(n) = c2, . . . , Cn(n) = cn)

P(C1(n) = 0)
,

he last equality following from the conditioning relation for (C1(n), . . . , Cn(n)) and C1(n).
The relationship in (12) means that asymptotic results can be read off from the general theory

n [6]. For example, the C̃ j (n) are asymptotically independent Poisson random variables with
ean θ/j , which follows from (8) as well. We note for later use the consequence that

λn(θ ) := Pθ (C1(n) = 0) → Pθ (Z1 = 0) = e−θ , n → ∞. (13)

The largest cycles, when scaled by n, have asymptotically the Poisson–Dirichlet law with
arameter θ . Total variation estimates for the Poisson result also follow from [6] and [5], and
ethods akin to those in [7] may be used to derive central limit results, for example. We will

ot pursue this aspect further in this paper.

. A Markov chain for derangements of a given size

In the spirit of the Feller Coupling, we seek to construct a sequence of random variables
⃗η(n)

= ( ⃗η(n)
n , ⃗η

(n)
n−1, . . . , ⃗η

(n)
1 = 1) with the property that the law of the counts of spacings

etween the 1s in 1 ⃗η(n)
n ⃗η

(n)
n−1 . . . ⃗η

(n)
2 1 is precisely that of (5). As might be anticipated, ⃗η(n) is

o longer a sequence of independent random variables, but rather a Markov chain. We identify
he structure of this chain, and provide some applications of its use.

.1. Constructing the Markov chain

Define R1 = {(1)} and for j ≥ 2, R j = {0, 1}
j−1

× {1}, including all (a1, . . . , a j ) ∈ {0, 1}
j

ith a j = 1. For 1 ≤ i ≤ n and r = (rn, . . . , r1) ∈ Rn , let Ni (r ) be the number of i-spacings
in 1, rn, . . . , r1, i.e., the number of sub-patterns 10i−11 in it, and define ρ(a1, . . . , an) = {r ∈

n : N1(r ) = a1, . . . , Nn(r ) = an}. We seek to construct a random sequence of 0s and 1s,
⃗η(n)

= ( ⃗η(n)
n , . . . , ⃗η

(n)
2 , ⃗η

(n)
1 = 1) such that if C̃i (n) := Ni ( ⃗η(n)), i = 2, . . . , n,

P(C̃ (n) = c , . . . , C̃ (n) = c ) = P(C (n) = 0, . . . , C (n) = c |C (n) = 0). (14)
2 2 n n 1 n n 1
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Simplifying the r.h.s. of (14), we have

P(C̃ j (n) = c j , 2 ≤ j ≤ n) = (λn(θ ))−1
∑

(rn ,rn−1,...,r1)
∈ρ(0,c2,...,cn )

P(ξn = rn, . . . , ξ1 = r1).

ote that if r = (rn, rn−1, . . . , r1) ∈ ρ(0, c2, . . . , cn), then rn = r2 = 0. This suggests defining
⃗η(n)
n , ⃗η

(n)
n−1, . . . , ⃗η

(n)
2 , ⃗η

(n)
1 = 1 with law

P( ⃗η(n)
n = rn, . . . , ⃗η

(n)
1 = r1) = P(ξn = rn, . . . , ξ1 = r1 | (ξn, . . . , ξ1) ∈ ∆n)

=

{
(λn(θ ))−1 P(ξn = rn, . . . , ξ1 = r1), if r ∈ ∆n

0, otherwise.

By construction, (C̃2(n), . . . , C̃n(n)) has the law of (C1(n), . . . , Cn(n)) conditioned on
1(n) = 0. Since ξ j are independent random variables, given ⃗η

(n)
i , the vectors

( ⃗η(n)
n , ⃗η

(n)
n−1, . . . , ⃗η

(n)
i+1) and ( ⃗η

(n)
i−1, . . . , ⃗η

(n)
1 ) are independent and hence ⃗η(n)

n , ⃗η
(n)
n−1, . . . , ⃗η

(n)
1 is a

arkov chain, starting from ⃗η
(n)
n+1 = 1.

More explicitly, for 3 ≤ i ≤ n − 1, (rn, rn−1, . . . , ri+2, x) ∈ ∆∗

n−i and y ∈ {0, 1}, let

τi+1(x, y) := P( ⃗η
(n)
i = y | ⃗η(n)

n = rn, . . . , ⃗η
(n)
i+2 = ri+2, ⃗η

(n)
i+1 = x)

=
P( ⃗η(n)

n = rn, . . . , ⃗η
(n)
i+2 = ri+2, ⃗η

(n)
i+1 = x, ⃗η

(n)
i = y)

P( ⃗η(n)
n = rn, . . . , ⃗η

(n)
i+2 = ri+2, ⃗η

(n)
i+1 = x)

We compute this for x, y ∈ {0, 1}. Starting with the case x = y = 0, and for 3 ≤ i ≤ n − 1,
e write τi+1(0, 0) = A/B, where

A = (λn(θ ))−1P(ξn = rn, . . . , ξi+2 = ri+2, ξi+1 = 0)P((ξi , . . . , ξ1) ∈ ∆i )

and

B = (λn(θ ))−1P(ξn = rn, . . . , ξi+2 = ri+2, ξi+1 = 0)
×{P((ξi , . . . , ξ1) ∈ ∆i ) + P(ξi = 1)P((ξi−1, . . . , ξ1) ∈ ∆i−1)}

so that

τi+1(0, 0) =
λi (θ )

λi (θ ) +
θ

θ+i−1λi−1(θ )
.

n the other hand,

P( ⃗η
(n)
i = 0 | ⃗η

(n)
i+1 = 0) = P( ⃗η

(n)
i+1 = 0, ⃗η

(n)
i = 0)/P( ⃗η

(n)
i+1 = 0) = C/D,

where

C = (λn(θ ))−1 P((ξn, . . . , ξi+2) ∈ ∆∗

n−i−1, ξi+1 = 0)P((ξi , . . . , ξ1) ∈ ∆i )

nd

D = (λn(θ ))−1 P((ξn, . . . , ξi+2) ∈ ∆∗

n−i−1, ξi+1 = 0)
×{P((ξi , . . . , ξ1) ∈ ∆i ) + P(ξi = 1)P((ξi−1, . . . , ξ1) ∈ ∆i−1)}

ence

P( ⃗η
(n)
i = 0 | ⃗η

(n)
i+1 = 0) =

λi (θ )
θ

.

λi (θ ) +

θ+i−1λi−1(θ )
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Similarly we can deduce that

τi+1(0, 1) =

θλi−1(θ )
θ+i−1

λi (θ ) +
θλi−1(θ )
θ+i−1

= P( ⃗η
(n)
i = 1 | ⃗η

(n)
i+1 = 0),

τi+1(1, 1) = 0 = P( ⃗η
(n)
i = 1 | ⃗η

(n)
i+1 = 1) and τi+1(1, 0) = 1 = P( ⃗η

(n)
i = 0| ⃗η

(n)
i+1 = 1).

We summarize the discussion as follows.

Theorem 1. (i) For each n ≥ 3, the sequence of random variables ⃗η
(n)
n+1 = 1, ⃗η(n)

n , . . . , ⃗η
(n)
2 ,

⃗η
(n)
1 = 1 is a non-homogeneous Markov chain with transition matrices

⃗P
(n)
r :=

(
P( ⃗η(n)

r = 0 | ⃗η
(n)
r+1 = 0) P( ⃗η(n)

r = 1 | ⃗η
(n)
r+1 = 0)

P( ⃗η(n)
r = 0 | ⃗η

(n)
r+1 = 1) P( ⃗η(n)

r = 1 | ⃗η
(n)
r+1 = 1)

)
given by

⃗P
(n)
r =

⎛⎜⎜⎝
(θ + r − 1)λr (θ )

(θ + r − 1)λr (θ ) + θλr−1(θ )
θλr−1(θ )

(θ + r − 1)λr (θ ) + θλr−1(θ )

1 0

⎞⎟⎟⎠ , (15)

or 2 < r < n,

⃗P
(n)
n = ⃗P

(n)
2 =

(
1 0
1 0

)
, ⃗P

(n)
1 =

(
0 1
0 1

)
.

(ii) The counts C̃ j (n), j = 2, . . . , n of the j-spacings between consecutive 1s in the sequence
⃗η(n)
n . . . ⃗η

(n)
2 1 have joint distribution given by

L(C̃2(n), . . . , C̃n(n)) = L(C2(n), . . . , Cn(n) | C1(n) = 0). (16)

. Coupling derangements

The chain ⃗η(n) does not generate derangements of size n + 1 from one of size n, a property
atisfied by the Feller Coupling. Rather, the chain produces a derangement for a given value
f n, and needs to be re-run to generate one of size n + 1. This constraint raises a natural
uestion: Is there an infinite Markov chain that somehow serves as the limit of the ⃗η(n) process
nd can generate approximately θ -biased random derangements of relatively large size while,
n the other hand, it can use the derangements of size n to generate one of size n + 1. The
nsuing discussion explores this further and explains how the reversed Markov chain for ⃗η(n),
enoted by η(n), provides an appropriate framework to achieve this goal.

.1. The finite reversed Markov chain

Having an outcome of ⃗η(n), it is impossible to construct a θ -biased random derangement
⃗η(n+1) with ⃗η(n+1)[n, . . . , 1] = ⃗η(n)[n, . . . , 1]. (The [. . . ] notation is used to describe the indices
f a vector.) In fact there is an important constraint in the Markov chain ⃗η(n) – it always starts
t ⃗η(n)

n = 0, a property that should also hold for ⃗η(n+1). It turns out that the resulting sequence
that uses a realization of the random derangement of size n to construct a derangement of size
n + 1 should be the trivial 0-sequence. A simple trick can be used to overcome this problem.
Define the probability measure ν on {0, 1} by ν (0) = P (η(n+1)

= 0) and slightly modify
n n θ n⃗
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the Markov chain ⃗η(n+1) to start at time n with the initial distribution νn , rather than starting
at time n + 1 with the initial distribution δ0. Indeed, this Markov chain can be considered the
same as the original one, since we always have ⃗η

(n+1)
n+1 = 0. It is clear that

Pθ ( ⃗η
(n)
i = 0| ⃗η

(n)
i+1 = 0) = Pθ ( ⃗η

(m)
i = 0| ⃗η

(m)
i+1 = 0),

for i + 1 < m ≤ n, while νm ̸= νn for m ̸= n. This will not cause a problem since in fact
νn ⇒ δ0 as n tends to infinity, which ensures the existence of a probability distribution on
{0, 1}

N as the limit of L( ⃗η(n)).
To describe the limit distribution, we make use of the Markov chains η(n)

= (η(n)
i )n

i=1, n ∈ N,
hich are the reversed chains for ⃗η(n), whose laws are the same as those of ( ⃗η

(n)
i )n

i=1, and whose
ransition probabilities are given via the time reversal transformations

P(η(n)
i+1 = y|η

(n)
i = x) =

P( ⃗η
(n)
i+1 = y)P( ⃗η

(n)
i = x | ⃗η

(n)
i+1 = y)

P( ⃗η
(n)
i = x)

.

We emphasize that η
(n)
i ∼ ⃗η

(n)
i , for 1 ≤ i ≤ n, but we require different notation η(n)

= (η(n)
i )n

i=1
nd ⃗η(n)

= ( ⃗η
(n)
n−i+1)n

i=1 to describe two different Markov chains, which are reversals of
each other. Note that the chains η(n) and ⃗η(n) are not reversible, and hence have different
laws; (ξi )n

i=1 ≁ (ξn−i+1)n
i=1. A limit distribution arises as the law of a {0, 1}-valued infinite

dimensional Markov chain. To identify η(n), let

λi,n(θ ) =Pθ (ξ [i . . . n] ∈ ∆∗

n−i+1 \ ∆n−i+1)

=Pθ (ξi = ξn = 0,

n−1∑
j=i+1

ξ jξ j+1 = 0),

here the last term is the probability that ξi = ξn = 0 and there are no 11 patterns (which
ounts the number of 1-cycles) in ξ [i, . . . , n]. Similarly to the calculations given in Section 3,
ne can see that η

(n)
1 = 1, η(n)

n = 0, and the transition probabilities of η(n) satisfy

Pθ (η(n)
i+1 = 0|η

(n)
i = 0) =

λi+1,n(θ )
λi+1,n(θ ) +

θ
i+θ

λi+2,n(θ )
,

for i ≤ n − 2. This is summarized in the following theorem.

Theorem 2. (i) For each n ≥ 3, the sequence of random variables η
(n)
1 = 1, η

(n)
2 , . . . , η(n)

n = 0
is a non-homogeneous Markov chain with transition matrices

P (n)
s :=

(
P(η(n)

s+1 = 0 | η(n)
s = 0) P(η(n)

s+1 = 1 | η(n)
s = 0)

P(η(n)
s+1 = 0 | η(n)

s = 1) P(η(n)
s+1 = 1 | η(n)

s = 1)

)
given by

P (n)
s =

⎛⎜⎜⎝
(s + θ )λs+1,n(θ )

(s + θ )λs+1,n(θ ) + θλs+2,n(θ )
θλs+2,n(θ )

(s + θ )λs+1,n(θ ) + θλs+2,n(θ )

1 0

⎞⎟⎟⎠ ,

for s = 1, . . . , n − 2, and

P (n)
n−1 =

(
1 0

)
.
1 0
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(ii) Pθ (η(n)
i = xi , i = 1, . . . , n) = Pθ ( ⃗η

(n)
i = xi , i = 1, . . . , n).

(iii) The counts C̃ j (n), j = 2, . . . , n of the j-spacings between consecutive 1s in the sequence
1 = 1, . . . , ηn = 0, 1 have joint distribution given by (16).

For i ≤ n, we define

λ̃n,i (θ ) = Pθ (ξ [n, . . . , i] ∈ ∆n−i+1).

hich implies λ̃n,n(θ ) = λ1,n(θ ) = 0 and λ̃n,1(θ ) = λ2,n(θ ) = λn(θ ), for any n ∈ N.

heorem 3. For 2 ≤ i < n,

λ̃n,i (θ ) =
θ

i − 1 + θ
λi+1,n(θ )

=
(n − 1)!θ(i−1)

(i − 1)!θ(n)

⌊
n−i−1

2 ⌋∑
k=0

∑
i0,...,ik

θ k+1

i0 . . . ik
,

(17)

here the inner sum is over all i0 = 1, i + 1 ≤ i1 < · · · < ik ≤ n − 2 and i j−1 − i j > 1.
oreover, for any i ≤ n

Pθ ( ⃗η
(n)
i = 1) =

λ̃n,i (θ )λi−1(θ )
λn(θ )

.

roof. The first equality is straightforward, and follows from

Pθ (ξ [n, . . . , i] ∈ ∆n−i+1) = Pθ (ξ [i + 1, . . . , n] ∈ ∆∗

n−i \ ∆n−i )Pθ (ξi = 1).

To see the second equality in (17), let A j (n) denote the length of the j th cycle in the Feller
coupling in the order of formation of its cycles. Note that for specific a1, . . . , ak > 1 with

1 +· · ·+ak = n − i +1, the probability that a θ -biased random permutation sampled from the
Feller coupling process has k cycles from time n to time i s.t. ξi = 1 and (A1(n), . . . , Ak(n)) =

a1, . . . , ak), and has k ′ cycles from time i − 1 to time 1 is given by

θ kθ(i−1)

θ(n)
.

θ k′

θ(i−1)
.

On the other hand, the number of such permutations is given by(
n − 1
a1 − 1

)
(a1 − 1)!

k∏
ℓ=2

(
n − 1 − a1 − · · · − al−1

aℓ − 1

)
(aℓ − 1)!

[
i − 1

k ′

]
=

(n − 1)!
(i − 1)!(n − a1)(n − a1 − a2) · · · (n − a1 − · · · − ak−1)

[
i − 1

k ′

]
ince

i−1∑
k′=1

[
i − 1

k ′

]
θ k′

= θ(i−1),

umming over all possible k, k ′, and (a1, . . . , ak) with a j > 1 for j = 1, . . . , k and

1 + · · · + ak = n − i + 1 and letting i j = n − a1 − · · · − a j gives the second equality.
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For the last equality, we have

Pθ ( ⃗η
(n)
i = 1) =

Pθ (ξi = 1, ξ [n, . . . , 1] ∈ ∆n)
Pθ (ξ [n, . . . , 1] ∈ ∆n)

=
P(ξ [n, . . . , i] ∈ ∆n−i+1)Pθ (ξ [i − 1, . . . , 1] ∈ ∆i−1)

Pθ (ξ [n, . . . , 1] ∈ ∆n)

=
λ̃n,i (θ )λi−1(θ )

λn(θ )
,

completing the proof. □

.2. The limit distribution for random derangements

To study the limit distribution of the laws of η(n), we need a better understanding of the
ehavior of the Feller coupling conditioned on C1(n) = 0, for large n. The following facts
rom [5] play an important role. First, we recall that C j (n) can be represented as

C j (n) =

n− j∑
i=1

ξi (1 − ξi+1) · · · (1 − ξi+ j−1)ξi+ j + ξn− j+1(1 − ξn− j+2) · · · (1 − ξn),

or j ≤ n, C j (n) = 0 for j > n, and that

(C1(n), C2(n), . . .) ⇒ (Z1, Z2, . . .),

s n → ∞, where for j ∈ N,

Z j =

∞∑
i=1

ξi (1 − ξi+1) · · · (1 − ξi+ j−1)ξi+ j

re independent Poisson random variables with means EZ j = θ/j . In particular,

C1(n) ⇒ Z1 =

∞∑
i=1

ξiξi+1,

o that

lim
n→∞

λn(θ ) = lim
n→∞

Pθ

(
n∑

i=1

ξiξi+1 = 0

)
= Pθ

(
∞∑

i=1

ξiξi+1 = 0

)
= e−θ .

The preceding discussion suggests that the prime candidate for the limit distribution is the
aw of the Feller Coupling ξ1 = 1, ξ2, ξ3, . . . conditioned on Z1 =

∑
∞

i=1 ξiξi+1 = 0.
The following theorem is the first step to see this more explicitly. Let ∆∞ be the set of

r1, r2, . . .) ∈ {0, 1}
N s.t. r1 = 0 and there is no i ∈ N for which ri = ri+1 = 1, that is

∆∞ =

{
(r1, r2, . . .) ∈ {0, 1}

N
: r1 +

∞∑
i=1

riri+1 = 0

}
.

Let λi,∞(θ ) = Pθ ((ξi , ξi+1, . . .) ∈ ∆∞).

Theorem 4. For any i ∈ N and θ > 0,

lim
n→∞

λi,n(θ ) = λi,∞(θ ).
1150



P.H. da Silva, A. Jamshidpey and S. Tavaré Stochastic Processes and their Applications 150 (2022) 1139–1164

s

H

c

t
s

p

w

a

T
n

Proof. Since
{∑

∞

i=n ξiξi+1 = 0
}

⊂
{∑

∞

i=n+1 ξiξi+1 = 0
}
, for n ∈ N we have

lim
n→∞

Pθ

(
∞∑

i=n

ξiξi+1 = 0

)
= Pθ

(
∞⋃

n=1

∞⋂
i=n

{ξiξi+1 = 0}

)
= 1 − Pθ (ξn = 1, ξn+1 = 1 i.o.) = 1,

ince
∞∑

n=0

Pθ (ξn = 1, ξn+1 = 1) =

∞∑
i=0

θ2

(i + θ )(i + 1 + θ )
= θ < ∞.

ence

lim
n→∞

λn,∞(θ ) = lim
n→∞

Pθ (ξn = 0)Pθ (
∞∑

i=n+1

ξiξi+1 = 0) = 1.

Therefore

lim
n→∞

λi,n(θ ) = lim
n→∞

{λi,n(θ )λn+1,∞(θ ) +
θ

θ + n
λi,n(θ )λn+2,∞(θ )}

= lim
n→∞

λi,∞(θ ) = λi,∞(θ ),

ompleting the proof. □

It is now more clear why the infinite Feller coupling conditional on Z1 = 0 is the limit of
he finite Markov chains η(n). To be more explicit, let η = (ηi )i≥1 be a random {0, 1}-valued
equence with law

Pθ (ηn = rn; n ∈ N) = Pθ (ξn = rn; n ∈ N | Z1 = 0)

=

{
eθ Pθ (ξn = rn; n ∈ N), if (r1, r2, . . .) ∈ ∆∞

0, otherwise. (18)

It is straightforward to see that η = (η1, η2, . . .) is indeed a Markov chain, and its transition
robabilities are given by

Pθ (ηi+1 = 0|ηi = 0) =
Pθ (ηi+1 = 0, ηi = 0)

Pθ (ηi = 0)

=
Pθ (ξ [i, . . . , 1] ∈ ∆i )λi+1,∞(θ )

Pθ (ξ [i, . . . , 1] ∈ ∆i )(λi+1,∞(θ ) +
θ

i+θ
λi+2,∞(θ ))

=
λi+1,∞(θ )

λi+1,∞(θ ) +
θ

i+θ
λi+2,∞(θ )

,

hich means that, for any i ∈ N

Pθ (η(n)
i+1 = 0|η

(n)
i = 0) → Pθ (ηi+1 = 0|ηi = 0),

s n → ∞. The following theorem follows from the above discussion.

heorem 5. The sequence of random variables η1 = 1, η2, η3, . . ., defined by (18), is a
on-homogeneous Markov chain with transition matrices

Ps :=

(
P(ηs+1 = 0 | ηs = 0) P(ηs+1 = 1 | ηs = 0)

)

P(ηs+1 = 0 | ηs = 1) P(ηs+1 = 1 | ηs = 1)
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given by

Ps =

⎛⎜⎜⎝
(s + θ )λs+1,∞(θ )

(s + θ )λs+1,∞(θ ) + θλs+2,∞(θ )
θλs+2,∞(θ )

(s + θ )λs+1,∞(θ ) + θλs+2,∞(θ )

1 0

⎞⎟⎟⎠ ,

for s ∈ N.

Note that P (n)
s → Ps as n → ∞. To see more, let µn be the measure on {0, 1}

n that
etermines the law of η(n) and let µ be the measure on {0, 1}

N indicating the law of η. Let
n : {0, 1}

N
→ {0, 1}

n be the projection map on the first n coordinates of an infinite {0, 1}-
sequence, so that πn(a1, a2, . . .) = (a1, . . . , an) and denote the image of µ under πn by µπ−1

n .
Then

Proposition 1. dT V (µn, µπ−1
n ) → 0, as n → ∞.

Proof. Since λn,∞ → 1 and Pθ (ξn = 1) → 0 as n → ∞, we have

lim
n→∞

dT V (µn, µπ−1
n ) = lim

n→∞

1
2

∑
r∈{0,1}n

|Pθ (η(n)
= r ) − Pθ (η[1, . . . , n] = r )|

= lim
n→∞

1
2

∑
r∈∆n

Pθ (ξ [n, . . . , 1] = r )
⏐⏐⏐⏐ 1
e−θ

−
1

λn(θ )

⏐⏐⏐⏐
= lim

n→∞

1
2
|λn(θ )eθ

− 1| = 0. □

After some preliminaries in the next section, we provide an estimate for the total variation
istance in Section 4.4.

.3. Finding the values of λi,∞

By conditioning on whether ξi+1 = 0 or 1, we can derive the recursion

λi,∞(θ ) = Pθ (ξi = 0)(λi+1,∞(θ ) + Pθ (ξi+1 = 1)λi+2,∞(θ ))

=
i − 1

i − 1 + θ

(
λi+1,∞(θ ) +

θ

i + θ
λi+2,∞(θ )

)
.

(19)

It seems difficult to solve (19) with the initial conditions for λ2,∞ = e−θ and λ3,∞. Instead
e use a Poisson representation of the Feller Coupling provided in [3,8] and due originally to
vante Janson (see [3] for historical notes on this).

Consider a Poisson point process N on (0, 1) with intensity function x ↦→ θ/x for x ∈ (0, 1),
and denote its points by (τi )i≥1, where 1 > τ1 > τ2 > · · · > 0. Let κ(x) be a geometric random
variable with probability of success x , and mark each point τi by a random finite sequence
Ri = 0κ(τi )−11. [8] shows that the law of the infinite random {0, 1}-valued sequence 1R1 R2 · · ·

is the same as that of the Feller coupling ξ1 = 1, ξ2, ξ3, . . . with parameter θ . In fact, the
number of Poisson points in (0, x) marked by 1 (representing cycles of size 1), denoted by
Ñ1(x), is a Poisson random variable with parameter

EÑ1(x) =

∫ x θ
y dy = θx .
0 y
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Note that, for i ≥ 2, ξi +
∑

∞

j=i ξ jξ j+1 counts the number of “1 1” in 1, ξi , ξi+1, . . ..
Before stating the next result, in which the values of λi,∞ are given, recall that the confluent

ypergeometric function with parameters a, b, z ∈ C is defined by

M(a, b, z) =

∞∑
j=0

a( j)

b( j)

z j

j !
;

f. [1, Chapter 13]. If Re b > Re a > 0, its integral representation is given by

M(a, b, z) =
Γ (b)

Γ (a)Γ (b − a)

∫ 1

0
ezuua−1(1 − u)b−a−1du.

Theorem 6. For i ≥ 2,

λi,∞(θ ) = M(1 + θ, θ + i − 1, −θ ).

Proof. First note that

λ2,∞(θ ) = lim
n→∞

λ2,n(θ ) = lim
n→∞

λn(θ ) = M(1 + θ, 1 + θ, −θ ).

or i ≥ 3, the probability that N has no points in (x, 1) is

exp
(

−

∫ 1

x

θ

y
dy
)

= xθ .

Therefore the probability density that there is no point of N in (x, 1), τ1 = x marked by 0i−31
i.e. R1 = 0i−31), and Ñ1(x) = 0 is given by

xθ θ

x
x(1 − x)i−3e−θx .

hus

Pθ

(
ξ j = 0, 1 < j < i − 1, ξi−1 = 1, ξi +

∞∑
k=i

ξkξk+1 = 0

)

=

∫ 1

0
θxθ (1 − x)i−3e−θx dx . (20)

ut the left hand side of (20) is⎛⎝i−3∏
j=1

j
θ + j

⎞⎠ θ

θ + i − 2
λi,∞(θ ) =

(i − 3)!θ2

θ(i−1)
λi,∞(θ ),

hich implies that

λi,∞ =
θ(i−1)

θ (i − 3)!

∫ 1

0
xθ (1 − x)i−3e−θx dx = M(θ + 1, θ + i − 1, −θ ). □

emark. Note that the recursion in (19) is precisely one of the standard recursions for the
onfluent hypergeometric function; see [1, 13.4.2, p. 506].
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4.4. Estimating the total variation distance

Theorem 7. As n → ∞,

dT V (µn, µπ−1
n ) =

θ

n
−

θ (3θ − 1)
n2 + O(n−3).

To prove this, we need the following lemmas.

emma 1. For n ≥ 2,

dT V (µn, µπ−1
n ) =

1
2

⏐⏐⏐⏐eθλn(θ )λn,∞(θ )
(

1 +
θ

n − 1

)
− 1

⏐⏐⏐⏐+ θeθλn−1(θ )λn+1,∞(θ )
2(n − 1 + θ )

.

Proof.

dT V (µn,µπ−1
n ) =

1
2

∑
r∈{0,1}n

|P(η[1, . . . , n] = r ) − P(η(n)
= r )|

=
1
2

∑
r∈∆n

⏐⏐⏐⏐⏐⏐eθP(ξ [n, . . . , 1] = r,
∞∑

j=n+1

ξ jξ j+1 = 0) −
P(ξ [n, . . . , 1] = r )

λn(θ )

⏐⏐⏐⏐⏐⏐
+

1
2

∑
r ′∈∆n−1

eθP(ξ [n − 1, . . . , 1] = r ′, ξn = 1, ξn+1 +

∞∑
j=n+1

ξ jξ j+1 = 0)

=
1
2

⏐⏐⏐⏐eθλn,∞(θ )
P(ξn = 0)

−
1

λn(θ )

⏐⏐⏐⏐ ∑
r∈∆n

P(ξ [n, . . . , 1] = r )

+
1
2

eθλn+1,∞(θ )P(ξn = 1)
∑

r ′∈∆n−1

P(ξ [n − 1, . . . , 1] = r ′)

=
1
2

⏐⏐⏐⏐eθλn(θ )λn,∞(θ )(n − 1 + θ )
n − 1

− 1
⏐⏐⏐⏐+ θeθλn−1(θ )λn+1,∞(θ )

2(n − 1 + θ )
,

s required. □

The following lemma estimates λn(θ ) and λn,∞(θ ).

emma 2. As n → ∞,

λn(θ ) = e−θ

(
1 +

θ (θ − 1)
n

+
θ (θ − 1)(θ − 2 −

√
2)(θ − 2 +

√
2)

2n2

)
+ O(n−3).

λn,∞(θ ) = 1 −
θ (θ + 1)

n
+

θ (θ + 1)(θ + 2 +
√

6)(θ + 2 −
√

6)
2n2 + O(n−3).

(21)

roof. Noting that a[r ]
= (−1)r (−a)(r ), we can write

λn(θ ) =

n∑
j=0

(−1) j θ
j

j !
n[ j]

(n + θ − 1)[ j]

=

n∑ (−θ ) j

j !
(−n)( j)

(1 − n − θ )( j)
j=0
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= M(−n, −n − θ + 1, −θ )

= e−θ M(1 − θ, −n − θ + 1, θ), (22)

he last equality derived from Kummer’s transformation. Making use of Kummer’s series
xpansion for the last line of (22), we can represent λn(θ ) by the infinite sum

λn(θ ) = e−θ

∞∑
j=0

θ j

j !
(1 − θ )( j)

(−n − θ + 1)( j)
= e−θ

∞∑
j=0

(
θ − 1

j

)
θ j

(n + θ − 1)[ j] ,

or θ /∈ N. For θ ∈ N, since (θ − 1)(θ ) = 0, we notice that all but the first θ terms vanish in
he above representation. Let v j (n, θ) = (n + θ − 1)[ j]

− n j , for j ∈ Z+. Then

1
(n + θ − 1)[ j] =

1

n j
(

1 +
v j (n,θ )

n j

) =
1
n j

∞∑
i=0

(−1)i
(

v j (n, θ)
n j

)i

,

hich implies

λn(θ ) = e−θ

∞∑
j=0

(
θ − 1

j

)
θ j

n j

∞∑
i=0

(−1)i
(

v j (n, θ)
n j

)i

. (23)

Similarly, letting ṽ j (n, θ) = (n + θ − 1)( j) − n j , for j ∈ Z+, we have

1
(n + θ − 1)( j)

=
1
n j

∞∑
i=0

(−1)i
(

ṽ j (n, θ)
n j

)i

,

nd therefore

λn,∞(θ ) = M(θ + 1, n + θ − 1, −θ )

=

∞∑
j=0

(−θ ) j (θ + 1)( j)

j !(n + θ − 1)( j)

=

∞∑
j=0

(−θ ) j (θ + 1)( j)

n j j !

∞∑
i=0

(−1)i
(

ṽ j (n, θ)
n j

)i

.

(24)

o find the contribution of n−k in λn(θ ) and λn,∞(θ ), it suffices to find its contribution in the
rst k + 1 terms in the right of (23) and (24), so that evaluating v0(n, θ) = ṽ0(n, θ) = 0,

1(n, θ) = ṽ1(n, θ) = θ − 1, for k = 1, 2, we obtain

λn(θ ) = e−θ
+

e−θ

n

(
θ − 1

1

)
θ

(
1 −

θ − 1
n

+ O(n−2)
)

+
e−θ

n2

(
θ − 1

2

)
θ2 (1 − O(n−1)

)
+ O(n−3)

= e−θ
+

θ (θ − 1)e−θ

n
+

e−θθ (θ − 1)
(

θ2

2 − 2θ + 1
)

n2 + O(n−3),
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and similarly,

λn,∞(θ ) = 1 +
−θ (θ + 1)

n

(
1 −

θ − 1
n

+ O(n−2)
)

+
(−θ )2(θ + 1)(θ + 2)

2!n2

(
1 − O(n−1)

)
+ O(n−3)

= 1 −
θ (θ + 1)

n
+

θ (θ + 1)
(

θ2

2 + 2θ − 1
)

n2 + O(n−3). □

emark 2. For θ = 1, the second and third terms in the right hand side of (21), for λn(θ ),
anish. In fact, we can see much more in this case, using the power series of the exponential
unction. More precisely,

λn(1) =

n∑
j=0

(−1) j

j !
= e−1

−

∞∑
j=n+1

(−1) j

j !
= e−1

+ O
(

1
(n + 1)!

)
.

We are now ready to prove Theorem 7.

Proof of Theorem 7. It follows from Lemma 2 that, as n → ∞,(
1 +

θ

n − 1

)
eθλn(θ )λn,∞(θ ) =

(
1 +

θ

n
+

θ

n2 + O(n−3)
)

×

(
1 +

θ (θ − 1)
n

+
θ (θ − 1)(θ2/2 − 2θ + 1)

n2 + O(n−3)
)

×

(
1 −

θ (θ + 1)
n

+
θ (θ + 1)(θ2/2 + 2θ − 1)

n2 + O(n−3)
)

= 1 −
θ

n
+

θ (3θ − 1)
n2 + O(n−3),

θeθλn−1(θ )λn+1,∞(θ )
n − 1 + θ

=θ

(
1 +

θ (θ − 1)
n

+ O(n−2)
)

×

(
1 −

θ (θ + 1)
n

+ O(n−2)
)(

1
n

+
1 − θ

n2 + O(n−3)
)

=
θ

n
−

θ (3θ − 1)
n2 + O(n−3).

herefore, from Lemma 1, as n → ∞,

dT V (µn, µπ−1
n ) =

1
2

(
θ

n
−

θ (3θ − 1)
n2

)
+

1
2

(
θ

n
−

θ (3θ − 1)
n2

)
+ O(n−3)

=
θ

n
−

θ (3θ − 1)
n2 + O(n−3),

s was to be shown. □

In the following sections, we exploit the limiting process to produce coupled simulations of
erangements.
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5. Simulating derangements

While we have a good understanding of the asymptotics of the distribution of cycle counts,
or small values of n simulation may be a useful approach to answer more detailed questions
here explicit results are hard to find. Simulating derangements for the uniform case (θ = 1)

s a classical problem, and there have been many suggested methods, including [2,14] and [16]
hich use a modification of the Fisher–Yates algorithm for random permutations and a rejection

tep, and improved in [17]. [15] exploits two different techniques, one based on random
estricted transpositions and one on sequential importance sampling. We are not aware of
xplicit methods for the case of arbitrary θ , but the Markov chain approach provides an efficient
ay to do this.
In this section we discuss methods for simulating derangements for particular values of n

and θ , and a coupling approach that can be used for a collection of n-values. Here we focus
on the relative speed of the methods. In the following section, we compare the methods for
computing properties of derangements via a collection of numerical experiments.

5.1. Rejection methods

There are at least two such methods. For example, we can use the Feller Coupling to simulate
(C1(n), C2(n), . . . , Cn(n)) from ESFn(θ ) and set

(C̃2(n), . . . , C̃n(n)) = (C2(n), . . . , Cn(n)) if C1(n) = 0,

roducing an observation from (5). The acceptance probability is just λn(θ ), which is ≈ e−θ ,
o this strategy is slow if θ is large. Indicative results are shown in Table 1.

The Conditioning Relation (12) provides another approach: the naive implementation takes
x = 1 in (11), and simulates independent Poisson random variables Z2, . . . , Zn with EZ j =

/j and accepts (Z2, . . . , Zn) as an observation of the counts (C̃2(n), . . . , C̃n(n)) if T1n =

Z2 +· · ·+nZn = n. The acceptance probability is P(T1n = n); for large n, [6, Theorem 4.13]
hows that nP(T1n = n) ∼ e−γ θ/Γ (θ ), where γ is Euler’s constant. We can do much better by
dapting the argument in [4, Section 5] by choosing x = x(n) more carefully: choose c as the
olution of the equation θ (1 − e−c) = c, and set x = e−c/n . We then have

nP(T1n = n) ∼ e−γ θeu(c)/Γ (θ ), n → ∞, (25)

here u(c) = −c + θ
∫ 1

0 v−1(1 − e−cv)dv. The quantity eu(c) is the asymptotic factor by which
he acceptance rate increases compared to the naive rate when x = 1, c = 0. For example,
hen θ = 5, this is 379.6, indicating a dramatic speed up over the naive version. Indicative

esults are shown in Table 2.
Thus one of these methods is slow for large n, the other for large θ . In contrast, the Markov

hain approaches provide methods that are acceptable for any values of n and θ .

.2. Simulating derangements via the Markov chain ⃗η(n)

It is straightforward to use the transition mechanism from Theorem 1 to generate a derange-
ent from the spacings between the 1s in the Markovian sequence ⃗η(n)

= (1, ⃗ηn, ⃗ηn−1, . . . ⃗η2, 1).
ndicative results are shown in Table 3. As anticipated, the run time of the Markov chain method
s essentially constant as a function of θ for a fixed value of n, a property obviously not shared
y the rejection methods. Comparing timings of these methods (which were implemented in
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Table 1
Rejection method. Derangements of size n, estimates based on 10,000 accepted runs.

θ = 0.5 θ = 1.0 θ = 5.0

n Time (s) Accept rate Theory (7) Time (s) Accept rate Theory (7) Time (s) Accept rate Theory (7)

10 0.38 0.590 0.591 0.62 0.372 0.368 9.58 0.024 0.023
50 1.40 0.607 0.604 2.17 0.372 0.368 86.19 0.010 0.010
250 6.89 0.600 0.606 10.71 0.367 0.368 532.1 0.007 0.007

Table 2
Conditioning relation method. Derangements of size n, estimates based on 10,000 accepted runs. Values of c:

1.256 (θ = 0.5), 0 (θ = 1), 4.965 (θ = 5).

θ = 0.5 θ = 1.0 θ = 5.0

n Time (s) Accept rate Theory (25) Time (s) Accept rate Theory (25) Time (s) Accept rate Theory (25)

10 2.46 0.059 0.061 2.59 0.055 0.056 4.41 0.032 0.088
50 62.84 0.012 0.012 68.04 0.011 0.011 51.23 0.015 0.018
250 1730 0.002 0.002 1884 0.002 0.002 1223 0.003 0.004

R) depends of course on the details of the code and the computer they are run on (in this case,
a 3 GHz iMac Pro with 10 cores, 128 Gb RAM, running OS 10.15.7 on a single core) so
they should only be viewed as relative. It is interesting to note that the acceptance rate of the
Conditioning Relation method is not monotone in θ , because of the nature of the conditioning
vent.

.3. Coupling derangements via the infinite Markov chain η

One application of the infinite chain η is the coupled generation of derangements with
symptotically the correct distribution, as guaranteed by Proposition 1 and Theorem 7. For
single value of n, we generate the η chain for n − 1 steps, and then set ηn = 0, ηn+1 = 1

this is the analog of the artificial boundary at n + 1 for the Feller Coupling). The ordered
cycle lengths of the derangement are then read of as the spacings between the 1s in the
sequence 1, 0, ηn−1, . . . , η1 = 1. For coupled simulations of derangements of length n1 <

n2 < · · · < nk , generate an η chain of length at least nk , and for each j , use the subsequence
1, 0, ηn j −1, . . . , η1 = 1 as above to construct the cycle counts for the derangement of size n j .
The efficacy of this strategy is discussed in the next section.

5.4. Relative timing information

Here we report the time behavior of the algorithms, beginning with the rejection and
conditioning relation methods illustrated in Tables 1 and 2.

Implementation of the chain ⃗η(n) in Theorem 1 requires computation of the quantities λn(θ )
n (7). The explicit formula there is subject to computational errors for large values of n and θ

nd might require high precision arithmetic (as available in the R package Rmpfr for example).
An alternative, numerically stable approach is via recursion. A conditioning argument shows
that for n ≥ 3,

λn(θ ) =
n − 1

(
θ

λn−2(θ ) + λn−1(θ )
)

, (26)

θ + n − 1 θ + n − 2
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Table 3
Markov chain method using chains in Theorems 1 and 5. Derangements of size n, estimates based on 10,000
ccepted runs. The runs for the infinite chain are separate for each n.

Run time (s)

θ = 0.5 θ = 1.0 θ = 5.0

n Finite MC Infinite MC Finite MC Infinite MC Finite MC Infinite MC

10 0.273 0.231 0.213 0.233 0.210 0.224
50 0.918 0.972 0.947 0.919 0.875 0.879
250 4.358 4.445 4.369 4.558 4.249 4.262

Table 4
Finite and approximate infinite Markov chain methods. The total run time for
derangements of sizes 50, 100, 150, 200, 250 and 300. Estimates based on 10,000
accepted runs. The finite Markov chain method was run separately for each n and
the total time for that is the sum of the run times for different n. The runs were
coupled for the approximate infinite Markov chain method, i.e., the simulation
is for 299 steps and “01” is added to steps 49, 99, 149, 199, 249, 299.

Total run time (s)

θ = 0.5 θ = 1.0 θ = 5.0

Finite MC 19.190 18.787 17.955
Infinite MC 6.263 6.124 6.332

with initial conditions λ1(θ ) = 0, λ2(θ ) = 1/(θ + 1). The results below used this method.
Implementation of the infinite chain method in Theorem 5 requires evaluation of the

quantities λi,∞ in Theorem 6. The recursion (19) can be unstable due to the alternating signs,
and instead we employed the kummerM function from the R package fAsianOptions.

For an example of coupled simulation from the infinite chain, we computed the run time
for derangements of size n = 50, 100, 150, 200, 250 and 300, first by summing the times for
each derangement size separately, and comparing this to the time for a coupled run based on
300 steps. For a coupled run of length 300, we computed the derangement of size m ≤ 300
by using η1, . . . , ηm−1, appending 0 1 to the end and computing the cycle sizes by calculating
the spacings between the 1s. The comparison is given in Table 4.

We conclude this section by reporting the behavior of the exact simulation via ⃗η(n) and the
nfinite chain η for simulating very large derangements. Implementing the finite chain using
7), (26) or even the kummerM function, although in principle exact, proved difficult due to the

time taken to compute λn(θ ). On the other hand the Feller Coupling via the η chain was feasible
ia the integral representation for λn,∞(θ ). Table 5 supports the view that the Feller Coupling
s the only feasible method for generating the cycle counts of very large derangements.

. Probabilistic examples

In this section we study some further properties of the cycle structure of derangements. In
ome of the examples explicit formulae are available for a given value of n; such examples
rovide a way to test the adequacy of the approximate coupling method of simulation. For some
uantities explicit results are not known; for these, simulation is the only option. In some cases,
symptotic behavior is known as well. Numerical results for the following examples are given
n Section 7.
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Table 5
Markov chain method using chain in Theorem 5. Derangements of size n,
estimates based on 10,000 accepted runs. The runs are separate for each n.

Run time (s)

n θ = 0.5 θ = 1.0 θ = 5.0

10,000 212.7 207.1 215.5
20,000 426.6 410.4 390.2
30,000 597.8 608.3 616.2
40,000 801.1 809.8 807.8

6.1. The probability of a single cycle

Since

P(C̃n(n) = 1) = P(Cn(n) = 1 | C1(n) = 0) = P(Cn(n) = 1)/P(C1(n) = 0),

e obtain

P(C̃n(n) = 1) =
n!

θ(n)

θ

n
1

λn(θ )
, (27)

hich also follows from (9) because P(C̃n(n) = 1) = EC̃n(n).
The asymptotics of (27) follow readily, using the fact that n−αΓ (n + α)/Γ (n) → 1 as

→ ∞ to obtain

P(C̃n(n) = 1) ∼ Γ (θ + 1)
( e

n

)θ

, n → ∞. (28)

.2. The probability that all cycle lengths are distinct

This is a variant of the problem discussed in [4], for which there is no easy analytical answer.
he difference between the number of cycles and the number of distinct cycle lengths is

D̃n =

n∑
j=2

(C̃ j (n) − 1)+,

here (x)+ = max(0, x). We want P(D̃n = 0), which can be estimated by simulation.
In [4, Eq. (10)] it is shown that for a permutation having the ESFn(θ ) distribution, the

symptotic probability that it has no repeated cycle lengths is e−γ θ/Γ (θ + 1). A modification
f that argument shows that for derangements,

D̃n ⇒ D̃ =

∑
j≥2

(Z j − 1)+,

here the Z j are the familiar independent Poisson random variables with EZ j = θ/j , so that

P(D̃n = 0) → P(Z j ≤ 1, j ≥ 2) =

∏
j≥2

e−θ/j (1 + θ/j)

=
1

e−θ (1 + θ )
e−γ θ

Γ (θ + 1)
=

e−θ (γ−1)

Γ (θ + 2)
. (29)
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6.3. The ordered cycle lengths

The ⃗η(n) process generates the lengths of cycles in an n-derangement in order, starting
rom the artificial boundary at ⃗ηn+1 = 1. Denoting the length of the first cycle by A1(n),
e have

P(A1(n) > l) = P( ⃗ηn+1 = 1, ⃗ηn = 0, . . . , ⃗ηn−l+1 = 0)

=

n−1∏
r=n−l+1

(θ + r − 1)λr (θ )
(θ + r − 1)λr (θ ) + θλr−1(θ )

.

When n is large, we have for x ∈ (0, 1),

logP(A1(n) > ⌊nx⌋) = −

n−1∑
r=n−⌊nx⌋+1

log
(

1 +
θ

θ + r − 1
λr−1(θ )
λr (θ )

)

∼ −θ

n−1∑
r=⌊n(1−x)⌋

1
θ + r − 1

λr−1(θ )
λr (θ )

∼ −θ

∫ 1

1−x
u−1du = θ log(1 − x),

sing (13). It follows that n−1 A1(n) has asymptotically a Beta distribution with density
(1 − x)θ−1, 0 < x < 1. The joint law of the ordered spacings may be used in a similar
ay to show directly that n−1(A1(n), A2(n), . . .) has asymptotically the GEM distribution with
arameter θ ; see [6, Chapter 5.4].

. Numerical experiments

In this section we assess the behavior of the exact simulation method in Theorem 1, and
he coupled estimates from the approximate method in Theorem 5.1

.1. Results from exact simulation using ⃗η(n)

In this section we use simulation using the finite chain ⃗η(n) to estimate quantities discussed
n Section 6. See Tables 6–8.
able 6
robability that a derangement has a single cycle. Estimates are based on 100,000 runs.

θ = 0.5 θ = 1.0 θ = 5.0

n Sim Exact (27) Asymp (28) Sim Exact (27) Asymp (28) Sim Exact (27) Asymp (28)

10 0.476 0.480 0.462 0.270 0.272 0.272 0.021 0.021 0.178
50 0.211 0.208 0.207 0.054 0.054 0.054 5 × 10−5 3.29 × 10−5 5.70 × 10−5

250 0.092 0.093 0.092 0.011 0.011 0.011 0.0 1.62 × 10−8 1.82 × 10−8

1 R code for the examples may be obtained from the authors.
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Table 7
P(D̃n = 0), the probability that a derangement has distinct cycle lengths. Estimates are based on 100,000 runs. The
ast row comes from (29).

n θ = 0.5 θ = 1.0 θ = 5.0

10 0.885 0.774 0.357
50 0.920 0.776 0.091
250 0.927 0.765 0.028
∞ 0.929 0.763 0.012

Table 8
Estimates of the probability on that the largest cycle length is the first, the mean length EA1(n) of the first cycle,
nd the mean length EL1(n) of the longest cycle. Estimates are based on 100,000 runs.

θ = 0.5 θ = 1.0 θ = 5.0

n on EA1(n) EL1(n) on EA1(n) EL1(n) on EA1(n) EL1(n)

10 0.847 7.64 8.16 0.766 6.45 7.17 0.604 3.91 4.79
50 0.775 34.33 38.43 0.652 26.51 32.15 0.356 10.78 16.99
250 0.761 167.8 190.2 0.630 126.70 157.00 0.311 44.27 76.58

Table 9
Probability that a derangement has a single cycle. Estimates are based on 100,000 runs. Compare to results in
Table 6.

θ = 0.5 θ = 1.0 θ = 5.0

n Sim Exact (27) Sim Exact (27) Sim Exact (27)

10 0.479 0.480 0.277 0.272 0.024 0.021
50 0.206 0.208 0.056 0.054 2 × 10−5 3.29 × 10−5

250 0.091 0.093 0.011 0.011 0.0 1.62 × 10−8

7.2. Results from approximate simulation using η

In all of the Tables 9–11 we use the approximate infinite Markov chain method where
uns are coupled. The values are very close to the corresponding ones for the finite Markov
hain method illustrated in Section 7.1. The coupling generates the η chain for 250 steps, and
ses the run to generate derangements of length 10, 50, 250 by appending 0 1 to the strings
erminating at steps 9, 49, 249 respectively. Given the shorter run time of the coupled method,
nd the suggestion from the simulations in this section that the results from the approximate
oupling method are sufficiently accurate, we recommend using this approach when many runs
f different lengths are required.

. Discussion

The seminal paper of Shepp and Lloyd [19] – listed by Larry as one of his “top 10” – studied
he behavior of random permutations (the case θ = 1 in our notation), focusing primarily on
he r th largest and smallest cycle lengths. Their model is the first appearance of a conditioning
elation, which gives

ESFn(1) = L(Z1, Z2, . . . |

∑
i Z i = n)
i≥1
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Table 10
P(D̃n = 0), the probability that a derangement has distinct cycle lengths.
Estimates are based on 100,000 runs. The last row comes from (29). Compare
to results in Table 7.

n θ = 0.5 θ = 1.0 θ = 5.0

10 0.883 0.779 0.377
50 0.921 0.776 0.092
250 0.927 0.766 0.028
∞ 0.929 0.763 0.012

Table 11
Estimates of the probability on that the largest cycle length is the first, the mean length EA1(n) of the first cycle,
nd the mean length EL1(n) of the longest cycle. Estimates are based on 100,000 runs. Compare to results of
able 8.

θ = 0.5 θ = 1.0 θ = 5.0

n on EA1(n) EL1(n) on EA1(n) EL1(n) on EA1(n) EL1(n)

10 0.851 7.66 8.16 0.773 6.49 7.18 0.653 4.09 4.85
50 0.774 34.29 38.43 0.651 26.55 32.17 0.356 10.79 16.97
250 0.761 167.8 189.9 0.629 126.27 156.80 0.311 44.34 76.71

where the Z i are independent Poisson random variables with EZ i = zi/ i , for z ∈ (0, 1). The
random variable

∑
i≥1 i Z i is geometric with mean z/(1 − z). Their paper exploits a related

Poisson process construction to uncover the asymptotics of the largest and smallest cycles.
Our work also focuses on permutations, albeit derangements. Our motivation was un-

derstanding how the Feller Coupling might be adapted to simulate derangements under the
Ewens Sampling Formula with arbitrary parameter θ . Section 3 provides a {0, 1}-valued non-
homogeneous Markov chain ⃗η(n)

= ⃗ηn, ⃗ηn−1, . . . , ⃗η1 = 1 for which the spacings between the
1s in 1 ⃗ηn ⃗ηn−1 · · · ⃗η1 produce the ordered cycle sizes of a θ -biased derangement of length n.

or the uniform case θ = 1, the method described in [17] may also be described as a Markov
hain (although it was not in that paper), and its transition matrix reduces to that in (15) when
= 1; it is interesting to note that its construction differs dramatically from ours.
The chains ⃗η(n) do not generate derangements of size n + 1 from one of size n, a property

atisfied by the Feller Coupling (see the discussion after (5)). Rather, the chain produces a
erangement for a given value of n, and needs to be re-run to generate one of size n + 1.
n order to rectify this, we provide in Section 4 a construction of a single Markov process
= (η1, η2, . . .) which provides a way (see Sections 5 and 6) to generate coupled derangements

rom a single run of the chain. Proposition 1 and Theorem 7 indicate that these derangements
ave asymptotically the correct distribution.

While we have focused here on the behavior of counts of cycle lengths, the chains ⃗η(n) and η

ay be used to construct the ordered permutation itself by a simple auxiliary randomization [6,
hapter 5]. We discuss various methods for generating derangements, and compare them by
valuating a number of functionals of the cycle counts. The coupled derangements produced
y η are shown to behave well, even for small derangement sizes.
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