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The magical Ewens sampling formula

Simon Tavaré

This article is dedicated to Warren Ewens, friend, mentor and collaborator,
in honour of the 50th anniversary of his celebrated sampling formula.

Abstract

Starting with n cooked spaghetti strands, tie randomly chosen ends together to produce a
collection of spaghetti hoops. What is the expected number of hoops? What can be said about the
distribution of the number of hoops of length 1, 2, ...? What is the behaviour of the longest hoops
when n is large? What is the probability that all the hoops have different lengths? Questions like
these appear in many guises in many areas of mathematics, one connection being their relation to
the Ewens sampling formula (ESF). I will describe a number of related examples, including prime
factorisation, random mappings and random permutations, illustrating the central role played
by the ESF. I will also discuss methods for simulating decomposable combinatorial structures
by exploiting another wonder of the ESF world, namely the Feller coupling (FC). Analysis of
the spaghetti game in which ends of different strands must be tied shows that apparently small
departures from the FC can open up a number of unsolved problems. Several past presidents of
the London Mathematical Society (LMS) have contributed to the theory around the ESF, as I
will illustrate.

1. Introduction

This article, based on my presidential address delivered 10 November 2017, gives a personal
view of developments around the theme of the Ewens sampling formula (ESF) — some new,
some old. The ESF has been studied extensively, and it arises in many different settings in
probability and statistics. Arratia, Barbour and Tavaré [4] describe numerous applications
in combinatorics, and James and Kerber [27, Chapter 41] and Crane [16] provide many
other examples.

I have presented the topics in the order of my presidential address, and have used much
the same motivation, in terms of simple games of chance. Probability theory developed from
this perspective, and although the examples might seem somewhat light-hearted, they provide
excellent motivation for deeper issues. I have made no attempt to be comprehensive — the
field is too extensive, and the space here limited — and important topics such as the Pitman
sampling formula [44, 46] and the connections with Bayesian statistics are absent; Crane [16]
provides useful pointers to this literature.

The paper begins with a brief overview of mathematical population genetics, to highlight
the scientific focus from which the ESF developed. Several former presidents of the London
Mathematical Society (LMS) have contributed to the theory discussed here. Brief synopses of
these contributions appear in the shadowed boxes in the text.
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2. Mathematical population genetics

Mathematical population genetics has a long history dating back to the seminal work of Fisher,
Haldane and Wright in the 1920s and 1930s. They studied the effects of forces such as mutation,
selection and recombination on the structure of genetic variation in natural populations,
allowing for demographic effects such as migration, admixture, subdivision and fluctuations
in population size. Much of the theory might be characterised as prospective: determine how
the population will evolve in the future from its present state. The relative roles of selection
and neutrality on the evolution of gene frequencies have been a major topic of research.

With the advent of molecular data in the late 1960s, the paradigm changed from prospective
to retrospective: given information about molecular variability measured in a sample of
individuals, identify the forces that acted in the past to produce the present state. Charlesworth
and Charlesworth[15] provide a brief, accessible overview of the subject.

For our purposes, it is sufficient to highlight two early data sets, coming from the fruit fly
species Drosophila tropicalis and Drosophila simulans. The data are in Table 1.

Table 1. Allele frequencies observed at the Esterase-
2 locus in D. tropicalis and the Esterase-2 locus in
D. simulans. Each sample resulted in seven different
types; the frequencies of the types are shown in the
third column.

Sample size Allele frequencies

D. tropicalis 298 234, 52, 4, 4, 2, 1, 1
D. simulans 308 91, 76, 70, 57, 12, 1, 1

The frequencies in the two samples seem to have different shapes, the D. simulans sample
being ‘flatter’ than the D. tropicalis one. Wright [55, p. 303] argued that

. . . the observations do not agree at all with the equal frequencies expected for
neutral alleles in enormously large populations.

This raised the question of what the distribution of allele frequencies should look like under
neutrality. The answer was provided by the ESF [22], to which we now turn.

2.1. The Ewens sampling formula

Ewens [22] derived the joint probability distribution of the number of selectively neutral alleles
Cj(n) represented j times (j = 1, 2, . . . , n) in a sample of n genes taken from a large population.
For non-negative integers c1, c2, . . . , cn, he showed that

P(C1(n) = c1, . . . , Cn(n) = cn) = 1l

⎛
⎝ n∑

j=1

jcj = n

⎞
⎠ n!

θ(n)

n∏
j=1

(
θ

j

)cj 1
cj !

, (1)

for θ ∈ (0,∞), and θ(n) := θ(θ + 1) · · · (θ + n− 1) = Γ(n + θ)/Γ(θ), θ(0) = 1. This distribution
is known as the ESF, θ > 0 is being a parameter related to the rate at which novel alleles appear;
we will see in Section 2.4 that the probability that gene n + 1 is a new type is θ/(θ + n). In
what follows we denote the law in (1) by ESF(θ).
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2.2. The number of types, Kn

The number of types observed in the sample is Kn = C1(n) + · · · + Cn(n); its probability
distribution is given by

P(Kn = k) =
θk
[
n
k

]
θ(n)

, k = 1, 2, . . . , n, (2)

where
[
n
k

]
is the unsigned Stirling number of the first kind, and its probability generating

function is given by

EsKn =
n∑

k=1

P(Kn = k)sk =
(θs)(n)

θ(n)
=

n∏
j=1

(
j − 1

θ + j − 1
+

θs

θ + j − 1

)
. (3)

Equation (3) shows that Kn may be represented as the sum of n independent, but not identically
distributed, Bernoulli random variables ξ1, ξ2, . . . , ξn satisfying

P(ξj = 1) =
θ

θ + j − 1
, P(ξj = 0) =

j − 1
θ + j − 1

, j = 1, 2, . . . , n; (4)

as a consequence,

EKn =
n∑

j=1

θ

θ + j − 1
.

As will be seen, the random variables ξ1, . . . , ξn play an important role in the sequel.

2.3. Consequences

The arrival of the ESF had a dramatic effect on the development of statistical inference in
population genetics, and in this section I outline why. First of all, dividing (1) by (2) shows
that

P(C1(n) = c1, . . . , Cn(n) = cn | Kn = k) = 1l

⎛
⎝ n∑

j=1

jcj = n,
n∑

j=1

cj = k

⎞
⎠ n![

n
k

] n∏
j=1

(
1
j

)cj 1
cj !

, (5)

which is independent of θ. In statistical parlance, the number Kn of different alleles observed
in the sample is sufficient for the parameter θ. It follows from the Rao–Blackwell theorem that
estimation of θ should be based on Kn; earlier, estimation of θ had been based on the observed
allele frequencies. Furthermore, the conditional distribution in (5) can be used for testing the
goodness of fit of the model to data, a point to which we return later.

Not all was good news, however. Estimation of θ is based on the distribution in (2), and
Ewens showed that the maximum likelihood estimator (MLE) of θ is the solution θ̂n of the
equation k = EKn, where k is the observed number of types in the sample. Furthermore, the
MLE θ̂n is asymptotically Normal with mean θ and variance θ/ log n. The slow rate is due
to dependence among the genes in the sample, and symbolises why statistical inference in
population genetics is hard: effective sample sizes are roughly the logarithm of the observed
sample size.

Finally, what can be said about our two data sets? We noted that the conditional distribution
in (5) may be used to assess goodness of fit. The statistic one chooses to design a test depends
on the alternative hypothesis of interest. Watterson [53] suggested use of H =

∑k
i=1 x

2
i , where

xi is the relative frequency of the ith of the k types in the sample. H is larger for unbalanced
allele frequencies; for the tropicalis data, H = 0.647, while for the simulans data, H = 0.236.
Empirical p-values, calculated as the fraction of 105 simulated values of H that are smaller
than the observed values, are 0.04 for the simulans sample and 0.87 for the tropicalis sample.
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Thus the uneven allele frequencies seem to be consistent with the ESF, as opposed to the more
even frequencies predicted by Wright. Presumably there are other genetic forces at work in the
simulans sample. In Section 6 a method for simulating the null distribution of H is discussed
in a little more detail.

2.4. Laws of succession

One step in Ewens’ argument leading to (1) established that the probability that the (n + 1)st
gene sampled is a type that has not been found in the first n sampled genes is

θ/(θ + n), (6)

while the probability it is a copy of a particular existing allele present in m copies is

m/(θ + n). (7)

The connection with (4) appears in Section 4.1.
It is convenient to imagine sequential sampling from an infinite collection of distinguishable

species, whose random relative frequencies P1, P2, . . . satisfy

0 < Pj < 1, j = 1, 2, . . . ;
∞∑
j=1

Pj = 1.

Suppose that the history of the first n samples is given. Donnelly [20] showed that if the
conditional probability that the next sampled animal is of a previously unsampled species
depends only on n, then this probability must be of the form (6). Furthermore, if in addition
the conditional probability that the next animal chosen is of a particular species seen m > 0
times in the sample depends only on m and n, then Zabell [57] showed that the counts of the
number of species sampled once, twice, . . . must be ESF(θ). The law of succession represented
by (6) and (7) is related to work of De Morgan described briefly in Figure 1.

Consider a sequence of independent Bernoulli trials with
unknown probability p of success. Laplace’s rule of succession
states that the probability that the (n + 1)st trial results
in a success, given r successes in the first n trials and all
values of p equally likely, is (r + 1)/(n + 2); see [56] for the
background.

De Morgan [19] considered a related problem in which the
set of possible outcomes is not known in advance. He defined
the probability that a new type is found on the (n + 1)st trial
as 1/(n + k + 1), and that a type with m prior occurrences
is chosen as (m + 1)/(n + k + 1), where k is the number of
types observed in the first n trials. The resulting sampling
formula is not the ESF.

Figure 1 (colour online). A. De Morgan, first president (1865–1866).

3. Population processes

Stochastic models of growth in biological populations follow two major traditions, one
originating from population genetics, the other from population dynamics. Population genetics
models, including those of Wright, Fisher and Moran, initially assumed constancy of the
population size through time. Results such as the ESF and Kingman’s coalescent (see Figure 5)
were derived in this setting. The population dynamics tradition, typified by branching process
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models (see Figure 2), emphasises growth and stochastic, fluctuations stemming from birth
and death events of a finite collection of independent individuals. The two fields connect in
many places, for example, [28, 34], and more recent work on modelling ancestral relationships
among extant individuals through coalescent point processes [41].

One relevant connection centres around Fisher’s logarithmic series distribution [23], which
initiated the statistical modelling of the distribution of species counts obtained from specimens
sampled from a population composed of different species. Letting Cj denote the number of
species having j representatives in the sample, Watterson [52] interprets Fisher’s model as one
for means, rather than probabilities:

ECj ≈ θ
xj

j
, (8)

for some x > 0. Other connections between the ESF and species sampling are described in [17].
Karlin and McGregor [28] describe a birth-and-death process with immigration at rate θ and

birth and death rates equal to 1 for which the counts Cj = Cj(t) of family sizes at time t are
independent Poisson-distributed random variables with means given by (8) with x = t/(1 + t).
The connection with the ESF is made more transparent in Section 4.3, but we note for now
that [48] uses the birth process with immigration as a convenient way to study the asymptotic
behaviour of the ESF, and in particular the Poisson–Dirichlet distribution in Section 4.4.2.

Kendall had a long-standing interest in the theory and
applications of branching processes, particularly those of
birth-and-death type [30, 31, 34]. His lecture on the occasion
of the centenary of the London Mathematical Society [32]
and his presidential address [33] described the history of
branching processes.

[29] analysed the linear birth-and-death process with immi-
gration, and discussed limiting regimes that result in the size
N of an extant colony (individuals descended from a single
immigrant) having the logarithmic series distribution of the
form

P(N = n) ∝ xn/n, n = 1, 2, . . .
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Figure 2. D. G. Kendall, 56th president (1972–1974).

4. The ESF and biased permutations

Of particular interest here is its appearance as the distribution of the cycle counts of a θ-
biased permutation. Let π be a permutation of [n] := {1, 2, . . . , n} decomposed as a product of
cycles, as illustrated in Figure 3. If π is chosen uniformly with probability 1/n!, then Cauchy’s
formula establishes that the cycle counts (C1(n), . . . , Cn(n)) have the ESF(1) law [25], and if
a permutation π having k cycles is chosen with probability proportional to θk, then the cycle
counts have the ESF(θ) law. In this case,

P(π) =
θk

θ(n)
,

if the permutation π has k cycles.
The cycle counts may be studied in several ways, of which two probabilistic approaches use

the independent Bernoulli random variables ξ1, ξ2, . . . with distribution given by (4). The first
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method, the Chinese restaurant process (CRP), simulates a biased permutation of [n] using
the ξi in the order ξ1, ξ2, . . . , ξn, whereas the second, the Feller coupling (FC), achieves the
same end using the reverse order ξn, ξn−1, . . . , ξ1.

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 3 (colour online). Random permutation of [15], decomposed into cycles. K15 = 7,
C1(15) = 3, C2(15) = 3, C6(15) = 1.

4.1. The Chinese restaurant process

The CRP, devised by Dubins and Pitman (see [1]), proceeds as follows. Integer 1 starts a cycle.
Integer 2 is placed to the right of 1, in the same cycle, if ξ2 = 0, or begins a new cycle if ξ2 = 1.

Suppose, then, that the first n− 1 integers have been assigned to cycles. Integer n starts
a new cycle if ξn = 1, an event of probability θ/(θ + n− 1), or is placed to the right of a
uniformly chosen integer j, in the same cycle, if ξn = 0, j = 1, 2, . . . , n− 1. For any permutation
π of [n] having k cycles, Pθ(π) = θk/θ(n), so the CRP generates permutations with the
ESF(θ) distribution.

The cycles generated in this way are ordered, in that the first contains the integer 1, the
second cycle the smallest integer not in the first cycle and so on, and as the process evolves,
cycle lengths may be changed.

4.2. The Feller coupling

The FC was introduced in [5] as a way to generate the cycles in a growing permutation one at
a time, and it has proved very useful in the study of the asymptotics of properties of the ESF.
The cycle counts are determined by the spacings between the 1s in realisations of ξi, i � 1. If
we define Cj(n) to be the number of spacings of length j between the 1s in 1 ξ2 ξ3 · · · ξn 1, then
the distribution of (C1(n), . . . , Cn(n)) is, of course, ESF(θ). The magic occurs because

Zj = Cj(∞) = number of spacings of length j in 1 ξ2 ξ3 . . . (9)

are independent Poisson-distributed random variables with EZj = θ/j. Further details may
be found in [5] and [4, Chapter 5]. We note that, as in the description of the CRP, the
permutations themselves, as opposed to just their cycle lengths, may be generated by an
auxiliary randomisation; a new cycle is begun with the smallest unused integer, and a cycle is
grown by adding a randomly chosen unused integer at its end.

Aside from its use as an analytically tractable coupling of (C1(n), . . . , Cn(n)) and
(Z1, Z2, . . .), the FC is very useful for simulating permutations decomposed into cycles. In
[4] it is shown that the CRP takes of order O(n) calls to the random number generator to
produce a sample of size n, whereas the FC takes of order O(log n).
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4.3. The conditioning relation

Watterson [51] showed that ESF(θ) is the distribution of independent Poisson random
variables, conditioned on a weighted sum. Defining Z1(x), Z2(x), . . . to be independent Poisson
random variables with

EZj(x) =
θxj

j
, j = 1, 2, . . . , (10)

for x > 0, we have

P(C1(n) = c1, . . . , Cn(n) = cn) = P(Z1(x) = c1, . . . , Zn(x) = cn | Tn(x) = n), (11)

where

Tn(x) = Z1(x) + 2Z2(x) + · · · + nZn(x).

We will see that the random variables Zj := Zj(1) are the Cj(∞) in (9).

4.4. Limit laws

4.4.1. Limit laws for the cycle counts. We revisit the conditioning relation (11) with x = 1,
and set Zj := Zj(1), with means EZj = θ/j. One of the classical results about the ESF is that
the probability distribution L(C1(n), . . . , Cb(n)) converges to that of (Z1, . . . , Zb): for any b � 1,

(C1(n), C2(n), . . . , Cb(n)) ⇒ (Z1, Z2, . . . , Zb) as n → ∞. (12)

This is due to [25] for the case θ = 1; see [4, Chapter 5.1] for history and further details. As it
stands, (12) is only helpful in approximating results determined by fixed values of b as n → ∞.
However, there is now an extensive literature on metrising this convergence, particularly in the
total variation metric. For example, [5] shows that for b = bn � n,

dTV (L(C1(n), . . . , Cb(n)),L(Z1, . . . , Zb)) = O(b/n), n → ∞. (13)

Error estimates of this type may be exploited to derive many limiting results for θ-biased
permutations using simple methods; see [4, 9], for example.

Towards the end of his life Burnside focused on foundational
issues in probability theory [12], giving principles with which
probabilities could be computed. He discusses, inter alia,
inclusion-exclusion, Bayes Theorem, geometrical probability,
and (in our notation) showed that for θ = 1,

(C1(n) = r) → e−1

r!

in the context of a problem involving the number of fixed
points of a random permutation; see Section 7.2.2.

The book was published after Burnside’s death with the help
of AR Forsyth, twenty-first president (1904–1906), who also
wrote Burnside’s memoir for the Royal Society.
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, r = 0, 1, 2, . . .

Figure 4. W. Burnside, 22nd president (1906–1908).

4.4.2. Limit laws for the longest cycle lengths. The limiting structure of the cycle lengths in
decreasing order is given by the Poisson–Dirichlet distribution, denoted by PD(θ); see Figure 5
for further details. Denoting by L1(n), L2(n), . . . the length of the longest cycle, the next longest
and so on, Kingman [35] showed that

n−1(L1(n), L2(n), . . .) ⇒ (L1, L2, . . .),
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where (L1, L2, . . .) has the PD(θ) distribution. Metric bounds on the distance to PD(θ) appear
in [7]. The law of the size-biased PD(θ) distribution is known as the GEM(θ) distribution.

Kingman [35] defined the Poisson-Dirichlet law PD(θ) as the
joint distribution of the points σ1 > σ2 > · · · of a Poisson
process on (0,∞) with intensity θe−x/x, normalized by their
sum, σ; (σ1/σ, σ2/σ, . . .) and σ are independent.

There are many characterisations of PD(θ), summarised for
example in [4, Chapter 5.5 and 5.7].

Kingman’s coalescent [38, 36, 37], which models the ancestral
relationships among a sample of individuals, revolutionised
population genetics, and provided an alternative approach to
properties of the ESF.
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Figure 5. J. F. C. Kingman, 65th president (1990–1992).

5. The combinatorics connection

My address was motivated at least in part by a problem in Winkler’s Mathematical Mind-
Benders book [54]:

Spaghetti loops. The 100 ends of 50 strands of cooked spaghetti are paired at random
and tied together. How many pasta hoops†, should you expect to result from this
process, on average?

This problem has arisen in many guises, for example, as the ‘blades of grass’ game described in
[24] and an oft-asked Cambridge homework question. This begs more sophisticated questions,
such as ‘What is the chance that all the hoops have different lengths?’ This can be addressed
for a given value of n, say 50, or as n → ∞. It is helpful to have a simple framework within
which to analyse such questions.

Starting with n = 50 cooked strands, we have 100 ends. Artificially labelling these ends 1
to 100, the random choices begin with end 1 making a 99-way choice to determine which end
to join; finishing a hoop at this first step corresponds to the event ξ50 = 1, having probability
1/99 and starting the new hoop with the smallest available unused strand. So if n− r strands
are already assigned to hoops, we have ξr = 1 if the last strand in the nascent hoop is joined to
the other end of the strand that started that hoop (probability 1/[2(r − 1) + 1]), and otherwise
ξr = 0. In this way, the lengths of the hoops formed, in order, are the spacings between the
ones in sequence 1 ξn ξn−1 . . . ξ1.

This is an example of the FC, and it remains to compute θ. Since

P(ξi = 1) =
1

2i− 1
=

1/2
1/2 + i− 1

,

we have identified θ = 1/2, and this allows us to read off the structure of the hoop lengths
from what we know about ESF(θ = 1/2), for fixed n and in the limit. In answer to the original
problem, the number of hoops has distribution given by (2) with θ = 1/2, so that

EK50 =
50∑
j=1

1
2j − 1

≈ 2.938,

perhaps smaller than expected.

†Winkler’s problem is phrased in terms of spaghetti loops, whereas I use the UK term, hoops.
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5.1. Random mappings

A mapping from [n] to [n] may be constructed from independent and identically distributed
random variables Bi, i = 1, . . . , n satisfying

P(Bi = j) =
1
n
, j = 1, 2, . . . , n; (14)

Bi is the image of i. The components of the mapping are formed by iteration: l and m are in
the same component if some iterate of l equals some iterate of m. Components are therefore
directed cycles of rooted labelled trees; an example with n = 15 appears in Figure 6.
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Figure 6 (colour online). Random mapping of [15], decomposed into components. K15 = 3,
C1(15) = 1, C6(15) = 1, C8(15) = 1. There are six elements on cycles.

Random mappings are a combinatorial assembly, the distribution of the component counts
being given by (11), where the independent Poisson random variables Zj(x) having means
given by

EZj(x) =
1
j

mjx
j

(j − 1)!
(15)

where mj , the number of possible structures of size j, is given by

mj = ej (j − 1)! P(Po(j) < j)

rather than the values in (10); here Po(λ) denotes a random variable having a Poisson
distribution with expectation λ.

Random mappings are one of the most studied combinatorial assemblies. Other values of
the mj lead to different assemblies, with component distribution determined as above, and the
reader is referred to [4, Chapter 2.1] for further examples, such as polynomials over GF(q)
and additive arithmetic semigroups. For the present purposes, we identify x to simplify the
subsequent results, and this leads us to the class of logarithmic assemblies.

5.2. The logarithmic assemblies

We continue to assume that the Zj = Zj(x) are independent Poisson-distributed random
variables with means given in (15). If we can choose x so that Zj := Zj(x) satisfies

j P(Zj = 1) → θ and jE(Zj) → θ, as j → ∞, (16)

for some θ ∈ (0,∞), we call the assembly logarithmic. For assemblies satisfying

mj

j!
∼ θyj

j
as j → ∞,
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for some y > 0, θ > 0, we can take x = 1/y to express them in logarithmic form. For mappings,
mj

j!
= ej P(Po(j) < j)/j,

so that x = e−1 and

EZj =
1
j

P(Po(j) < j);

in this case, we may take θ = 1/2, since the central limit theorem shows that P(Po(j) < j) →
1/2 as j → ∞. For examples that are not logarithmic, see Figure 7.

The fact that the number mj of trees on j labeled vertices
is mj = jj−2 is known as Cayley’s formula [11, 14]; see
also [45] for a beautiful double counting proof. It follows
that the assembly of forests of labeled, unrooted trees is not
logarithmic in the sense of (16), because

mj

j!
∼ 1√

2π

ej

j
j−3/2, j → ∞.

Forests of labeled, rooted trees, for which mj = jj−1, are also
not logarithmic.

Figure 7 (colour online). A. Cayley, third president (1868–1870).

6. Simulating assemblies

We have seen that samples from the ESF can be generated efficiently using the FC, but this
leaves the issue of how to simulate from logarithmic assemblies. One possible solution is the
rejection method described in [3]. Denoting the means EZj = λj/j, we have

P(C1(n) = c1, . . . , Cn(n) = cn) ∝
n∏

j=1

(
λj

j

)cj 1
cj !

∝
⎡
⎣ n∏
j=1

(
λj

θ

)cj

⎤
⎦ n!
θ(n)

n∏
j=1

(
θ

j

)cj 1
cj !

. (17)

The term in (17) is proportional to a function h(c1, . . . , cn) of (c1, . . . , cn) × the probability
of (c1, c2, . . . cn) under ESF(θ). It follows that if we can find θ such that 0 � λj � θ for j =
1, 2, . . . , n, we have a simple rejection algorithm:

– simulate (c1, . . . , cn) from ESF(θ);
– accept (c1, . . . , cn) as a realisation from L(C1(n), . . . , Cn(n)) for the assembly with

probability

h(c1, . . . , cn) =
n∏

j=1

(
λj

θ

)cj

� 1;

– otherwise, reject (c1, . . . , cn) and start again.

The performance of this method is discussed in [3], where the asymptotic acceptance rate
is given.
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The conditioning relation may also be used to simulate samples, and the parameter x in the
Poisson means may be chosen as a function of n to optimise the acceptance rate. The details
of this method appear in [3], but for the present purposes this method is not competitive, and
will not be discussed further here.

6.1. Examples

We begin with a comment on simulation of values of the test statistic H used in the genetic
example in Section 2.3. The task is to simulate values from the distribution of the ESF
conditional on a given number, k, of types. Recalling that this distribution is independent
of θ, we are free to choose θ in a rejection method that uses the FC to simulate from ESF(θ),
and accepts the cycle counts if the number of cycles equals k. The choice of θ is naturally the
MLE of θ, as this, by definition, maximises the acceptance probability of the method. For both
data sets, the MLE of θ is approximately 1.15, and this leads to an acceptance rate of about
17%, acceptable for these examples. For larger sample sizes, a method which uses every run
seems necessary.

For the spaghetti hoops problem, simulation of 106 realisations using the FC with n = 50
estimates the probability that no hoop lengths are equal to be 0.838, in good agreement with
the asymptotic value obtained in [9], namely 2e−γ/2/

√
π ≈ 0.8455.

For a random mapping, we can take θ = 1/2 and use the FC and rejection method. 106

simulations of a mapping with n = 50 estimated the chance it has no repeated component sizes
as 0.888, close to the limiting value ≈0.896 found in [3].

7. Variants on a theme

7.1. Spaghetti hoops, revisited

This section introduces a twist to the spaghetti hoop problem mentioned in the introduction,
by considering the case in which no strand can be tied directly to its other end. Of interest
is the probability distribution of sizes of spaghetti hoops, their asymptotic behaviour, and the
elucidation of their relationship to the ESF. We begin with a description of the process.

We build spaghetti hoops with a sequence of 0s and 1s, just as in the FC, but the joint
distribution of the Bernoullis, denoted here by ηn+1, ηn, . . . , η1, is different: because no spaghetti
strand can be tied directly to its other end, no singleton hoops can occur. ηn+1 = 1 is playing
the role of the 1 in position n + 1 in the FC.

It is convenient to label the spaghetti strands {1, 2, . . . , n}. Strand 1 starts the process,
and the nascent hoop is (1. Strand 1 cannot be tied to its other end, and so complete a
hoop; the Bernoulli random variable ηn that indicates whether a hoop is completed satisfies
P(ηn = 0 | ηn+1 = 1) = 1.

Strand 1 is tied at random to an end of one of the remaining n− 1 strands. Label the chosen
strand as in, and the resulting, growing hoop becomes (1 in).

Strand in is tied at random to one of the remaining 2(n− 2) + 1 free strand ends; call this
strand j for now. If j = 1 a hoop is completed, and we set ηn−1 = 1, close the current hoop
and start the new hoop with the smallest unused strand, say in−1; this results in (1 in)(in−1).
The probability of this event is P(ηn−1 = 1 | ηn = 0) = 1/(1 + 2(n− 2)) = 1/2/(n− 2 + 1/2).
The next step involves a randomly chosen end from one of the n− 3 remaining strands, and
we see that P(ηn−2 = 0 | ηn−1 = 1) = 1.

In the event that strand j 
= 1, ηn−1 = 0 and we set in−1 = j to get the current, growing
hoop (1 in in−1). We then have P(ηn−1 = 0 | ηn = 0) = (n− 2)/(n− 2 + 1/2).

Continuing in this way we construct the spaghetti hoops in order. To calculate the probability
of closing a hoop when there are r − 1 strands remaining to be chosen, there are two cases to
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consider. If ηr+1 = 0 then ηr = 1 if the strand at the growing end of the hoop is tied to the free
end of the strand that started that hoop. This event has probability P(ηr = 1 | ηr+1 = 0) =
1/(2(r − 1) + 1) = 1/2/(r − 1 + 1/2); otherwise, ηr = 0. On the other hand, if ηr+1 = 1 then
ηr = 0, as no hoops of length one are allowed; that is, P(ηr = 0 | ηr+1 = 1) = 1. An example is
given in Figure 8.
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15

Figure 8 (colour online). Random spaghetti hoops for n = 15. K15 = 3, C3(15) = 1,
C5(15) = 1, C7(15) = 1.

We have now identified the structure of the process ηn+1, ηn, ηn−1, . . . , η1. It is a (non-
homogeneous) Markov chain that starts from ηn+1 = 1 and has transition matrices Pr given by

Pr =
(

P(ηr = 0 | ηr+1 = 0) P(ηr = 1 | ηr+1 = 0)
P(ηr = 0 | ηr+1 = 1) P(ηr = 1 | ηr+1 = 1)

)

=

⎛
⎜⎜⎝

r − 1
r − 1 + 1/2

1/2
r − 1 + 1/2

1 0

⎞
⎟⎟⎠, (18)

for r = n, n− 1, . . . , 3. There are two further loose ends to be tied up, namely when r = 2
and r = 1:

P2 =
(

1 0
1 0

)
, P1 =

(
0 1
0 1

)
.

As in the earlier spaghetti hoop model, the ordered hoop lengths are the spacings between the
1s in the sequence η1, η2, . . . , ηn, 1 read from right to left. The transition matrices in (18) are
the special case θ = 1/2 of the more general model that has

Pr =

⎛
⎜⎝

r − 1
r − 1 + θ

θ

r − 1 + θ

1 0

⎞
⎟⎠, (19)

for some θ ∈ (0,∞).

7.1.1. Enumerating the state space. The hoop lengths formed from n strands are found
from the spacings between the 1s in the sequence η1 = 1, η2 = 0, . . . , ηn = 0, ηn+1 = 1, where
each ηi ∈ {0, 1} and there are no consecutive 1s in the string. Writing hn for the number of
such strings, and recalling that the number bn of binary strings of length n with no repeated 1s
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is bn = Fn+2, where Fj is the jth Fibonacci number, we see that hn = bn−3 = Fn−3+2 = Fn−1.
Hence

h4 = 2, h5 = 3, h6 = 5, h7 = 8, h8 = 13, h9 = 21, h10 = 34, h11 = 55, . . . , h50 = 7,778,742,049.

The Markov chain may be used to compute probabilities of patterns for small values of n.
Table 2 gives an example for the case n = 7, θ = 0.5; we return to this later. The Markov chain
may also be used to simulate realisations of the hoop lengths, and so estimate probabilities of
events of interest. For example, for n = 50 the chance that no hoops have the same length is
≈0.912.

Table 2. Ordered cycle length probabilities
for n = 7, θ = 0.5. Patterns correspond to
η1 = 1, η2, . . . , η7, η8 = 1.

Pattern Probability
from (18)

10000001 0.55411
10100001 0.13853
10101001 0.02020
10100101 0.01558
10010001 0.11544
10010101 0.01299
10001001 0.08081
10000101 0.06234

As might be expected, it is the structure of the small hoop lengths that distinguishes the
present example from the setting in Section 5. The asymptotic structure of the first, second,
. . . hoop lengths generated by the Markov chain is, however, the same for both models: direct
calculation shows that when scaled by 1/n the relative sizes are asymptotically GEM(θ)
with parameter θ = 1/2, and the relative sizes of the largest, second largest, . . . hoops are
asymptotically Poisson–Dirichlet with θ = 1/2; see [4, Chapter 5.4] for the ESF(θ) case. The
asymptotic distribution of the number of hoops of size 2, 3, 4, . . . is unknown, although
empirically it seems to be close to Poisson.

7.2. Other games

7.2.1. Children’s playground game. This example describes a playground game played by
children at camp. The n children in the group stand close to each other, and some child, labelled
#1, with one of their hands, grasps a hand of a different randomly chosen child (labelled #2).
Child #2, with their free hand, grasps the randomly chosen hand of some child, (possibly the
free hand of child #1). The process continues like this, with children only grasping ‘free’ hands.
Thus one forms a collection of circles of children holding hands. Note though that no child is
allowed to grasp their other hand.

A few moments thought, and allowance for finishing the game with all children involved,
reveals that the sequence ηn+1 = 1, ηn, . . . , η1 = 1 that can be used to describe the ordered
circle lengths behaves precisely as in (18). At its heart, this playground game is richer than the
spaghetti hoop game in Section 7.1; for example, it is of interest to consider cases where all
the children are looking in, or looking out. We hope to explore this in more detail elsewhere.

7.2.2. Derangements. Students of probability often meet random derangements in versions
of the letters-and-envelopes problem, quoted here from [12, p. 21]:

There are n letters and n corresponding envelopes, and one letter is put into
each envelope. This can be done in n! ways. It is assumed that each two of
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these distributions are equally likely. What is the probability (i) that just r
letters go into their corresponding envelopes, (ii) that no letter goes into its
corresponding envelope?

If we define a permutation π by setting π(i) to be the label of the envelope to which letter i
is returned, the probability we seek in answer to (ii) is

P(π is a derangement) =
Dn

n!
=

n∑
l=0

(−1)l

l!
,

where Dn is the nth derangement number. For the answer to (i), see Figure 4.
The distribution of the cycle length counts of a random derangement is precisely that of

ESF(1) conditioned to have C1(n) = 0, and the corresponding case for any θ is also of interest.
Once more, these lengths can be generated by a Markov chain ηn+1 = 1, ηn, . . . , η1 = 1 with
the same state space as that described in Section 7.1.1, but the transition matrix is not that in
(19). By reverse engineering the probabilistic structure of the FC, we can construct a Markov
chain with the property that it generates realisations of the original process ξn, . . . , ξ2, ξ1 in
such a way that the joint law of ηn+1 = 1, ηn, . . . , η1 = 1 is the same as that of 1, ξn, . . . , ξ2, ξ1
conditioned on having no consecutive 1s. Da Silva, Jamshidpey and Tavaré [18] establish that
the transition matrices are given by

Pr =

⎛
⎜⎜⎝

(θ + r − 1)λr(θ)
(θ + r − 1)λr(θ) + θλr−1(θ)

θλr−1(θ)
(θ + r − 1)λr(θ) + θλr−1(θ)

1 0

⎞
⎟⎟⎠, (20)

for r = n− 1, . . . , 3,

P2 =
(

1 0
1 0

)
, P1 =

(
0 1
0 1

)
.

In (20) the quantity λn(θ) is the probability of the conditioning event obtained from ESF(θ):

λn(θ) := P(C1(n) = 0) =
n!

Γ(n + θ)

n∑
j=0

(−1)j
θj

j!
Γ(n + θ − j)

(n− j)!
,

with λ0(θ) = 1, λ1(θ) = 0.
Warren Ewens conjectured that the distribution of the hoop length counts in Section 7.1 is

ESF(θ = 1/2), conditioned on having no singleton hoops. This is not the case, as the comparison
in Table 3 shows.

Table 3. Ordered cycle length probabilities
for n = 7, θ = 0.5. Patterns correspond to η1 =
1, η2, . . . , η7, η8 = 1.

Pattern Probability Probability
from (18) from (20)

10000001 0.55411 0.58323
10100001 0.13853 0.14581
10101001 0.02020 0.01823
10100101 0.01558 0.01458
10010001 0.11544 0.09721
10010101 0.01299 0.00972
10001001 0.08081 0.07290
10000101 0.06234 0.05832
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7.2.3. Screaming Toes game. The following problem comes from Cameron [13, p. 154]:

n people stand in a circle. Each player looks down at someone else’s feet (i.e., not
at their own feet). At a given signal, everyone looks up from the feet to the eyes
of the person they were looking at. If two people make eye contact, they scream.
What is the probability qn, say, of at least one pair screaming?

To set this in our framework, we can define a mapping by exploiting independent, but this
time not identically distributed, random variables satisfying

P(Bi = j) =
1

n− 1
, j 
= i, i = 1, . . . , n.

Just as in the classical case defined by (14), the mapping is decomposed into components defined
by iteration, the core of the mapping (those elements in the cycles) being a derangement. An
example is given in Figure 9.

A detailed analysis of this type of random mapping is given in [49], and we record the
essential details for comparison with the standard random mapping in Section 5.1. The number
of structures of size j is now given by

m̃j = (j − 1)! ej
j−2∑
l=0

e−jjl

l!
= (j − 1)! ej P(Po(j) < j − 1), j � 2,
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Figure 9 (colour online). Random mapping for the Screaming Toes game with n = 15,
decomposed into components. K15 = 4, C2(15) = 2, C4(15) = 1, C7(15) = 1. There are eight
elements on cycles, and four screaming pairs.

and the joint law of (C̃2(n), . . . , C̃n(n)) is given by a version of the conditioning relation (11),
but with the Zj(x) having means

EZj(x) =
m̃jx

j

j!
, j = 2, 3, . . . ,

for any x > 0. To make the structure logarithmic we set x = e−1, θ = 1/2 as before, resulting
in

EZj :=
λj

j
=

1
j

P(Po(j) < j − 1), j = 2, 3, . . . (21)

which should be compared to the standard case in (10).
Denoting the number of cycles of length two in the core by C̃∗

2 (n), the answer to Cameron’s
question is given by

qn = P(C̃∗
2 (n) > 0),
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which may be found from the distribution of C∗
2 (n) in [49, Lemma 2]:

P(C̃∗
2 (n) = 0) =

�n/2�∑
l=0

(−1)l
(

1
2

)l 1
l!

n[2l]

(n− 1)2l
,

where n[k] = n(n− 1) · · · (n− k + 1), n[0] = 1. Asymptotically, C̃∗
2 (n) ⇒ Po(1/2), so that the

probability that no-one screams → 1 − e−1/2 ≈ 0.393 as n → ∞.
Simulation of 106 mappings of size n = 50 provides estimates of the probability that all the

component sizes are distinct of 0.976, that all the cycle lengths in the core are distinct of 0.839,
and that all components lengths are distinct and all cycle lengths are distinct of 0.829. The
asymptotic values of the first two probabilities are, from (21):

∞∏
j=2

(
1 +

λj

j

)
e−λj/j ≈ 0.982 and

∞∏
j=2

(
1 +

1
j

)
e−1/j = e1−γ/2 ≈ 0.763, (22)

respectively, using the Poisson approximation heuristic described below.

7.3. Poisson approximation

Asymptotic estimates such as those in (22) can be guessed by using the fact that for logarithmic
assemblies, the analogues of (12) and (13) hold. Consider, for example, the difference Dn

between the number of components and the number of distinct components lengths:

Dn =
n∑

j=1

(Cj(n) − 1)+,

where (x)+ = max(0, x). The probability of no repeated component sizes is then P(Dn = 0).
For a typical logarithmic assembly, the Poisson approximation heuristic suggests that

Dn ⇒ D :=
∑
j�1

(Zj − 1)+ as n → ∞,

where the Zj are independent Poisson random variables with means identified in (16). The
proof follows from a truncation argument [3], and use of the total variation bound in (13). The
left-most quantity in (22) is then just P(D = 0) =

∏
j�2 P(Zj � 1).

8. Prime factorisation

There are intriguing connections between the probabilistic structure of combinatorial assemblies
and the factorisation of integers into products of primes, outlined, for example, in [4, 6]. By
way of example, Rényi [47] studied the probability that an integer chosen at random from [n] is
square-free, the natural analogue of the probability that a logarithmic assembly has no repeated
component sizes. The strategy illustrated in the previous section suggests the approach here.

Writing Nn for the random integer with distribution

P(Nn = j) =
1
n
, j = 1, 2, . . . , n,

the prime factorisation of Nn is

Nn =
∏
p

pCp(n),

where Cp(n) = 0 if p > n. Analogous to (12), we have

(C2(n), C3(n), . . .) ⇒ (Z2, Z3, . . .) as n → ∞,
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where the Zp are independent geometrically distributed random variables satisfying

P(Zp = k) =
(

1 − 1
p

)(
1
p

)k

, k = 0, 1, . . . ; (23)

here EZp = 1/(p− 1). The bound (13) is replaced by Kubilius’s fundamental lemma [40], which
shows that

dTV (L(Cp(n), p � b),L(Zp, p � b)) = O(e−cu) for some c > 0,

where u = log n/ log b; see also [50]. Thus dTV → 0 if log b/ log n → 0.
It now follows that the difference Dn between the number of prime factors, with and without

multiplicity, satisfies

Dn =
∑
p

(Cp(n) − 1)+ ⇒ D =
∑
p

(Zp − 1)+ as n → ∞,

so that the probability the Nn is square-free is, asymptotically,

P(D = 0) =
∏
p

P(Zp � 1) =
∏
p

(
1 − 1

p

)(
1 +

1
p

)
=

∏
p

(
1 − 1

p2

)
=

1
ζ(2)

=
6
π2

≈ 0.608,

giving another proof of Rényi’s result. By way of comparison, the probability that a random
permutation has no repeated cycle lengths [26] is asymptotically e−γ ≈ 0.562.

This example has concentrated on the small prime factors, but the large prime factors are
also of interest. Writing

Nn = P1(n)P2(n) · · · ,
for P1(n) � P2(n) � · · · prime or 1, Billingsley’s theorem [10] shows that

(log n)−1(logP1(n), logP2(n), . . .) ⇒ (L1, L2, . . .), (24)

where (L1, L2, . . .) has the Poisson–Dirichlet law with parameter θ = 1. [2] establishes that
there are couplings for which

E

∑
| logPi(n) − (log n)Li| = O(log log n).

Billingsley’s theorem [10] has a complicated proof that identifies the joint distribution function
of the limit random vector (L1, L2, . . . , Lr) for r � 1, and subsequent authors have sought
to make the proof more transparent. For example, Donnelly and Grimmett [21] identified
Billingsley’s densities as being those of the marginals of PD(1), and they used a size-biassing
argument and the connection between GEM(1) and PD(1) to provide another proof. Further
discussion, and a simple, direct proof appear in [8].

Kingman [39] and Lloyd [42] started from a slightly different probability model, one in which
the integer N is chosen from the zeta distribution with parameter s > 1:

P(N = n) = ζ(s)−1n−s, n = 1, 2, . . . .

Writing n =
∏

p p
cp(n), it follows that

P(N = n) =
∏
p

(
1 − 1

ps

)(
1
ps

)cp(n)

,

showing that N may be constructed from independent, geometrically distributed random
variables Cp(n) having the distribution (23) with p replaced by ps. Kingman [39] and Lloyd
[42] showed that (log n)−1(logP1, logP2, . . .) ⇒ PD(1) as s → 1.

The paper concludes with some speculations about probabilistic thinking, described in
Figure 10.
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On thinking probabilistically . . .

The number-theoretic result needed for the proofs of (the two
versions of) Billingsley’s Theorem is Mertens Theorem [43],
which states that

p≤x

1

p
= log log x + M + O(1/ log x),

where M is the Meissel-Mertens constant.

It is tempting to believe that Hardy and Littlewood, number
theoretic masters, would have discovered Billingsley’s result
had they been more persuaded by probabilistic reasoning. It
was to be some time before there was a real synergy between
pure mathematics and probability theory in Cambridge, due
to the arrival of DG Kendall in 1962.

Figure 10. G. H. Hardy, 32nd president (1926–1928), 39th president (1939–1941); J. E.
Littlewood, 40th president (1941–1943).

Acknowledgements. I thank Professors Richard Arratia and Andrew Barbour for their
stimulating and productive collaboration over the last 30 years on topics relating to this work.
In particular, many of the then-new results presented in the presidential address are from [3],
co-authored with Warren Ewens. I thank Professors Peter Cameron, Charles Goldie, Frank
Kelly, John Kingman, Andy Lynch and Ian Strachan for helpful discussions on the topics in
this presentation. Any obscurities and errors in the paper remain my fault. I thank Elizabeth
Fisher of the LMS, who collected the presidential photos used in the paper. Figures 1 and 7 are
reproduced courtesy of the LMS. Figures 2 and 4 are reproduced courtesy of the Royal Society.
Figure 5 is reproduced courtesy of the University of Bristol. Figure 10 is reproduced courtesy
of the Master and Fellows of Trinity College, Cambridge. Finally, my thanks go to Drs. Poly
da Silva and Arash Jamshidpey for many helpful comments on earlier drafts of this article.

References

1. D. J. Aldous, ‘Exchangeability and related topics’, Ecole d’été de probabilités de Saint-Flour XIII, Lecture
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3. R. Arratia, A. Barbour, W. Ewens and S. Tavaré, ‘Simulating the component counts of combinatorial
structures’, Theoret. Popul. Biol. 122 (2018) 5–11.
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20. P. Donnelly, ‘Partition structures, Pólya urns, the Ewens sampling formula, and the ages of alleles’,

Theoret. Popul. Biol. 30 (1986) 271–288.
21. P. Donnelly and G. Grimmett, ‘On the asymptotic distribution of large prime factors’, J. Lond. Math.

Soc. 47 (1993) 395–404.
22. W. J. Ewens, ‘The sampling theory of selectively neutral alleles’, Theoret. Popul. Biol. 3 (1972) 87–112.
23. R. A. Fisher, A. S. Corbet and C. B. Williams, ‘The relation between the number of species and the

number of individuals in a random sample from an animal population’, J. Animal Ecology 12 (1943) 42–58.
24. M. Gardner, The sixth book of mathematical puzzles and diversions from scientific American (W.H.

Freeman, New York, 1971).
25. V. L. Goncharov, ‘Some facts from combinatorics’, Izvestia Akad. Nauk. SSSR, Ser. Mat. 8 (1944) 3–48;

see also: On the field of combinatory analysis. Trans. Amer. Math. Soc. 19, 1–46.
26. D. H. Greene and D. E. Knuth, Mathematics for the analysis of algorithms, 2nd edn (Birkhaüser, Boston,
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