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Abstract This paper deals with the problem of explaining the survival of
cooperative behavior in populations in which each person interacts only with
a small set of social ‘neighbors’, and individuals adjust their behavior over
time by myopically imitating more successful strategies within their own
neighborhood. We identify two parameters—the interaction radius and the
benefit–cost ratio—which jointly determine whether or not cooperation can
survive. For each value of the interaction radius, there exists a critical value of
the benefit–cost ratio which serves as the threshold below which cooperation
cannot be sustained. This threshold itself declines as the interaction radius
rises, so there is a precise sense in which dense networks are more conducive
to the evolution of cooperation.
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1 Introduction

This paper deals with the problem of explaining the survival and stability
of cooperative behavior in large unrelated populations in which each person
interacts only with a small set of social ‘neighbors’, and individuals adjust their
behavior over time by myopically imitating more successful strategies within
their own neighborhood.

The idea that cooperative behavior can survive under evolutionary compe-
tition with self-interested behavior when interaction is local goes back at least
to Eshel (1972) and has received attention more recently by Bergstrom and
Stark (1993); Nowak and May (1992, 1993), and Eshel et al. (1998, 1999) among
others. What makes local interaction with imitation conducive to the survival
of cooperative behavior is that individuals expressing a particular behavior
become increasingly likely to have neighbors who express the same behavior.
This is similar to assortative matching among cooperators (Bergstrom 2002),
although under local interaction such assortation arises endogenously. The
dynamics of imitation give rise to cooperative and noncooperative clusters,
with individuals in cooperative clusters earning significantly higher payoffs on
average than individuals in noncooperative clusters. This makes it possible
for small clusters of cooperation to survive and spread over time. Although
opportunistic behaviors can spread within cooperative neighborhoods, this
process itself creates inefficient opportunistic clusters, the poor performance of
which limits their further expansion. This intuitive argument suggests not only
that cooperation may be stable under local interaction but also that the stability
of cooperation is likely to be quite sensitive to changes in neighborhood
structure.

Most models of local interaction assume that the neighborhood structure is
highly regular and exogenously fixed. For example, Eshel et al. (1998) consider
individuals arrayed in a circle, with each person linked to their two immediate
neighbors and Nowak and May (1992) consider individuals arrayed in a two-
dimensional grid with each person linked to their eight geographically closest
neighbors. The effects of changes in neighborhood structure on the viability
of altruism has not, to our knowledge, been systematically explored. In this
paper, while maintaining the strong symmetry assumptions that have been
made in previous work, we examine the effects of changes in interaction
radius on the survival of altruism. By increasing interaction radius we mean
that the social benefits of an altruistic act are spread across a larger number
of individuals (with the aggregate social benefit and private cost being held
constant) and, consequently, that the evolution of behavior at a particular
location is influenced by the payoffs obtained at a greater number of other
locations within the neighborhood.

Our model extends that of Eshel et al. (1998) by allowing individuals on a
circle to interact not just with on two immediate neighbors, but an arbitrary
number of neighbors symmetrically in either direction. Cooperative behavior
is privately costly but socially beneficial, and its survival depends on the ratio
of benefits to costs. The main result of the paper is that for any interaction
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radius, we identify a bifurcation value of the benefit–cost ratio such that
states with cooperative behaviors can be sustained in the steady state of
the dynamics when the benefit–cost ratio exceeds this threshold. When the
benefit–cost ratio is insufficiently high, cooperators deep within cooperative
clusters switch to opportunistic behavior. This causes cooperative clusters to
be punctured from within, leading to ever smaller cooperative clusters that
eventually disappear in the presence of opportunist neighbors. If, instead, the
benefit–cost ratio is greater than the threshold, cooperative clusters expand
until the surrounding opportunist clusters are small enough to contain the
growth of the opportunist clusters. From this point onward, the population
enters a steady state or cycle. We also show that the threshold benefit–cost
ratio above which cooperation can be sustained itself falls as the interaction
radius increases. Specifically, the aggregate benefits of the cooperative act
can be smaller when the interaction radius is larger in order for cooperation
to survive under evolutionary competition with opportunistic behavior. An
interesting implication is that there is a sense in which dense networks are
more conducive to the evolution of cooperation than sparse networks.

2 Neighborhoods, behavior, and dynamics

Consider a finite population P of n individuals such that each individual i ∈ P
has a set of social “neighbors” N (i) ⊂ P \ {i} with whom she interacts. Each
individual is a neighbor to their neighbors, so that j ∈ N (i) if and only if i ∈
N( j ). If i and j are neighbors, they are said to be connected. Let ki denote the
cardinality of N (i) , that is, the number of individuals with whom i interacts.

During any given period t each individual may take one of two actions. One
action is altruistic, and any individual i taking it incurs a cost α. The action
yields an aggregate benefit β > α, shared equally by all individuals in N(i).1

The other action is egoistic and has no cost to oneself or benefit to others.
Without loss of generality, we normalize α = 1 and interpret β as the benefit–
cost ratio. Since β > 1, efficiency requires the altruistic action to be taken by
all players. From the perspective of any individual, however, the opportunistic
action yields a higher payoff regardless of the actions taken by her neighbors.
This is a multiplayer prisoner’s dilemma with local interaction, of the kind
studied by Bergstrom and Stark (1993); Eshel et al. (1998); Nowak and May
(1992); Albin and Foley (2001). A central question in this literature is whether
or not altruism can persist under evolutionary dynamics which are payoff
monotonic in the sense that more highly rewarded actions are replicated at
greater rates than are less highly rewarded actions within the neighborhood.

1The assumption that the altruist herself does not receive a share of the benefits is made for
convenience; any such benefit can be accommodated by interpreting α as a net cost.
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Let si(t) = 1 if individual i takes the altruistic action at time t and si(t) = 0
otherwise. The vector s(t) = (s1(t), ..., sn(t)) is the state of the system at time t.
Let S ≡ {0, 1}n denote the set of all states. The payoff to player i at time t is

πi(t) = −si(t) + β
∑

j∈N(i)

s j(t)
k j

, (1)

since 1/k j is the benefit conferred by neighbor j onto i if s j(t) = 1. The
neighborhood of individual i is defined as the set of i’s neighbors together with
i herself, that is, N(i) ∪ {i}. Consider any individual i with at least one neighbor
taking a different action than i herself does. The total number of i’s neighbors
who take egoistic action at time t is simply

∑

j∈N(i)∪{i}

(
1 − s j(t)

)
.

The sum of the payoffs of these individuals may be expressed conveniently as

∑

j∈N(i)∪{i}

(
1 − s j(t)

)
π j(t).

This expression adds together all payoffs π j(t) of all (and only) those individu-
als choosing s j(t) = 0. Using this, and Eq. 1, the average payoff of “egoists” in
the neighborhood of individual i is therefore

π̄ e
i (t) =

∑
j∈N(i)∪{i}

(
1 − s j(t)

)
π j(t)

∑
j∈N(i)∪{i}

(
1 − s j(t)

) = β
∑

j∈N(i)∪{i}
∑

l∈N( j)

(
1 − s j(t)

)
sl(t)/kl

∑
j∈N(i)∪{i}

(
1 − s j(t)

) .

(2)

We interpret π̄ e
i (t) as the average “fitness” of egoists in the neighborhood of

individual i at time t.
By similar reasoning, the average payoff of altruists in the neighborhood of

individual i is

π̄a
i (t) =

∑
j∈N(i)∪{i} s j(t)π j(t)∑

j∈N(i)∪{i} s j(t)
= β

∑
j∈N(i)∪{i}

∑
l∈N( j) s j(t)sl(t)/kl∑

j∈N(i)∪{i} s j(t)
− 1, (3)

and π̄ e
i (t) may be interpreted as the average fitness of altruists in the neigh-

borhood of individual i at time t. Finally, let ρ(t) = ∑
i∈P si(t)/n be the share

of altruists in the population at time t. This summary measures proportion of
altruists in the population, and so its time evolution will be used to examine
the survival and stability of cooperation.

The distribution of actions s(t) evolves according to the deterministic dy-
namics described in Eshel et al. (1998). Specifically, each individual selects
in period t whichever action resulted in the highest average payoff in her
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neighborhood in period t − 1. For any player i in a heterogeneous neighbor-
hood, choice of action is determined as follows.2

si(t) =
{

0 if π̄ e
i (t − 1) ≥ π̄a

i (t − 1),

1 if π̄ e
i (t − 1) < π̄a

i (t − 1).
(4)

Players whose neighborhood is homogeneous observe only one action and
hence continue to adopt that action: for any such individual i, si(t) = si (t − 1)

if si (t − 1) = s j (t − 1) for all j ∈ Ni.
A sequence {s(t), s(t + 1), ..., s(t + T)} of successive states is an absorbing

cycle of period T if s(t + T) = s(t) and s(t + i) �= s(t) for all i ∈ {1, ..., T − 1}.
An absorbing cycle of period 1 is an absorbing state. Since the population
size n is finite, trajectories from all initial states must reach an absorbing
state or an absorbing cycle within a finite number of periods. For any given
neighborhood structure, the absorbing set reached will depend on the initial
state. The main questions with which the present study is concerned is the
likelihood of reaching an absorbing set with a large proportion of altruists from
some randomly given initial state, and how this changes with neighborhood
structure.

3 Network structure

In this paper, we consider a special class of regular networks in which in-
dividuals are arrayed in a circle, and each one is connected to its closest r
neighbors on either side. Such networks are ring lattices , and r is the interaction
radius. Formally, we assume that each individual i is connected to individ-
uals i ± k (mod n), for 1 ≤ k ≤ r. That is, N(i) = {i ± k (mod n) | 1 ≤ k ≤ r}.
Figure 1 illustrates such networks, with circles representing individuals and
lines connecting neighbors. The interaction radius is r = 1 in Fig. 1a and r = 2
in Fig. 1b.

We can rewrite Eqs. 1–3 for the ring lattice model as follows:3

πi = −si + β

2r

⎛

⎝
i−1∑

j=i−r

s j +
i+r∑

j=i+1

s j

⎞

⎠

π̄ e
i =

∑i+r
j=i−r

(
1 − s j

)
π j

∑i+r
j=i−r

(
1 − s j

) and π̄a
i =

∑i+r
j=i−r s jπ j

∑i+r
j=i−r s j

2As a tie-breaking convention, assume that when both actions yield the same average payoff, the
egoistic action is chosen. This makes it somewhat less likely that altruism will be sustained from
any given initial state, but the bias is of little consequence since ties of this kind will not occur
generically.
3For expositional reasons, we omit mod n where this is clearly understood and drop the
dependence of the variables on time t.
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a b

Fig. 1 Ring lattices with interaction radius a r = 1 and b r = 2

Given these payoffs, the dynamics (Eq. 4) govern the movement of the state
over time.

4 Dynamics

For any given network structure, the dynamics of the distribution of actions
over time will depend on two key elements of the model: the initial state
s(0) and the benefit–cost ratio β. Generally speaking, the survival of altruistic
behavior in the long run will require both a favorable set of initial conditions
and a sufficiently high value of β. Favorable initial conditions require that there
be at least one altruistic cluster that is sufficiently large. Provided that β is large
enough, altruistic clusters of sufficient size will expand when surrounded on
both sides by large egoistic clusters. On the other hand, if altruistic clusters
are too small, or the benefit–cost ratio is insufficiently high, altruism in the
population will not be viable in the long run. For certain intermediate values
of β the level of altruism in the population can increase in the short run before
collapsing to zero in the long run.

In order to characterize the distribution of actions in the system, we
introduce the following notation. Let Q be the set of all sequences
{i, i + 1, ..., i + l − 1} (mod n) where i, l ∈ {1, ..., n}. For any given state s, we
say that q = {i, i + 1, ..., i + l − 1} ∈ Q is a cluster of length l if si = s j for all
i, j ∈ q, and si−1 = si+l �= si. A cluster therefore corresponds to a set of adjacent
players who take the same action, and which is of maximal length with respect
to this property. For any state s, the set of players can be partitioned into a
finite number z ≤ n of adjacent clusters q1, ..., qz. We shall say that a cluster q
is altruist cluster if si = 1 for all i ∈ q. Egoist clusters are analogously defined.
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The set of altruist clusters in period t is A(t); the set of egoist clusters is E(t).
We say that an altruist cluster q ∈ A(t) survives in period t + 1 if q ∈ A(t + 1).
It expands if q ⊂ q′ ∈ A(t + 1) . It contracts if there exists q′ ⊂ q such that
q′ ∈ A(t + 1), and all elements i ∈ q, i /∈ q′ belong to egoist clusters in period
t + 1. It vanishes if q ⊆ q′ ∈ E(t + 1). Analogous definitions apply for egoist
clusters. We say that a cluster which does not survive, expand, contract or
vanish is punctured. Finally, let L(a, b) ⊂ S denote the set of states in which
all altruist clusters are of length at least a and all egoist clusters are of length at
least b , and let U(a, b) ⊂ S denote the set of states in which all altruist clusters
are of length at most a and all egoist clusters are of length at most b .

To get a sense of the dynamic possibilities inherent in this system, consider
first an initial state s ∈ L(3r, 2r) so that all altruist clusters are of length at least
3r and all egoist clusters are of length at least 2r. Without loss of generality,
suppose that the set of players {1, ..., l} constitute an altruist cluster, where
l ≥ 3r by hypothesis. This cluster has (on either side) egoist clusters of length at
least 2r. Consider player m where m ∈ {1, ..., r} from the border with the egoist
cluster. The neighborhood of this player contains r + m altruists (including
herself). Of these, exactly m altruists are in homogeneous neighborhoods and
hence obtain a payoff of (β − 1). The payoffs of the remainder depend on their
distance from the egoist cluster. From the perspective of player m, the mean
altruist payoff in her interaction neighborhood is accordingly

π̄a
m = −1 + 1

r + m

(
mβ + β

2r

r∑

i=1

(r + i − 1)

)
= 1

4
β

4m + 3r − 1

r + m
− 1. (5)

Player m has r + 1 − m egoists in her interaction neighborhood, and the mean
egoist payoff in her neighborhood is given by

π̄ e
m =

(
1

r + 1 − m

)
β

2r

r+1−m∑

i=1

(r + 1 − i) = 1

4
β

r + m
r

. (6)

The payoff difference π̄a
m − π̄ e

m, after some simplification, can be written as

π̄a
m − π̄ e

m = β − ϕ(r, m)

ϕ(r, m)
(7)

where

ϕ(r, m) = 4r (r + m)

2rm + 2r2 − r − m2
.

Since 1 ≤ m ≤ r, ϕ(r, m) is strictly positive. ϕ(r, m) can be interpreted as the
minimum of altruist benefit for altruist m to remain as altruist in the next
period. Hence altruist m will switch if and only if β ≤ ϕ(r, m). Note that

∂ϕ(r, m)

∂m
= 4r

(
2rm − r + m2

)
(
2rm + 2r2 − r − m2

)2 > 0. (8)
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So ϕ(r, m) is greatest when m = r and least when m = 1. This implies that the
altruist who is furthest from the egoist cluster is most likely to be converted to
egoist. Define βl(r) = ϕ(r, 1) and βh(r) = ϕ(r, r). Note that

βl(r) = 4r
2r − 1

,

βh(r) = 8r
3r − 1

.

When r = 1, βl(r) = βh(r) = 4. Both functions are strictly decreasing in r and
bounded below by 2 and 8/3 respectively. For all r > 1, βh(r) > βl(r). Figure 2
plots βh for various values of r.

Provided that the initial state s ∈ L(3r, 2r), all altruists will remain altruists
under the dynamics if and only if β > βh(r). Similarly, all altruists with at
least one egoist neighbor will become egoists if and only if β ≤ βl(r). For the
intermediate range βl(r) < β ≤ βh(r), some but not all altruists will switch.
That is, βh(r) is the threshold value of altruist benefit over which all altruists
facing at least one egoist neighbor will remain altruists in the next period and
βl(r) is the threshold value of altruist benefit below which all altruists facing at
least one egoist neighbor will switch to egoists in the next period. The fact that
βh(r) is declining implies that the range of parameter values for which altruist
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clusters remain intact (under the stated conditions) rises with the interaction
radius r.

We next proceed with an initial state s ∈ L(2r, 3r) and show that, in this
case, if β > βh(r), then all egoists with one or more altruist neighbors become
altruists. Without loss of generality, suppose that the set of players {1, ..., l}
constitute an egoist cluster, where l ≥ 3r by hypothesis. This cluster has (on
either side) altruist clusters of length at least 2r. Consider the player m,

where m ∈ {1, ..., r} from the border with altruist cluster and note that the
neighborhood of this player contains r + m egoists (including herself). Of
these, exactly m egoists are in homogeneous neighborhoods and hence obtain
a payoff of 0. From the perspective of player m, the mean egoist payoff in her
interaction neighborhood is accordingly

π̄ e
m = 1

r + m

(
β

2r

r∑

i=1

(r + 1 − i)

)
= 1

4
β

r + 1

r + m
. (9)

Player m has r + 1 − m altruists in her neighborhood, and the mean altruist
payoff in her neighborhood is given by

π̄a
m = −1 + 1

r + 1 − m

(
β

2r

r+1−m∑

i=1

(r + i − 1)

)
= −1 + 1

4
(3r − m)

β

r
. (10)

The payoff difference π̄a
m(st) − π̄ e

m(st), after some simplification, may be
expressed as

π̄a
m − π̄ e

m = β − ϕ(r, m)

ϕ(r, m)
, (11)

exactly as in Eq. 7. Following the same arguments made above, we conclude
that provided the initial state s ∈ L(2r, 3r), all egoists will remain egoists if
and only if β ≤ βl(r). Similarly, all egoists with at least one altruist neighbor
will become altruists if and only if β > βh(r). For the intermediate range
βl(r) < β ≤ βh(r), some but not all egoists will switch. Those who switch will be
the ones closest to the altruist cluster, and hence the altruist cluster can spread.
Hence, for parameter values in this intermediate range, altruist clusters can
expand at the edges but are punctured from within. We illustrate this case with
an example where n = 50, k = 8, and β = 2.89 < βh(r) = 2.9091, simulated
in Fig. 3.

Figure 3 shows that the population share of altruists grows in the short run
but altruists are eventually eliminated from the population (the darker cells
represent altruists and the lighter ones for egoists and time flows from top to
bottom). In the initial period the population is composed of a single altruistic
cluster with 33 individuals and a smaller egoistic cluster with 17 individuals. In
the second period the total number of altruists rises to 37, although there are
now three distinct altruistic clusters. This happens because the initial cluster of
altruists is punctured from within, creating two egoistic clusters each composed
of just one individual. In period 3 these egoistic clusters expand, resulting
in a decline in the total number of altruists. On the three altruistic clusters
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Fig. 3 Evolution of an altruist
cluster when β ∈ (βl, βh)

remaining, the two smaller ones disappear in period 4. The larger altruistic
cluster expands at the edges but is again punctured from within. By period
5, all altruistic clusters are too small to be viable and by period 6 the entire
population is at a steady state composed only of egoists.

5 Main results

Putting together the above arguments in the previous section and applying
them iteratively, we find that if β > βh(r) and the initial state s (0) belongs
to L(3r, 3r), then altruist clusters will expand and egoist clusters contract as
long as the condition s ∈ L(3r, 3r) continues to be satisfied. Eventually a state
will be reached in which at least one egoist cluster is shorter than 3r, while
all altruist clusters are at least 5r in length. The dynamics from this point
onwards are much more difficult to characterize, but it can be shown that the
following holds.

Proposition 1 Suppose β > βh(r) and the initial state s(0) ∈ L(3r, 3r). Then
there exists an integer τ such that ρ(t) ≥ 0.5 for all t ≥ τ.

Proof See the Appendix. ��
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The intuition for this result is as follows. Since β > βh(r), initially the altruist
clusters expand and the egoist clusters contract. The question is then whether
these contracted egoist clusters can revive back to its original or greater size.
Equation 8 implies that the altruist who neighbors with one single egoist is
most likely to be converted to egoist. If she is converted, this altruist cluster
rots from the core out and collapses. However, since β > βh(r), altruist cluster
of sufficiently large size will not be punctured. This implies that once egoist
cluster contract to less than 3r, it will either remain less than 3r or vanish.

The set of initial conditions for which the above result applies is very
restrictive in a probabilistic sense, particularly when k is relatively large. The
same logic that underlies the proof of this proposition, however, suggests that
if β > βh(r) and the initial state s(0) contains at least one sufficiently large
altruist cluster, a significant population share of altruists persists in the long
run. Numerical results supportive of this conjecture are presented in Section 6.

What about the case in which β ≤ βh(r)? As the example of Fig. 3 shows,
movements in population shares can be quite complex and nonmonotonic. One
feature of dynamics that is observed when β ≤ βh(r) but not when β > βh(r) is
that altruist clusters may expand at the edges but are punctured from within
(see Fig. 3 as an example). The reason can be discerned as follows. Equations 7
and 11 suggest that there exists asymmetry in the likelihood of being converted
to the alternative action for members of altruist and egoist clusters in a sense
that egoist who is nearer to the altruist cluster is more likely to be converted,
while altruist who is further away from the egoist cluster is more likely to
be converted. This implies that altruist clusters can be punctured but egoist
clusters will never be. This process of collapsing within the altruist cluster is
attributable to the break-down of large altruist clusters, which would otherwise
survive, into several smaller clusters, which eventually vanish. Based on this
observation, in the next section we show by simulations that if β ≤ βh(r) and
the initial state s(0) contains at least one egoist, then there exists τ such that
ρ(t) = 0 for all t ≥ τ .

Before presenting numerical results supportive of the above claims, we
provide a partial characterization of the dynamics in the special case where
the interaction radius is r = 2.

Proposition 2 Suppose r = 2, and β < βh(r). Then, if the initial state contains at
least one egoist, an absorbing state is reached in which all players are egoists.

Proof See the Appendix. ��

The underlying mechanism behind Proposition 2 is that the puncturing of
altruist clusters can lead to the collapse of altruism in the steady state, even
if the altruist population grows in the short-run (as in Fig. 3). Taken together,
Propositions 1 and 2 suggest that βh(r) can serve as a bifurcation value below
which a large number of states in which the majority of individuals are altruists
lose stability: when β > βh(r) the long run viability of altruism is practically
ensured, while when β ≤ βh(r), altruism is not viable under any initial
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conditions. Although these results have been proved only for special cases
(with respect to initial conditions and the interaction radius), the numerical
results in the next section suggest that they apply much more generally.

6 Simulations

In this section we argue on the basis of simulation results that the analytical
results of the previous section hold under a more general set of conditions.
Define β+

ε = βh(r) + ε and β−
ε = βh(r) − ε for some small ε. If βh(r) is indeed

a bifurcation value as claimed, the limiting properties of the system should be
dramatically different when β = β+

ε relative to the case of β = β−
ε .

For some given population size n and a range of values for the interaction
radius r, the dynamics are simulated for a large number of randomly selected
initial states, using parameters β+

ε and β−
ε . Given the population size and

interaction radius, we compute the limiting share of altruists from the given
initial state and benefit–cost ratio β ∈ {β+

ε , β−
ε }. Different initial conditions s

will, in general, result in different values of the limiting share. To test the
claims made above, we partition the set of initial conditions according to the
size of the largest altruist cluster l. To do so, we let F (a, b) denote the set of
initial conditions in which the largest altruist clusters are of length at least a
but strictly less than b .

Each cell in Table 1 reports the mean of this limiting share of altruists over
the set of initial states according to F (a, b) for the specified parameter values.
These results are based on n = 200 and r ranging from 1 to 5. We choose ε to
be 0.0001. For each parameter configuration, 10,000 randomly selected initial
configurations of states are explored. Each of such configurations is run until
convergence to some absorbing state or cycle. Then each ρ(t) in absorbing
state or cycle is computed and averaged over in all initial configurations, which
is presented in Table 1.

In all simulations, regardless of interaction radius r, all altruists are elimi-
nated in the long run whenever β = β−

ε < βh(r). This can be seen by observing

Table 1 Steady state mean share of altruists for values of β and r

β r F(1, r) F(r, 2r) F(2r, 3r) F(3r, 4r) F(4r, 5r) F(5r, n)

β+
ε 1 0 0 0 0.9306 0.9157 0.9094

2 0 0 0 0.2238 0.4388 0.9749
3 0 0 0 0.0439 0.1498 0.9709
4 0 0 0 0.0096 0.0524 0.9604
5 0 0 0 0.0081 0.0274 0.9498

β−
ε 1 0 0 0 0 0 0

2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
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that the mean share of altruists in steady state or cycle is zero for all classes
when β = β−

ε . When β = β+
ε > βh(r), on the other hand, the long-run popula-

tion share of altruists depends on whether the initial state contains a sufficiently
large cluster of altruists. Table 1 shows that whenever the size of the largest
altruists cluster in the initial state is at least 3r, altruists can survive and spread
under the dynamics. With this set of initial conditions, altruism is potentially
viable but not ensured. For any given interaction radius, the larger the size of
the largest altruist cluster in the initial state, the greater the likelihood that
altruists will survive in the long run.

These results suggest that the condition β > βh(r) is necessary (and
sufficient, subject to appropriate initial conditions) for the persistence of
cooperative behavior under the specified imitation dynamics. Given that βh(r)
is a strictly decreasing function of r (see Fig. 2), this in turn implies that the
range of benefit–cost ratios for which cooperation is possible becomes larger
with increasing interaction radius. It is in this sense that more dense networks
can be said to be more conductive to the propagation of cooperation.

7 Conclusions

Cooperative behavior is widespread in many societies, and is commonly
exhibited in experimental environments (Fehr and Fischbacher 2003). There
is now a large literature on the evolution of cooperation, most of which is
based on random matching (see, for instance, Axelrod 1984 and Bowles and
Gintis 2004). Such models ignore the structure of the social network within
which interactions occur, which is a serious limitation since “all economic
action is embedded in networks” (Granovetter 1985) and network structure
can have important effects on behavior (Coleman 1988). We have investigated
the effects of changes in interaction radius on the survival and stability of
cooperative behavior in a local interaction environment. The viability of
cooperative behavior depends in a systematic way on interaction radius and
the benefit–cost ratio. We identified for each interaction radius a critical value
of the benefit–cost ratio which serves as the threshold below which cooperation
cannot be sustained. When the benefit–cost ratio falls below this threshold, the
incidence of cooperation can increase for some time, but eventually collapses
as large altruist clusters are punctured and erode from within. Since the
threshold itself declines as the interaction radius rises, there is a precise sense
in which dense networks are more conducive to the evolution of cooperation.

An interesting direction for future research is the exploration of irregular
networks. Regular networks studied in the literature to date satisfy two impor-
tant properties. First, each individual has the same number of neighbors and,
provided that this number is not too low, the proportion of one’s neighbors
who are also connected to each other is very high. In other words, such
networks exhibit a high degree of clustering or cliquishness: two persons
who are connected to each other have a large number of social neighbors in
common. Second, the average distance or “degrees of separation” between
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two individuals (defined as the length of the shortest sequence of connected
individuals which contains both of them) can be very large. Such networks
are said to have high characteristic path length. However, there is considerable
evidence that real world social networks satisfy the first property (high clus-
tering) but have remarkably low characteristic path length. This combination
of attributes is typical of “small world” networks (Watts and Strogatz 1998;
Watts 1999). Whether or not cooperation is viable such small world networks
is an important question to consider, but one beyond the scope of the present
paper.

Appendix

Proof of Proposition 1 We shall prove that if s(0) ∈ L(3r, 3r) and β > βh(r)
then there exists τ such that for all t ≥ τ, s(t) ∈ L(3r, 0) ∩ U(n, 3r), from which
the result follows. We begin with the following results (the first two of which
follow from the discussion in the text): ��

Lemma 1 Suppose s(t) ∈ L(3r, 2r). Then si(t) = 1 ⇒ si(t + 1) = 1 (all altruists
remain altruists) if and only if β > βh(r).

Lemma 2 Suppose s(t) ∈ L(2r, 3r). Then si(t) = 0 and
∑i+r

j=i−r s j(t) �= 0 ⇒ si(t +
1) = 1 (all egoists with one or more altruist neighbors become altruists) if and
only if β > βh(r).

Lemma 3 Suppose that β > βh(r) and s(t) ∈ L(3r, 2r + 1). Then all altruist
clusters expand and all egoist clusters contract.

Proof of Lemma 3 From Lemma 1, all altruist clusters expand or survive.
From Lemma 2, all egoist clusters of length at least 3r contract. If we can
show that all egoist clusters of length l with 2r + 1 ≤ l ≤ 3r − 1 also contract
then it follows from Lemma 1 that all altruist clusters expand. Accordingly,
let the players {1, ..., l} constitute such a cluster. By hypothesis, this cluster
must be adjacent (on either side) to an altruist cluster of length at least 3r.
Exactly l − 2r > 0 players in the egoist cluster {1, ..., l} are in homogeneous
egoist neighborhoods and thus will not switch. To see which, if any, of the
remaining egoists switch, consider the egoist players m, where m ∈ {1, ..., r}.
From the perspective of player m, the average altruist payoff π̄a

m is exactly as
given in Eq. 10 in the text:

π̄a
m = −1 + 1

4
(3r − m)

β

r

The average egoist payoff π̄ e
m observed by player m depends on whether or not

m > l − 2r. For all players m ∈ {1, ..., l − 2r}, π̄ e
m is exactly as given in Eq. 9 in

the text, and hence (using the same argument as in the text), since β > βh(r)
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all these egoists will switch to altruists. For m ∈ {l − 2r + 1, ..., r}, on the other
hand, the average egoist payoff from the perspective of player m is

π̄ e
m =

(
1

r + m

)
β

2r

(
r∑

i=1

(r + 1 − i) +
l−2r∑

i=1

0 +
m+2r−l∑

i=1

i

)

= 1

4
β

5r2 + 3r + m2 + 4mr − 2ml + m − 4rl + l2 − l
(r + m) r

(12)

The average payoff difference is

π̄a
m − π̄ e

m

= −1 + 1

4
(3r − m)

β

r
− 1

4
β

5r2 + 3r + m2 + 4mr − 2ml + m − 4rl + l2 − l
(r + m) r

= −1

4
β

2r2 + 2mr + 2m2 + 3r − 2ml + m − 4rl + l2 − l
(r + m) r

Solution: Differentiating with respect to m and simplifying yields

∂
(
π̄a

m − π̄ e
m

)

∂m
= −1

4
β

4mr + 2m2 + 2rl − 2r − l2 + l

(r + m)2 r

Since we are considering the case m ∈ {l − 2r + 1, ..., r}, we have l ≤ m+2r−1.

Hence, provided that 2r ≤ l, the numerator of the above expression is

4mr +2m2 + 2rl − 2r − l2 + l

≥ 4mr + 2m2 + 2r (2r) − 2r − (m + 2r − 1)2 + 2r

= m2 + 2m + 4r − 1 > 0.

Therefore π̄a
m − π̄ e

m is strictly decreasing in m and if egoist m switches, then
so does egoist m − 1 for all m ∈ {l − 2r + 2, ..., r}. Together with the fact that
players {1, ..., l − 2r} switch to altruists, this proves that the egoist cluster
contracts. Hence from Lemma 1 both adjacent altruist clusters expand. Note
that since l > 2r, the egoist cluster shrinks to a length strictly less than 2r in
state s(t + 1). ��

Lemma 4 Suppose that β > βh(r) and st ∈ L(3r, 2r) . Then all altruist clusters
survive or expand and all egoist clusters survive, contract, or vanish.

Proof of Lemma 4 From Lemma 3, all egoist clusters of length greater than
2r contract so we need only consider clusters of length 2r. Let the players
{1, ..., 2r} constitute such a cluster. By hypothesis, this cluster must be adjacent
(on either side) to an altruist cluster of length at least 3r. Consider the egoist
player m, where m ∈ {1, ..., r}. From the perspective of player m, the average
altruist payoff π̄a

m is exactly as given in Eq. 10 above and the average egoist
payoff is exactly as given in Eq. 12 above. As in the proof of Lemma 3
therefore, if any egoist switches then so do all egoists which are closer to an
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altruist cluster. Hence the egoist cluster cannot be punctured. Since all altruist
clusters survive or expand from Lemma 1, the egoist cluster cannot expand. It
must therefore survive, contract or vanish. ��

Lemma 5 Suppose that st ∈ L(3r, r + 1). Then no new cluster appears, and all
egoist cluster of length less than 3r continue to remain of length less than 3r.

Proof of Lemma 5 To show that no new cluster appears, we need to show that
no cluster is punctured, and that two heterogeneous adjacent players cannot
both switch. Given the above results, we need only consider egoist clusters of
length l where r + 1 ≤ l ≤ 2r − 1, and their adjacent altruist clusters. Without
loss of generality, let the players {1, ..., l} constitute an egoist cluster with r +
1 ≤ l ≤ 2r − 1. By hypothesis, this cluster must be adjacent (on either side) to
an altruist cluster of length at least 3r. ��

Claim 1 For any m ∈ {l − r, ..., r}, st+1
m+1 = 0 if st+1

m = 0.

Proof of Claim 1 All (egoist)players m with m ∈ {l + 1 − r, ..., r} have the
same payoffs since all have exactly l egoist neighbors. They also observe the
same mean egoist payoff since they observe all egoists in the cluster. The mean
altruist payoff they observe is greater for values of m closer to the boundary
of the cluster. Hence if player r does not switch, neither do any of the players
{l + 1 − r, ..., r}. Player l − r observes a higher mean altruist payoff than player
l + 1 − r, and the same mean egoist payoff. Hence if l − r switches, l + 1 − r
must switch. ��

Claim 2 For any m ∈ {1, ..., l − r − 1}, st+1
m+1 = 0 if st+1

m = 0.

Proof of Claim 2 Consider player m with m ∈ {1, ..., l − r}.
π̄ e

m(st)

= 1

r + m

(
l−r∑

i=1

β (r + 1 − i)
2r

+ (2r − l) β (2r + 1 − l)
2r

+
m∑

i=1

β (2r − l + i)
2r

)

π̄ e
m+1(s

t)

= 1

r + m + 1

(
l−r∑

i=1

β (r + 1 − i)
2r

+ (2r − l) β (2r + 1 − l)
2r

+
m+1∑

i=1

β (2r − l + i)
2r

)

and

π̄a
m(st) = 1

r + 1 − m

r+1−m∑

i=1

β (r + i − 1)

2r
− 1

π̄a
m+1(s

t) = 1

r − m

r−m∑

i=1

β (r + i − 1)

2r
− 1
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Now suppose that π̄ e
m(st) − π̄a

m(st) ≥ 0 (Player m remains an egoist). Then

π̄ e
m+1(s

t) − π̄a
m+1(s

t)

≥ (
π̄ e

m+1(s
t) − π̄ e

m(st)
) − (

π̄a
m+1(s

t) − π̄a
m(st)

)

=
(

−1

4
β

r − l − m + l2 − 2rm − m2 − 2rl + r2

(r + m + 1) r (r + m)

)
−

(
−1

4

β

r

)

= 1

4
β

l + 2m − l2 + 4rm + 2m2 + 2rl
(r + m + 1) r (r + m)

> 0.

Hence st+1
m = 0 implies that st+1

m+1 = 0. ��

Claim 3 An altruist cluster cannot be punctured.

Proof of Claim 3 Altruist clusters adjacent to egoist clusters of length at least
2r cannot be punctured from Lemma 1. Accordingly, let the players {1, ..., l}
constitute an egoist cluster with r + 1 ≤ l ≤ 2r − 1 . Consider (altruist) players
l + m with m ∈ {1, ..., r}. For 2r − l < m ≤ r, The average payoff of altruists is
given in Eq. 5. The average payoff of egoists is given by Eq. 6. By Lemma 1,
that player l + m remains an altruist. For 1 ≤ m ≤ 2r − l, the average payoff of
altruists is given in Eq. 5 and, for 1 ≤ m ≤ 2r − l,

π̄ e
m = 1

r − m + 1

(
l−r∑

i=1

β (r + 1 − i)
2r

+ β (2r − l + 1) (2r − l + 1 − m)

2r

)

Differentiating π̄a
m − π̄ e

m with respect to m,

∂
(
π̄a

m − π̄ e
m

)

∂m
= 1

4
β

r + 1

(r + m)2 − 1

4
β

−2rl + r2 + r − l + l2

(r − m + 1)2 r
(13)

where both ∂π̄a
m

∂m and ∂π̄ e
m

∂m are positive. Since Eq. 13 is decreasing in m,

∂
(
π̄a

m − π̄ e
m

)

∂m
>

1

4
β

r + 1

(r + (2r − l))2 − 1

4
β

−2rl + r2 + r − l + l2

(r − (2r − l) + 1)
2 r

(14)

Note that the second term in Eq. 14 decreases in l. Substituting r + 1 for l in
the second term,

∂
(
π̄a

m − π̄ e
m

)

∂m
>

1

4
β

r + 1

(r + (2r − l))2 − 1

4
β

−2r (r + 1) + r2 + r − (r + 1) + (r + 1)2

(r − (2r − (r + 1)) + 1)2 r

= 1

4
β

r + 1

(3r − l)2 > 0

Noting this, suppose now that player l + m switches. For player l + m − 1,
π̄a decreases more than π̄ e. Player l + m − 1 also switches. Hence the altruist
cluster cannot be punctured. ��

Claim 4 Two heterogeneous adjacent players cannot both switch.
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Proof of Claim 4 This follows from the above results when the egoist cluster
is at least 2r. Accordingly, let the players {1, ..., l} constitute an egoist cluster
with r + 1 ≤ l ≤ 2r − 1. We need to show that if player l switches then player
l + 1 does not, and if player l + 1 switches then player l does not. Note that

π̄ e
l (st) = 1

r + 1

(
l−r∑

i=1

β (r + 1 − i)
2r

+ (2r − l) β (2r + 1 − l)
2r

+ β (2r − l + 1)

2r

)
,

π̄a
l (st) = 1

r

r∑

i=1

(
β (r + i − 1)

2r

)
− 1.

Player l remains an egoist if and only if π̄a
l (st) − π̄ e

l (st) ≤ 0, or

β ≤ 4r (r + 1)

4rl − 2r2 − 5r + 3l − 3 − l2
= β ′′ (r, l) .

Now consider (altruist) player l + 1.

π̄a
l+1(s

t) = 1

r + 1

r+1∑

i=1

(
β (r + i − 1)

2r

)
− 1

π̄ e
l+1(s

t) = 1

r

(
l−r∑

i=1

β (r + 1 − i)
2r

+ (2r − l) β (2r + 1 − l)
2r

)

So this player switches if and only if π̄a
l+1(s

t) − π̄ e
l+1(s

t) ≤ 0 or

β ≤ 4r (r + 1)

4rl − 2r2 − 5r + 3l − 3 − l2
= β ′′ (r, l) .

It is easily verified that β ′ (r, l) < β ′′ (r, l) for all r and l in the admissible range.
If any altruists switch (β ≤ β ′) then all egoists remain egoists (β < β ′′). If any
egoists switch (β > β ′′) then all altruists remain altruists (β > β ′).

Claims 1–4 establish that no new clusters appear. Claim 3 establishes that,
for m ≥ 2r + 1 − l, player l + m remains an altruist. Hence the egoist cluster
cannot expand by more than 2r − l on either side, or 4r − 2l in all. Hence it
cannot expand to exceed 4r − l ≤ 3r − 1. ‖ ��

Lemma 6 Suppose that st ∈ L(3r, 1). Then no new cluster appears.

Proof of Lemma 6 To show that no new cluster appears, we need to show that
no cluster is punctured, and that two heterogeneous adjacent players cannot
both switch. Given the above results, we only need to consider egoist clusters
of length l where 1 ≤ l ≤ r, and their adjacent altruist clusters. Without loss
of generality, let the players {1, ..., l} constitute an egoist cluster 1 ≤ l ≤ r. By
hypothesis, this cluster must be adjacent (on either side) to an altruist cluster
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of length at least 3r. Since l ≤ r all (egoist) players m ∈ {1, ..., l} observe the
same mean egoist payoff, given by

π̄ e
m(st) = β (2r + 1 − l)

2r
.

The mean altruist payoff observed by player m is

π̄a
m(st) = 1

2r + 1 − l

(
2 (r − l) (2r − l) β

2r
+

m∑

i=1

β (2r − l + i − 1)

2r

+
l−m+1∑

i=1

β (2r − l + i − 1)

2r

)
− 1.

This payoff π̄a
m(st) is greater for values of m closer to the boundaries of the

cluster {1, ..., l}. This is because players closer to the boundary are in contact
with more altruists deeper within altruist clusters and hence with altruists who
are earn higher payoffs. Hence player m switches to altruism only if all egoists
closer to the boundary of the cluster {1, ..., l} also switch. This implies that the
egoist cluster cannot be punctured.

Consider whether player l remains an egoist.

π̄ e
l (st) − π̄a

l (st) = 1 − 1

4
β

−4r − 2 + l + l2

(2r + 1 − l) r

Player l (and hence all egoists) remain egoists if and only if

β ≤ 4
(2r + 1 − l) r

−4r − 2 + l + l2
= β ′′(r, l)

We next show that if egoist l switches, then no altruists switch. As before,
the altruist most likely to switch is player l + 1. This follows from the facts that
(a) all egoists have the same payoffs and hence the mean egoist payoffs are the
same for all altruists who observe an egoist, (b) all altruists in Nl+1 are also
in Nl+m where 2 ≤ m ≤ r, and (c) any altruists in Nl+m who is not in Nl+1 is
in a homogeneous neighborhood and hence obtains β − 1, the highest payoff
possible for an altruist is

π̄a
l+1(s

t) = 1

2r + 1 − l

(
2 (r − l) β (2r − l)

2r
+

l+1∑

i=1

β (2r − l + i − 1)

2r

)
− 1.

Hence

π̄ e
l+1(s

t)−π̄a
l+1(s

t)

= β (2r + 1 − l)
2r

−
2(r−l)β(2r−l)

2r + ∑l+1
i=1

β(2r−l+i−1)

2r

2r + 1 − l
+1

=1− 1

4
β
−4r−2+3l+l2

(2r+1−l) r
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Player l + 1 switches if and only if

β ≤ 4 (2r + 1 − l) r
−4r − 2 + 3l + l2

= β ′(r, l).

Note that β ′(r, l) < β ′′(r, l). Hence if β > β ′′(r, l), which makes one or more
egoists switch, then β > β ′(r, l), so all altruists remain altruists. In this case no
new cluster appears. On the other hand if β ≤ β ′(r, l), so that one or more
altruists switch, then β < β ′′(r, l), so all egoists remain egoists. Again no new
cluster appears. Finally, if β ′(r, l) < β ≤ β ′′(r, l), then no player in the egoist
cluster and no adjacent altruist player switches. In this case too, no new cluster
appears. ‖ ��

The proof of Proposition 1 may now be completed as follows. If s0 ∈
L(3r, 3r) then from Lemmas 1 and 2, all altruist clusters expand by 2r and all
egoist clusters contract by 2r until some period t1 in which one or more egoist
clusters are shorter than 3r. In this period, all altruist clusters are of length at
least 5r, and egoist clusters fall into one of five categories; (I) length l ≥ 3r,
(II) 2r + 1 ≤ l ≤ 3r − 1, (III) 2r = l, (IV) r + 1 ≤ l ≤ 2r − 1, or (V) 1 ≤ l ≤ r.
From Lemmas 2–6 Clusters in categories (I) and (II) contract, those in (III)
survive, contract or vanish, and those in (IV) and (V) expand, contract, survive
or vanish but cannot expand to exceed length 3r. Hence no egoist cluster can
return to category (I) after leaving it, and no altruist cluster can contract to
a length less than 3r. Since all egoist clusters in category (I) contract in each
period from Lemma 2, they must eventually fall into another category. Hence
there exists τ such that for all t ≥ τ, st ∈ L(3r, 0) ∩ U(n, 3r). Since egoist and
altruist clusters alternate by definition, ρ t must be at least 0.5 at all states st

such that t ≥ τ .

Proof of Proposition 2 We start with two lemmata for any r. ��

Lemma 7 Suppose that β ≤ βh(r). Then all altruist clusters of length at least 2r
contract or are punctured.

Proof of Lemma 7 Suppose β ≤ βh(r) and let the players {1, ..., l} constitute an
altruist cluster, where l ≥ 2r. Consider player l + 1 − r. Note that this player
has only one egoist neighbor, player l + 1. Hence π̄a

l+1−r − π̄ e
l+1−r = π̄a

l+1−r −
πl+1. We claim that this difference is greatest when players {l + 2, ..., l + r + 1}
are all egoists. To see this, observe that if any number m of these players
switches from E to A then πl+1 increases by βm/2r while π̄a

l+1−r increases
by strictly less than βm/2r. This is because at most r − 1 of the altruists in
the set {l + 1 − 2r, ..., l} have their payoffs raised, and these payoffs are raised
by at most βm/2r.The remaining altruists experience no change in payoff.
This proves that π̄a

l+1−r − π̄ e
l+1−r is maximized when players {l + 2, ..., l + r + 1}

are all egoists. Hence if altruist l + 1 − r switches when players {l + 2, ..., l +
r + 1} are all egoists, then altruist l + 1 − r will also switch regardless of
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the composition of {l + 2, ..., l + r + 1}. Accordingly, suppose that players
{l + 2, ..., l + r + 1} are all egoists. First consider the case l ≥ 3r. Then

π̄a
l+1−r − π̄ e

l+1−r = 1

2r

(
r∑

i=1

β (r + i − 1)

2r
+ rβ

)
− 1 − βr

2r
= 1

8r
(3rβ − β − 8r)

Hence if β ≤ βh(r), altruist l + 1 − r switches, so the cluster {1, ..., l} either
contracts or is punctured. Next consider the case 2r ≤ l < 3r. In this case π̄ e

l+1−r
is the same as it would be when l ≥ 3r, while π̄a

l+1−r is strictly less than it would
be when l ≥ 3r. Since altruist l + 1 − r switches when l ≥ 3r, this player must
also switch when 2r ≤ l < 3r. ‖ ��

Lemma 8 Suppose that β ≤ βh(r). Then any egoist who have only one altruist
in his neighborhood remain as egoist.

Proof of Lemma 8 Suppose β ≤ βh(r). The egoist we consider must belong to
the egoist cluster of length at least 2r. Let the players {1, ..., l} constitute an
egoist cluster, where l ≥ 2r. Consider player l + 1 − r. Note that this player has
only one altruist neighbor, player l + 1. Hence π̄a

l+1−r − π̄ e
l+1−r = πl+1 − π̄ e

l+1−r.
We claim that this difference is greatest when players {l + 2, ..., l + r + 1} are
all altruists. To see this, observe that if any number m of these players switches
from A to E then πl+1 decreases by βm/2r while π̄a

l+1−r decreases by strictly
less than βm/2r. This is because at most r − 1 of the egoists in the set {l +
1 − 2r, ..., l} have their payoffs decreased, and these payoffs are decreased by
at most βm/2r. The remaining egoists experience no change in payoff. This
proves that πl+1 − π̄ e

l+1−r is maximized when players {l + 2, ..., l + r + 1} are all
altruists. Hence if egoist l + 1 − r remain an egoist when players {l + 2, ..., l +
r + 1} are all altruists, then egoist l + 1 − r will also remain an egoist regardless
of the composition of {l + 2, ..., l + r + 1}. Accordingly, suppose that players
{l + 2, ..., l + r + 1} are all altruists. First consider the case l ≥ 3r. Then

π̄a
l+1−r − π̄ e

l+1−r = βr
2r

− 1 − 1

2r

(
r∑

i=1

βi
2r

)
= 1

8r
(3rβ − β − 8r)

Hence if β ≤ βh(r), egoist l + 1 − r remains an egoist. Next consider the
case 2r ≤ l < 3r. In this case π̄ e

l+1−r is strictly greater than it would be when
l ≥ 3r, while π̄a

l+1−r is the same as it would be when l ≥ 3r. Since egoist
l + 1 − r remains when l ≥ 3r, this player must also remain an egoist when
2r ≤ l < 3r. ‖

Now assume that r = 2 and thus βh (2) = 16
5 Let A (m) denote the altruist

cluster of length m and E (m) for the egoist cluster of length m. Let a and e
with superscript ∗ is the player in A (m) and E (m) respectively, while a (e) be
any other altruist(egoist). Let x denote the player with the unspecified type.
Lemma 8 implies that with r = 2, the egoist cluster is never punctured. This
and Lemma 7 implies that any newly formed altruist cluster will be of length at
most 2. ��
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Claim 1 All the altruist in A (m) for m ≤ 4 switch to egoist.

Proof of Claim 1 Note that we can possibly consider two type of altruists
in A (m): either (Case I) all the egoist in his neighborhood has only one
altruist neighbor, namely the altruist in A (m), or (Case II) at least one
egoist in the neighborhood whose payoff is at least 2

4β. Case I is feasible iff
e, e, e, e, a∗, e, e, e, e. where it is easy to see that this altruist will switch to egoist
next period( this is true for any β). Case I implies that if not Case I , all the
altruists in A (m) have at least one egoist neighbor whose payoff is at least 2

4β.
Now consider Case II. There are two possible cases: either (Case II-1)

at least one altruist in his neighborhood has the payoff of less than −1 +
3
4β or (Case II-2) all altruist neighbors including himself have the payoff
−1 + 3

4β. In Case II-2, all the egoist the altruists face have the payoff 3
4β.

Thus these altruists will convert to egoist. Consider Case II-1. There are two
possible cases for this: either there is only one egoist neighbor for A (m) who
has at least two altruist neighbors or there are more than one such egoist
neighbor. The first is only feasible with x1, x2, a, e, a∗, e, e, e, e (and its mirror
e, e, e, e, a∗, e, a, x2, x1). The best case for the altruist a∗ to remain an altruist is
when x1 = x2 = a. In this case

π̄a − π̄ e = 1

12
β − 1 ≤ −11

15
< 0

Hence this altruist player will switch to egoist. For the second case, the
maximum of π̄a among A (m) is

π̄a =
2
4β + (n − 1) 3

4β

n
− 1 for n = 1, 2, 3

while the minimum of the average payoff of egoist around the altruist in
A (m) is

π̄ e = 2 2
4β + (5 − n − 2) 1

4β

5 − n
for n = 1, 2, 3

The difference is

π̄a − π̄ e = 1

4

5β − 9βn + 2βn2 + 20n − 4n2

n (−5 + n)

which is increasing in β for all n. Substituting 16
5 for β and then we have

π̄a − π̄ e = −1

5

20 − 11n + 3n2

n (5 − n)
< 0 ��

Claim 2 All the egoist in E (m) for m ≤ 4 will remain an egoist.

Proof of Claim 2 All the egoist neighbors of the egoist in E (m) including
himself is of payoff at least 1

4β. There are possibly two types of egoists: either
(Case I) all the egoist in the neighborhood including himself face only one
altruist. or (Case II) at least one egoist in the neighborhood including himself
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has the payoff of at least 2
4β. Case I is feasible iff the altruist neighbor is

surrounded by egoists and thus the average payoff of this altruist is −1 + 1
4β.

Thus π̄a < π̄ e for the egoists in E (m) . Now consider Case II. Notice that
amongst the altruist neighbors that the egoist in E (m) face, there exist at least
one altruist neighbor whose payoff is less than −1 + 3

4β, except the case of

a, a, a, a, e∗, a, a, a, a

in which case the egoist will survive as egoist. Other than this case, we can
possibly consider two separate cases: either (Case II-1) there is only one altruist
whose payoff is at most −1 + 2

4β in the neighborhood of E (m) or (Case
II-2) there are more than one such altruist. Case II-1 is feasible only with
x1, x2, e, a, e∗, a, a, a, a (and its mirror image) and e, a, a, a, e∗, a, a, a, a (and its
mirror image). It is easy to see that e∗ will remain in the latter case. For the first
case, the best situation for the egoist e∗ to switch to altruist is x1 = x2 = e. In
this case, π̄ e = 1

2

(
3
4β + 1

4β
) = 1

2β and π̄a = 1
3

(
6
4β + 1

4β
) − 1 = 7

12β − 1. Thus
π̄a − π̄ e = 1

12β − 1 < − 11
15 < 0. Hence the egoist will remain as egoist. Now

consider Case II-2. The minimum average payoff of egoists in E (m) is

π̄ e =
2
4β + (5 − n − 1) 1

4β

5 − n
for n = 2, 3, 4

while the maximum average payoff of altruists in E (m) is

π̄a = 2 2
4β + (n − 2) 3

4β

n
− 1 for n = 2, 3, 4

Hence

π̄a − π̄ e = −1

4

10β − 11βn + 2βn2 + 20n − 4n2

n (5 − n)

which is increasing in β. Substituting 16
5 for β, π̄a − π̄ e = − 1

5
40−19n+3n2

n(5−n)
< 0.

What remains to be shown is that the newly created altruist cluster after
punctured by egoists will eventually disappear without expanding indefinitely
into the egoist cluster. We claim that this newly created altruist cluster will
disappear in the very next period without seeding altruist in the egoist cluster.

��

Claim 3 The altruist in A (m) for m = 1, 2 disappear and do not expand.

Proof of Claim 3 For m = 1,we have the following situation; ...e2, a∗, e1, ....By
Claim 1, a∗ will switch to egoist. We need to show that the surrounding egoists
e1 (e2) will remain as egoist in the next period. This is sufficient since the
egoist cluster can not be punctured by Lemma 8 for r = 2. We will consider
e1 only since the result also applies to e2 by symmetry. By Claim 2, it is
sufficient to consider the case of x1, x2, e2, a∗, e1, E (4). It is easy to see that
the worst situation for e1 to remain an egoist is x1 = e and x2 = a. In this case,
π̄a

e1
− π̄ e

e1
= −1 < 0 Thus e1will remain an egoist.
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Suppose now m = 2. Following argument for m = 1, it is sufficient to
consider the case of x, e2, a∗, a∗, e1, E (4). The worst situation for e1 to remain
an egoist is x = a. Then

π̄ e
e1

=
2
4β + 1

4β

3
= 1

4
β

π̄a
e1

=
2
4β + 1

4β

2
− 1 = 3

8
β − 1

Hence π̄a
e1

− π̄ e
e1

= 1
8β − 1. Substituting 16

5 for β, π̄a
e1

− π̄ e
e1

< − 3
5 < 0. Thus

e1 will remain as egoist.

The proof of Proposition 2 can be completed as follows. By Lemma 7, the
altruist cluster of length at least 2r either contracts until its length is less than
or equal to 2r and then it disappears by Claim 1 and 3 or it is punctured and
the newly created altruist cluster, whose length is at most 2r by Lemma 8,
disappears without expansion by Claim 1 and 3. Eventually the length of the
cluster reaches at most 2r, at the point in which it disappears. ��
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