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Abstract We study the viability of conditional cooperation in a dynamically
evolving social network. The network possesses the small world property, with
high clustering coefficient but low characteristic path length. The interaction
among linked individuals takes the form of a multiperson prisoners’ dilemma,
and actions can be conditioned on the past behavior of one’s neighbors.
Individuals adjust their strategies based on performance within their neigh-
borhood, and both strategies and the network itself are subject to random
perturbation. We find that the long-run frequency of cooperation is higher
under the following conditions: (i) the interaction radius is neither too small
nor too large, (ii) clustering is high and characteristic path length low, (iii) the
mutation rate of strategies is small, and (iv) the rate of adjustment in strategies
is neither too fast nor too slow.
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1 Introduction

The willingness of individuals to set aside their own self-interest in favor
of conditional cooperation or reciprocity has been widely documented in
experimental work (See Fehr and Gächter 2000). Accounting for such propen-
sities in evolutionary models has therefore been an active area of research
in economics. Early evolutionary approaches to this question were based
on a very simple interaction structure, such as pairwise random matching in
large populations (Trivers 1971; Axelrod and Hamilton 1981). More recently,
attention has been paid to evolution in structured populations with local
interaction (Nowak and May 1992; Eshel et al. 1998; Masuda and Aihara 2003;
Szabo and Fath 2006). We build on this literature by examining the dynamics
of reciprocity in small world networks, when both strategies and the network
itself are evolving.

Evolutionary models of cooperation with local interaction have commonly
been based on regular networks. For instance, Eshel et al. (1998) consider indi-
viduals arrayed in a circle and Nowak and May (1992, 1993) consider a regular
two-dimensional lattice (see also Lindgren and Nordahl 1994; Kirchkamp 1995;
Cohen et al. 1999).1 Despite their analytical convenience and popularity, such
networks do not correspond closely to real world social networks. Neither is
it the case that social linkages are completely unstructured, as in the case of
random networks. Social networks lie somewhere between the two extremes
of complete regularity and complete randomness: they are highly clustered like
regular networks, but any two individuals are connected by a relative small
chain of links, as in random networks. These properties are possessed by small
world networks (Watts 1999; Watts and Strogatz 1998), and the evolution of
cooperation on such networks has begun to be explored (Kim et al. 2002;
Abramson and Kuperman 2001; Szabo and Vukov 2004).

In this paper we allow the social network as well as the propensity of individ-
uals to cooperate to evolve over time. Changes in the network arise through
a process of random rewiring, which allows for existing links to be severed
as new ones are formed. This reflects the fact in modern human populations
social networks are altered as individuals switch locations, occupations, and
memberships of clubs and other organizations. Changes over time also occur
in the strategies used, or the extent of conditional cooperation, based on the
payoffs to the various strategies adopted in one’s neighborhood.

Specifically, our model has the following features. Individuals in a finite
population are represented as nodes in a small world network. Each individual
plays a multi-player Prisoners’ Dilemma game involving all individuals with
whom she is linked. Two actions are available: cooperation entails a private
cost but yields a benefit to one’s neighbors and defection costs nothing but
yields no benefit either. Individual strategies are conditioned on the past

1Recently, Wu et al. (2006) consider a model of cooperation on a disordered square lattice, in
which some links on the lattice are randomly rewired.
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behavior of their neighbors as in Watts (1999): each individual cooperates if
and only if the proportion cooperating in her neighborhood in the previous
period exceeds some threshold. This threshold or “hardness” itself varies
across individuals and evolves over time in response to observed payoffs in
the neighborhood. When cooperation is more highly rewarded than defection
in one’s neighborhood, hardness is adjusted downwards, making cooperation
more likely in future periods. Similarly, hardness is adjusted upwards when
defection is more highly rewarded than cooperation in one’s neighborhood.
We also allow for occasional mutations in individual hardness, and for the
periodic deletion and addition of links between randomly-selected individuals
(while maintaining the small world property of the network). The key variable
of interest is the long run frequency of cooperation, and the manner in which
this is affected by changes in the underlying parameters of the model.

We find that the long run frequency of cooperation is highest when the
degree of the network is neither too great nor too small. The intuition for this
is as follows. The increase in degree has two effects. First, it increases the level
of clustering: neighbors of an individual are more likely to be neighbors to
each other. This makes it easier for a large cooperative cluster to be formed,
which has a positive effect on survival of cooperation. On the other hand, an
increase in degree leads to more heterogeneous neighborhoods. This is dam-
aging for the evolution of cooperation since defectors in largely cooperative
neighborhoods obtain very high payoffs, which cooperators in neighborhoods
occupied largely by defectors perform badly. Hence an increase in behavioral
heterogeneity within neighborhoods has a negative impact on the survival of
cooperation. Overall, as long as degree of network is not too great, the former
effect dominates the latter. However, if degree is too great, the latter effect
starts to dominate and further increases in degree result in lower levels of
overall cooperation.

We also find that more clustered networks and a shorter average distance
between individuals induces a higher long-run frequency of cooperators. To
see why, consider the effect of introducing random links. Such links bridge
individuals even if they do not share neighbors, and hence reduce both overall
clustering and the average distance between individuals. Since cooperators are
less likely to survive when they are less clustered, more random links decrease
the long run frequency of cooperators. This implies that small world networks
are conducive to the survival of cooperation.

We also show that the long run frequency of cooperation is highest when the
adjustment rate of hardness is neither too great nor too small. The intuition
for this is as follows. If the adjustment rate of hardness is too fast, then
cooperators may switch to defectors, before their neighboring defectors are
converted to cooperators, which makes it hard for a sufficiently-large cluster
of cooperators to be formed. On the other hand, if the adjustment rate of
hardness is too slow, then individuals are unwilling to change their actions,
which has more detrimental effect on cooperation than defection, since in this
case, sufficiently-large cluster of cooperators must exist initially for them to
survive and spread. Finally, we find that, with more mutations, which randomly
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change the hardness of selected individuals, a neighborhood is more likely to
become heterogeneous, and therefore it is less likely that cooperative clusters
will be formed.

2 Social networks

We represent the members of a population as vertices of an undirected graph
�. Let N denote the set of individuals {1, 2, ..., n} where n = |N|, and let
ij denote a link connecting vertices i and j. Let E denote the set of links
{ij | i, j ∈ N} of graph �. Then the network is defined by � = 〈N, E〉.

The graph is simple if there is at most one link between the same pair of
vertices. It is connected if, for every two individuals i and j with j �= i, there is a
sequence of vertices i, i1, i2, ..., im, j such that ii1, i1i2, ..., im j ∈ E, where m ≥ 0.
Such sequence is called a path between i and j . We restrict attention to simple
and connected graphs. We say that i and j are neighbors, or linked, if ij ∈ E. Let
N (i) = { j | ij ∈ E} denote the set of i ’s neighbors, called open neighborhood
or simply neighborhood and ki = |N (i)| denote the total number of neighbors.
We also call N (i) ∪ {i} as closed neighborhood of individual i. The degree of
the graph k (�) = ∑

i ki/n is the average number of neighbors per individual.
The number of links in the shortest path between i and j is the distance d (i, j)
between these two vertices.

Important structural properties of the network can be captured by the
characteristic path length and the clustering coefficient of the graph �. The
characteristic path length, denoted L (�), is the average distance between any
two vertices, that is,

L (�) = 1

n (n − 1) /2

n∑

i=1

n∑

j>i

d (i, j) .

The clustering coefficient Ci of the open neighborhood N (i) of vertex i is

Ci = 1

ki (ki − 1) /2

⎡

⎣1

2

∑

j∈N(i)

∑

l∈N( j)

1{l∈N(i)}

⎤

⎦ , (1)

where 1ϕ is equal to 1 if ϕ is true and zero otherwise. The denominator of Eq. 1
is the total number of all possible links in N (i). The numerator is the number of
links in N (i), that is, the total number of connections among members of N (i).
Hence Ci measures the extent to which neighbors of i are also neighbors of
each other, that is, Ci measures the extent of cliquishness among the individuals
in N (i). The clustering coefficient C (�) of the graph � is simply the average of
Ci over all vertices, that is.,

C (�) = 1

n

∑

i∈N

Ci.
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For instance, if everyone knows everyone else, then C = 1. To summarize,
L (�) measures the typical distance between two vertices, and C (�) measures
the cliquishness among the members of a typical neighborhood.

Two types of networks have been extensively studied in the literature. At
one extreme is the class of regular networks, in which each individual i is
linked with individuals i ± h for 1 ≤ h ≤ k/2 (mod n). The simplest example of
this is a ring network (k = 2), in which the vertices are arrayed in a circle and
each individual has exactly two neighbors. At the other extreme is the class of
random networks, in which each individual is linked with k randomly-selected
individuals on average.

Neither regular nor random networks are adequate representations of social
networks in the real world. In practice, the likelihood that two individuals
are linked will be significantly higher if they have one or more neighbors in
common. This implies a high clustering coefficient, a property that regular
networks (but not random networks satisfy). However, it is also the case that
in most real world networks, the smallest path between two randomly selected
vertices is very small: 3.5 steps in the a network of actors, 9.5 in a network of
scientific collaboration, and just 19 in the Internet, which contains more than
800 million webpages (Barabási 2003). But for a regular network of degree
k, L (�) = n (n + k − 2) /2k (n − 1), which scales linearly with respect to n.
Therefore for large n, the average distance between two vertices is very large
in regular networks. In contrast, the average distance between two vertices
in random networks is small and increases only in the log of population size.
Hence social networks lie somewhere between the two extremes networks,
satisfying the following properties: (i) the characteristic path length L is short,
as in random networks, and (ii) the clustering coefficient C is high, as in regular
networks.

3 The model

3.1 Network construction

We construct a social network of (average) degree k using an algorithm based
on the α-model of Watts (1999). Starting with a ring lattice, additional links
are created in the following manner. Fix a vertex i and for each vertex j �= i,
set Rij = 0 if ij ∈ E and, if ij /∈ E, set

Rij =
⎧
⎨

⎩

1 if mij ≥ k(mij

k

)α
(1 − p) + p if mij ∈ {1, ..., k − 1}

p if mij = 0,

(2)

where mij = |{l ∈ N | il ∈ � ∧ jl ∈ �}| is the number of common neighbors
shared by individuals i and j, p 
 (n

2

)−1 and α is tunable parameter of the
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Fig. 1 Creation of a graph
using α-model: an initial ring
network (left) and α-model
after one around (right)

model. Then the probability that vertex i will be linked to vertex j, denoted
by Pij, is computed as follows:

Pij = Rij/
∑

l �=i
Ril. (3)

According to Pij in Eq. 3, a vertex is selected and it is linked to vertex i. Then
this procedure is repeated until all vertices have exactly one chance to add
a link. This completes one round of the algorithm. To generate a small world
network with average degree k ≥ 4 (where k is even), we repeat this procedure
for k/2 − 1 rounds.

Figure 1 illustrates an example of a network created using the α-model with
n = 10 and k = 4, which requires just a single round of connections. Note
that some individuals are more ‘linked’ than others in the resulting network
although the average number of connections per vertex is predetermined.

The parameter α affects the structural properties of the resulting network
in a systematic way. When α is small but not zero, links will be preferentially
attached between individuals who share at least one neighbor. The result is a
network with a high degree of clustering and high characteristic path length,
which resembles a regular network. At the other extreme, as α → ∞, the
resulting network approximates a random graph with negligible clustering and
low characteristic path length.2 Intermediate values of α generate networks
with the small world property. Figure 2 shows the effect of changing α on the
structure of a network with n = 80 and k = 6.

The manner in which the characteristic path length and clustering coefficient
of the network vary with α is shown in Fig. 3 (based on n = 1, 000 and
k = 8).3 For α = 0, no distinction is made in the network construction algo-
rithm between pairs of individuals with just one neighbor in common, and
pairs with more than one neighbor in common. The resulting graph has a small
clustering coefficient as well as small characteristic path length. As α increases,
but remains small, links begin to form preferentially between individuals who

2There are some structural differences between a random network and the limiting case of the
α-model. However, when k  1, the limit very closely approximates a random graph. See Watts
(1999, pp. 51–52) for details.
3In Fig. 3, L (�) and C (�) are normalized by dividing them by L (�) for α = 0 and C (�) for α = 0,
respectively.
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Fig. 2 Effect of changing α on the structure of network: α = 0, 5, 20 from the left

have more than one neighbor in common. This results in a graph with high
clustering and high characteristic path length. This effect may be seen in the
upward sloping segment of the clustering coefficient and characteristic path
length curves for 0 < α < 5 in Fig. 3. As α increases beyond this range, the
probability of a link between individuals with less than k but greater than one
common neighbors decreases. Hence for fixed k, more links will be created
between individuals with no common neighbors. The defining properties of
small world networks – short characteristic path length and high clustering
coefficient – emerge when α is about 7.4

3.2 Payoffs, actions, and dynamics

In every period, each person chooses one of two actions: cooperate or defect.
Any individual i choosing to cooperate incurs a private cost γ and provides an
aggregate benefit β > γ , which is shared equally among her neighbors N (i).
Defection results in no costs or benefits. Without loss of generality, we nor-
malize γ = 1 and interpret β as the benefit-cost ratio. Since β > 1, efficiency
requires the cooperative action to be taken by all players. From the perspective
of any individual, however, defection yields a higher payoff regardless of the
actions taken by her neighbors. This is a multi-player Prisoner’s Dilemma with
local interaction, of the kind studied by Bergstrom and Stark (1993), Eshel
et al. (1998), Nowak and May (1993), and Albin and Foley (2001).

Let si(t) = 1 if individual i cooperates at time t and si(t) = 0 otherwise. The
vector s(t) = (s1(t), ..., sn(t)) is the state of the actions at time t. Let S ≡ {0, 1}n

denote the set of all states of the actions. The payoff to player i at time t is

πi(t) = −si(t) + β
∑

j∈N(i)

s j(t)
k j

, (4)

4The fact that the characteristic path length and clustering coefficient cannot be tuned indepen-
dently is a disadvantage of the α-model. However, varying one of these while holding the other
constant would cause the average degree k to change, and this would prevent us from identifying
the independent effects of changes in the average degree on the incidence of cooperation.
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Fig. 3 Scaled characteristic
path length and clustering
coefficient: n = 1, 000 and
k = 8

where s j(t)/k j is the benefit conferred by neighbor j onto i if j cooperates.
Consider any individual i with at least one neighbor taking a different action
than i herself does. The average payoff of defectors in the closed neighborhood
of individual i is

π̄d
i (t) =

∑
j∈N(i)∪{i}

(
1 − s j(t)

)
π j(t)

∑
j∈N(i)∪{i}

(
1 − s j(t)

) = β
∑

j∈N(i)∪{i}
∑

l∈N( j)

(
1 − s j(t)

)
sl(t)/kl

∑
j∈N(i)∪{i}

(
1 − s j(t)

) .

(5)

By the definition of s j(t), the denominator of Eq. 5 is simply the number
of defecting neighbors of individuals i/, including i herself, at time t. The
numerator of Eq. 5 is the sum of payoffs of those defectors in the denominator.
Similarly, the average payoff of cooperators in the closed neighborhood of
individual i is:

π̄ c
i (t) =

∑
j∈N(i)∪{i} s j(t)π j(t)
∑

j∈N(i)∪{i} s j(t)
= β

∑
j∈N(i)∪{i}

∑
l∈N( j) s j(t)sl(t)/kl

∑
j∈N(i)∪{i} s j(t)

− 1. (6)

The share of cooperators in the neighborhood of i is given by

ρi (t) = 1

ki

∑

j∈N(i)

s j(t).

We assume that each individual ı́’s action in any given period can be condi-
tioned on the past behavior of her neighbors in a manner that reflects some
degree of reciprocity. Specifically, individuals cooperate if the level of prior
cooperation in their neighborhood exceeds some threshold, where the thresh-
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old itself may vary across individuals. Following Watts (1999), we refer to the
threshold as an individual’s hardness. Those with higher levels of hardness
are more reluctant to cooperate in the sense that a greater proportion of
neighborhood cooperation is necessary in order to induce them to cooperate.
This intrinsic preference is not observable to other individuals. Let hi ∈ [0, 1]
denote the hardness of individual i. The vector h (t) = (h1(t), ..., hn(t)) is the
propensity distribution at time t. Putting this together with the profile of
actions, the state of the system at time t is (h (t) , s (t)).5

Note that the model permits unconditional cooperation and defection when
hardness is sufficiently low and high, respectively.6 The choice of action by
individual i in period t + 1 is given by:

si(t + 1) =
{

1 if hi (t) <
ρi(t)ki+1

ki+2
0 otherwise.

. (7)

Equation 7 implies that even if there are no cooperators in i’s neighborhood
(that is, if ρi (t) = 0) , she will still cooperate if hi (t) < 1/ (k + 2) . Similarly,
hi (t) ≥ (k + 1) / (k + 2) , she will defect even if all neighbors cooperated in the
previous period. Intermediate values of hi (t) correspond to varying degrees of
conditional cooperation.

We assume that individual hardness changes in response to cooperative-
ness of neighbors. (In contrast, Watts (1999) assumes that individuals are
endowed with a fixed level of hardness.) It is reasonable to assume that
individual hardness responds to the average past performance of actions in
one’s neighborhood. In other words, when the average payoff of cooperators in
the neighborhood of individual i is higher than that of defectors, the hardness
of individual i is lowered, so that she is more likely to take the cooperative
action in the next period. The opposite is the case if defectors outperform
cooperators. Specifically:

hi (t + 1) =
{

δhi (t) if π̄a
i (t) > π̄ e

i (t)
hi (t) + (1 − hi (t)) (1 − δ) if π̄a

i (t) ≤ π̄ e
i (t),

(8)

where δ ∈ [0, 1] is the rate of adjustment of hardness.7

The evolutionary dynamics may be summarized as follows. Starting with
initial set of actions and hardness (h (0) , s (0)), individuals take actions and
receive payoffs in accordance with Eq. 4. Then actions and hardness are
updated according to Eqs. 7 and 8 respectively. This process is repeated over

5The notion of hardness allows for a multiperson generalization of the Tit-for-Tat strategy. In a
two-person repeated interaction, Tit-for-Tat cooperates in the first period and then simply mimics
the last action of the opponent. In a multiperson setting, opponent actions are multidimensional.
Hardness allows us to aggregate these actions in a natural way, by identifying the threshold
proportion of cooperation in one’s neighborhood that is sufficient to induce a player to cooperate.
6This unconditional response is not only realistic but also technically important when we introduce
mutation in hardness. For example, without the unconditional response, mutations in hardness in
a homogenous neighborhood cannot lead to changes in actions.
7The manner in which hardness evolves ensures that hi (t) ∈ [0, 1] for all t.
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several periods. The proportion of individuals cooperating in period t is given
by ρ(t) = ∑

i∈N si(t)/n, and the average value of hardness in the population at
time t is σ (t) = ∑

i∈N hi(t)/n. We are interested in the long run values of these
variables.

In addition to the deterministic dynamics, we allow for mutations in network
structure. Almost all social networks change over time as people sever existing
relationships and make establish new ones. New contacts may be made sys-
tematically through one’s existing network of contacts, or may arise for more
idiosyncratic reasons. When individuals join a club or move to a different city
for employment reasons, two things happen naturally: new connections are
formed that may or may not be ordered by the existing network, and some
existing links are broken. Hence the evolution of a network can be driven by
a mixture of (pure) random connections and connections through the existing
network, where the former effect is typically small relative to the latter.

In order to capture this phenomenon, we allow for random rewiring of the
network, using an algorithm based on Watts’ (1999, p.67) β-model. To rewire
connections periodically while maintaining the small world property, we pro-
ceed as follows. A vertex i is randomly chosen and we disconnect a randomly-
chosen connection between vertex i and vertex j ∈ N (i) . (We exclude two
geographically immediate neighbors from this disconnection to prevent the
vertex i from being isolated from the rest of the network.) We then add a link
between vertex i and a vertex l ∈ N\N (i) according to the probability defined
in Eq. 3. The vertex i can be re-linked j, although this is unlikely to occur.
This process preserves a high clustering coefficient, and extensive simulations
confirm that even after repeated application, the network retains the small
world property.8

Finally, we also allow mutations in individual propensities to cooperate.
With small probability ε > 0, each individual’s hardness is replaced by a num-
ber drawn from a uniform distribution over the unit-interval. This possibility
arises at the end of a round (after actions have been taken). Without loss
of generality, we rewire a random vertex and mutate hardness at the same
frequency ω > 0. Periodic rewiring and mutation implies that no subset of
states will be absorbing in the resulting Markov process, which allows us to
estimate the unique level of cooperation in the steady state distribution, i.e.,
a distribution obtained with the transient behavior in early stage of evolution
disregarded.9

8An important determinant of real world social networks is the endogenous formation and
breakage of links (Jackson and Wolinsky 1996). One might expect that individuals would seek to
form links with those with a higher propensity to cooperate, and break links with defectors. These
effects, which we neglect here, would make it easier for cooperative clusters to form and spread.
We show that despite the unbiased formation and breakage of links, the incidence of cooperation
can be significant.
9Note that mutations in the propensity to cooperate are sufficient to ensure that there are no
absorbing states, so random rewiring of the network is not necessary for this purpose. We allow
for changes in network structure because it occurs in practice, and is likely to affect the extent to
which cooperation can persist in the long run.
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4 Results

4.1 A baseline

We begin by replicating the results of Eshel et al. (1998). Suppose n = 1, 000
and k = 2 (a ring network), with ε = ω = 0 (so there is no rewiring and no
mutation in hardness). The hardness of each individual is constrained to lie in
{0, 1}, which is achieved by setting δ = 0. Hence

hi (t + 1) =
{

0 if π̄a
i (t) > π̄ e

i (t)
1 if π̄a

i (t) ≤ π̄ e
i (t).

Since hardness is constrained to lie in {0, 1}, average hardness is simply the pro-
portion of defectors in the population. In each period, each individual switches
to whichever action earned the highest average payoff in her neighborhood in
the previous period. This is exactly the model of Eshel et al. (1998). There are
two kinds of absorbing states: one in which all individuals defect and another
set of states in which at least three-fifths of individuals cooperate.

Adding mutations to hardness in this model (while holding constant net-
work structure) results in a unique steady state distribution. Eshel et al.
(1998) show that for sufficiently small mutation rates, the system spends most
of its time in predominantly cooperative states. This can be illustrated by
examining time series plots for the proportion of cooperation and average
hardness. For a mutation rate ε = .005, Fig. 4 shows that hardness remains
low and cooperation is widespread and persistent.10 The long run frequency
of cooperation is approximately 80%, consistent with the analytical results of
Eshel et al. (1998).11

4.2 Steady state distribution

We are interested in the incidence of cooperation in the long run, and the
manner in which this is affected by the underlying parameters. The complexity
of the model precludes an analytical treatment and we therefore rely on sim-
ulations. We set n = 1, 000, k = 8, and α = 7 as benchmark parameters. The
remaining parameters of the model are as follows: the mutation probability
ε = 0.005, the rate of adjustment in hardness δ = 0.9, the baseline probability
p = 10−10, and the benefit-cost ratio β = 4.91.12 Finally, ω = 2, so mutations
in individual hardness and network rewiring occur once every two periods.

10The simulation was run for 100, 000 periods and first 30, 000 observations deleted. There are 300
periods between adjacent data points in the figure, to smooth out extreme short run volatility.
11Eshel et al. prove that the level of cooperation must lie between 60% and 100%. It is interesting
that we find cooperation to lie roughly at the midpoint of this range.
12In a regular network with degree k, a large enough cluster of cooperators survives in the
steady state if the benefit-cost ratio β exceeds than 4k/(3(k/2) − 1); see Jun and Sethi (2007).
Accordingly, we choose a value higher than this threshold.
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Fig. 4 Evolution of
cooperation and hardness for
a regular ring network with
mutation and rewiring
disallowed, corresponding to
Eshel et al. (1998)

We keep track of a sequence of average cooperation ρ(t) over time. The
average proportion of cooperating individuals in the T − t periods is given by

ρ̂ = 1

T − t

T∑

τ=t+1

ρ (τ)

where T = 100, 000 is the total length of the simulation and t = 30, 000. That
is, the first 30, 000 observations are excluded from the computation of average
cooperation in order to eliminate the effects of initial conditions. Figure 5
shows that the long-run average frequency of cooperation ρ̂ is about 0.69 and
the frequency distribution is mostly concentrated around the mean.

4.3 Comparative statics

In this section, we explore the manner in which the long-run frequency of
cooperation depends on the underlying parameters of the model.13

4.3.1 Changes in k

As shown in Fig. 6, the long run frequency of cooperation increases as degree
of the network k increases, provided that the degree is not to large. As k

13For each of the following four cases, we change only one parameter of the model, while fixing
all other parameters at the values of Section 4.2.
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Fig. 5 Frequency distribution
of cooperation: n = 1, 000 and
k = 8

rises from 4 to 34, the frequency of cooperation rises from 0.075 to 0.999, but
for k ≥ 34, the frequency is almost zero.14 This result can be understood as
follows. Increases in the degree has two effects. First, it changes the structure
of the network such that individuals have more neighbors on average, and so
the number of connected individuals who do not share any other common
neighbors declines. If α is relatively small, but not zero, then Eq. 2 implies
that an increase in k reduces the probability of a link between individuals with
less than k but greater than one common neighbors. This in turn increases the
probability that an individual with whom more than k neighbors are shared is
selected as a neighbor. Overall, this will make the network more clustered, and
more clustered networks induce more cooperation.

Second, an increase in degree affects the distribution of actions in each
neighborhood. As k increases, it is more likely that any given individual has
a defecting neighbor, earning higher payoffs than surrounding cooperators.
This phenomenon, the “puncturing” of cooperative clusters by single defector,
has been noted in the literature (Watts 1999; Kim et al. 2002; Abramson and
Kuperman 2001) and can lead to the unraveling of cooperation. In contrast,
single cooperators who find themselves in clusters of defectors will earn very
low payoffs. Therefore the increase in heterogeneity within neighborhoods will
have negative impact on the survival of cooperation.

14Although not shown, the frequency is almost zero for values of k ≥ 34.
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Fig. 6 Effect of k on mean
frequency of cooperators

As long as k is not too large, the effect of greater clustering dominates
the effect of greater neighborhood heterogeneity. The reverse is true when
k gets large, since further increases in degree have little impact on the extent
of clustering.

4.3.2 Changes in α

As shown in Fig. 7, as α rises from 4 to 22, the long run frequency of coop-
eration initially rises but then declines, reaching its peak at around α = 9. The
reason for this is evident from a closer examination of Fig. 3: the nomonotonic-
ity of the clustering coefficient in α is reflected in the nonmonotonicity of
cooperation in α.

Fig. 7 Effect of α on mean
frequency of cooperators
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As noted above, we cannot explore the independent effects of changes
in clustering and characteristic path length on cooperative behavior while
holding constant the average degree k of the network. The effects of clustering
are fairly intuitive, but the effects of characteristic path length less so. High
levels of clustering allow cooperative neighborhoods to form and survive, and
hence allow for greater long run levels of cooperation. We expect that a low
characteristic path length is also conducive to cooperation, since it allows such
behavior to spread rapidly through the network once a cooperative cluster has
been formed.

4.3.3 Changes in ε

Figure 8 reveals that an increase in the mutation probability decreases the
long-run frequency of cooperation. As ε rises from 0.006 to 0.1, the long run
frequency of cooperation falls from 0.585 to 0.071. Mutations randomly select a
level of hardness for some individuals, causing neighborhood to become more
heterogeneous, and cooperative clusters of sufficiently large size are therefore
less likely to form and persist.

4.3.4 Changes in δ

Figure 9 shows that the long run frequency of cooperation initially rises but
then declines, reaching its peak at δ = .8. As we argued, if the adjustment
rate of hardness is too fast, then the likelihood that large cooperative clusters
are formed is small, making it harder for cooperation to persist. However, if

Fig. 8 Effect of ε on mean
frequency of cooperators
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Fig. 9 Effect of δ on mean
frequency of cooperators

the adjustment rate of hardness is too slow, then individuals are unwilling to
change their actions, which has more detrimental effect on cooperators than
defectors, since in this case, sufficiently-large cluster of cooperators must exist
initially for them to survive and spread.

4.4 Clustering of strategies

Although significant levels of cooperation can persist with relatively low
variance at the aggregate level, there is much greater instability at the local
level. Any given node in the network switches back and forth between co-
operation and defection, as clusters of cooperative behavior emerge, expand,
are punctured and collapse. This dynamism at the local level implies that
connected nodes have correlated behaviors: if two individuals are neighbors,
the likelihood of their choosing different actions is small.

This can be illustrated by examining pairs of individuals who remain con-
nected throughout the process. Since the network is constructed by started
with a ring lattice, and the links forming the ring lattice are never severed, each
individual has at least two connections that always remain intact. Any pair of
always connected nodes must be in one of four possible states at any time: CC,

CD, DC, DD. By looking at all pairs of perpetually connected nodes, we can
construct a transition matrix that identifies the likelihood of moving from each
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of these states to each of the others. The following matrix is obtained from a
representative simulation:15

CC CD DC DD
CC 0.988 0.006 0.005 0.001
CD 0.063 0.880 0.002 0.055
DC 0.062 0.002 0.882 0.054
DD 0.005 0.031 0.028 0.936

Note that there is a lot of inertia even at the local level, with a high likelihood
that a pair will remain in the state inherited from the previous period. This is
because behavior is mediated by changes in hardness, which evolves slowly,
and only alters behavior once certain thresholds are crossed. Nevertheless, it
is clear that pairs which are behaviorally identical (both cooperating or both
defecting) are more likely to remain in their inherited states relative to pairs
that are behaviorally heterogeneous.

Given the transition matrix, one can compute the limiting proportions of
each of the four states in the invariant distribution. For this particular example,
we get

(CC, CD, DC, DD) = (0.743, 0.070, 0.062, 0.125).

This reveals both a high level of cooperation in the aggregate, as well as
significant clustering and local homogeneity. An individual who is paired with
someone taking a different action is much more likely to change behavior
relative to one who is not. This gives us a glimpse into the kind of movements
at the local level that sustain high levels of cooperation in the aggregate.

5 Conclusions

We have considered the evolution of strategies in social networks with the
small world property, when interaction takes the form of a multi-person
prisoners’ dilemma. Strategy adjustment is made in response to differential
payoffs in one’s neighborhood, as is standard in evolutionary games, and is
subject to occasional random mutation. The network itself changes over time
as links are randomly created and broken. We find that the long-run frequency
of cooperation is higher under the following conditions: (i) the interaction
radius is neither too small nor too large, (ii) the network is more clustered
and the average distance between individuals is shorter, (iii) the mutation rate
of hardness is smaller, and (iv) the adjustment rate of hardness is neither too
slow nor too fast.

15The matrix is based on parameter values n = 1, 000, k = 16, α = 7, δ = 0.85, ε = 0.005, p =
10−10, β = 4.783, ω = 2, T = 100, 000, and t = 30, 000.
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The model could be extended in several directions. First, we assume in this
paper that links are formed or broken exogenously. In fact, individuals have
some degree of autonomy over those with whom they are linked, and may
make or break connections based on past behavior. Second, the model could
be extended to incorporate the possibility that interaction neighborhoods
and learning neighborhoods may be different. Under some circumstances it
may be possible to observe behaviors and payoffs outside one’s interaction
neighborhood, and adjust strategies based on this information. Both these
extensions seem promising as directions for future research.
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