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The sense of taste provides animals with valuable information
about the nature and quality of food. Mammals can recognize and
respond to a diverse repertoire of chemical entities, including
sugars, salts, acids and a wide range of toxic substances1. Several
amino acids taste sweet or delicious (umami) to humans, and are
attractive to rodents and other animals2. This is noteworthy
because L-amino acids function as the building blocks of pro-
teins, as biosynthetic precursors of many biologically relevant
small molecules, and as metabolic fuel. Thus, having a taste
pathway dedicated to their detection probably had significant
evolutionary implications. Here we identify and characterize a
mammalian amino-acid taste receptor. This receptor, T1R1+3, is
a heteromer of the taste-specific T1R1 and T1R3 G-protein-
coupled receptors. We demonstrate that T1R1 and T1R3 combine
to function as a broadly tuned L-amino-acid sensor responding to
most of the 20 standard amino acids, but not to their D-enan-
tiomers or other compounds. We also show that sequence
differences in T1R receptors within and between species
(human and mouse) can significantly influence the selectivity
and specificity of taste responses.

T1Rs and T2Rs are two families of G-protein-coupled receptors
(GPCRs) selectively expressed in subsets of taste receptor cells3 – 11.
T2Rs are involved in bitter taste detection4,5, and T1R2 and T1R3
combine to function as a sweet taste receptor7. To identify taste
receptors involved in amino-acid detection, we used an expression
screening strategy similar to that used in the characterization of
bitter and sweet taste receptors. Candidate receptors were expressed
in human embryonic kidney (HEK) cells containing the Ga16 –GaZ

and Ga15 promiscuous G proteins12,13, and assayed for stimulus-
evoked changes in intracellular calcium. In this system, receptor
activation leads to activation of phospholipase Cb (PLC-b) and
release of calcium from internal stores, which can be monitored at
the single-cell level using calcium-indicator dyes5,7,14.

Because T1R taste receptors are distantly related to GPCRs that
recognize the amino acids glutamate15 (metabotropic glutamate
receptors, mGluRs), GABA16 (g-aminobutyric acid; GABA-B recep-
tors) and arginine17 (the R5-24 receptor), we began by testing
members of the T1R family. Patterns of T1R expression define at
least three distinct cell types: cells co-expressing T1R2 and T1R3
(T1R2+3, a sweet receptor), cells co-expressing T1R1 and T1R3
(T1R1+3) and cells expressing T1R3 alone7. First, we assayed
responses of the T1R2+3 sweet taste receptor to all 20 standard
and various D-amino acids. Several D-amino acids that taste sweet
to humans, and are attractive to mice, trigger robust activation of
the T1R2+3 sweet taste receptor (Fig. 1a, b). However, none of the
tested L-amino acids activate this receptor.

Mouse T1R1 and T1R3 were transfected alone or in combination
and tested for stimulation by L-amino acids. Individual receptors
showed no responses. In contrast, T1R1 and T1R3 combine to
function as a broadly tuned L-amino-acid receptor, with most
amino acids that are perceived as sweet (for example, alanine,
glutamine, serine, threonine and glycine2) activating T1R1+3
(Fig. 1). The responses are strictly dependent on the combined
presence of T1R1 and T1R3, and are highly selective for L-amino
acids; D-amino acids and other natural and artificial sweeteners did
not activate the T1R1+3 receptor combination. These results sub-
stantiate T1R1+3 as a receptor for L-amino acids, and provide a
striking example of heteromeric GPCR receptors radically altering
their selectivity by a combinatorial arrangement of subunits.

If T1R1+3 functions as a major L-amino acid taste sensor in vivo,
we might expect its cell-based behaviour to recapitulate some of the
physiological properties of the in vivo receptor. Nerve recordings in
rats have shown that taste responses to L-amino acids are consider-
ably potentiated by purine nucleotides such as inosine monophos-
phate (IMP)18. To assay the effect of IMP, HEK cells expressing the
T1R1+3 receptor combination were stimulated with amino acids in
the presence or absence of IMP. Indeed, T1R1+3 responses to nearly
all L-amino acids were dramatically enhanced by low doses of IMP
(Figs 1 and 2a); this effect increased over a range of 0.1–10 mM
(Fig. 2b). However, IMP alone elicited no response, even at the
highest concentration tested in our assays, and it had no effect on
responses mediated by T1R2+3 (either to sweeteners or to L- and D-
amino acids; data not shown).

T1R1+3 is prominently expressed in fungiform taste buds7,
which are innervated by chorda tympani fibres. Therefore, we
stimulated mouse fungiform papillae at the front of the tongue
with various amino acids in the presence or absence of IMP, and
recorded tastant-induced spikes from the chorda tympani nerve. As
expected, nerve responses to L-amino acids were significantly
enhanced by IMP18 (Fig. 3). However, IMP had no significant effect
on responses to D-amino acids or to non-amino-acid stimuli.

Genetic studies of sweet tasting have identified a single principal
locus in mice influencing responses to several sweet substances (the
Sac locus19,20). Sac ‘taster’ mice are about fivefold more sensitive to
sucrose, saccharin and other sweeteners than Sac non-tasters. Sac
codes for T1R37 – 11,21. There are two amino-acid differences that
define taster and non-taster alleles7,9,10. One of these changes, I60T,
introduces a potential glycosylation site that was proposed to
eliminate receptor function by preventing receptor dimerization10.
This poses a conundrum because responses to L-amino acids are not
influenced by the Sac locus7,22 (and data not shown). Thus, if T1R3
functions as the common partner of the sweet and amino-acid
receptors, we reasoned that the T1R3 non-taster allele must selec-
tively affect the T1R2+3 combination.

We examined the effect of the Sac non-taster allele on T1R1 and
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T1R2 using biochemical and functional assays. First, we investigated
receptor heteromerization by co-immunoprecipitating differen-
tially tagged T1R receptors. In essence, HEK cells were co-trans-
fected with taster and non-taster alleles of T1R3 and either
haemagglutinin (HA)-tagged T1R1 or T1R2. Receptor complexes
were then immunoprecipitated with anti-HA antibodies, and the
association with T1R3 assayed with anti-T1R3 antibodies. Our
results demonstrated that the non-taster form of T1R3, much like
its taster counterpart, assembles into heteromeric receptors with
T1R1 and T1R2 (Fig. 4a). This argues against the possibility that the
sweet taste deficits of Sac non-taster animals result from failure to
assemble heteromeric receptors. Second, we examined the func-
tional responses of T1R2+3 (sweet) and T1R1+3 (amino acid)
receptors carrying either the taster or non-taster allele of T1R3.
The taster and non-taster alleles of T1R3 generate functionally
similar receptors when combined with T1R1, but the non-taster
form displays significantly impaired responses when combined with
T1R2 (Fig. 4b). Thus, responses to L-amino acids are not affected by
the Sac locus in mice because Sac selectively affects the T1R2+3
receptor combination.

The finding that polymorphism in one of the T1R receptor

subunits differentially affects receptor function suggests that other
sequence variations in the amino-acid and sweet receptors may
significantly influence tastant sensitivity or selectivity. For example,
humans can taste a number of artificial sweeteners that rodents
cannot (for instance, aspartame, cyclamate and various sweet
proteins23). Rodent and human T1Rs are only about 70% identical7.
Therefore, we generated heteromeric receptors consisting of human
and rodent T1R subunits and assayed for activation by amino acids
and artificial sweeteners. Indeed, the presence of human T1R1 or
T1R2 greatly altered the sensitivity (Fig. 4c) and the specificity (Fig.
4d) of the amino-acid and sweet taste receptors. Cells expressing
human T1R1 are more than an order of magnitude more sensitive to
glutamate than to other amino acids, and cells expressing human
T1R2 now robustly respond to aspartame, cyclamate and intensely
sweet proteins (Fig. 4d and data not shown). Thus, the nature of the
unique partner determines whether the receptor complex will
function as a sweet receptor or as an amino-acid receptor, and
sequence differences in T1Rs between or within species (for
example, polymorphisms in Sac) can greatly influence taste
perception.

In humans, monosodium L-glutamate (MSG) elicits a unique
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Figure 1 T1R receptor combinations respond differentially to L- and D-amino acids. a,

HEK-293 cells co-expressing promiscuous G proteins and heteromeric mouse T1R2+3 or

T1R1+3 receptors were stimulated with L- and D-amino acids. The T1R2+3 sweet taste

receptor is activated by sweet-tasting D-amino acids but not by L-amino acids (left). In

contrast, T1R1+3 is activated by L-amino acids and responses are potentiated by IMP

(right). Amino acids were 50 mM and IMP was 2.5 mM; the colour scale indicates the

F340/F380 ratio (see Methods). b, c, Quantification of amino-acid responses for T1R2+3

(b) and T1R1+3 (c). Amino acids were 50 mM, and IMP and L-AP4 were 2.5 mM; control

refers to 2.5 mM IMP alone. Each column represents the mean ^ s.e.m. of at least ten

independent determinations. IMP had no effect on T1R2+3 (data not shown). D-Amino

acids (with the exception of D-Ala in the presence of IMP) and natural or artificial

sweeteners did not activate T1R1+3. Trp elicited no responses and Tyr was not assayed

because it is insoluble at high concentration. Note that the achiral amino acid Gly activates

both receptor complexes. All calcium measurements and quantifications were performed

as described in the Methods and ref. 7.
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savoury taste sensation called umami24,25. Hallmarks of the umami
taste are its potentiation by purine nucleotides, and activation by
the mGluR-agonist L-AP4 (ref. 25). Recently, a mGluR4 splice
variant has been reported as a candidate umami receptor26. An
obvious question is whether T1R1+3 is an umami receptor. Our
results demonstrate that T1R1 and T1R3 combine to function as a
broadly tuned amino-acid receptor. Notably, T1R1+3 responses to
L-AP4 (Fig. 1), MSG and other amino acids are greatly potentiated
by purine nucleotides. Thus, we propose that T1R1+3 is a constitu-
ent of the umami response. Future studies should help define
whether T1R1+3 is the principal, or an additional, umami receptor.
An interesting paradox that emerged from this work is the relation-
ship between receptor activity and taste perception. For example,
T1R1+3 responds to most L-amino acids, but not all amino acids

taste the same: some are attractive to mice and sweet to humans,
whereas others are neutral; some are even perceived as bitter and are
aversive to animals2. Similarly, very few amino acids elicit the taste
of umami. The recent identification of bitter, sweet, and now an
amino-acid taste receptor provide a powerful platform to help
decode the interplay between the various taste modalities, and the
link between events at the periphery (taste receptor cells) and the
central nervous system (perception and behaviour). A

Methods
Heterologous expression and calcium imaging
Cells were grown, maintained and transfected exactly as described earlier7. Transfection
efficiencies were estimated by co-transfection with a green fluorescent protein (GFP)
reporter plasmid and were typically .70%. FURA-2 acetomethyl ester was used to
measure intracellular calcium concentration ([Ca2+]i), and assay conditions were identical
to those previously described7. Responses were measured for 60 s and the fluorescence
ratio at wavelengths of 340 and 380 nm (F340/F380) was used to measure [Ca2+]i. For data
analysis, response refers to the number of cells responding in a field of about 300
transfected cells. Cells were counted as responders if F340/F380 increased above 0.27 after
addition of tastant. In general, .90% of the responding cells had F340/F380 . 0.35. Dose-
response functions were fitted using the logistical equation. Studies involving taster and
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non-taster alleles of T1R3 used contructs of complementary DNA coding for T1R3 from
C57BL/6 and 129/Sv mice, respectively7 – 11,21.

Immunoprecipitation
Antibodies against T1R3 were generated using a peptide corresponding to residues 824–
845 of the mouse receptor. PEAKrapid cells (Edge Biosciences) were transfected with HA–
T1R1, HA–T1R2 and T1R3 in various combinations and were gathered and disrupted in
buffer containing 50 mM Tris-HCl at pH 7.5, 300 mM NaCl, 1% NP-40, 0.5% w/v sodium
deoxycholate, and protease inhibitors (Roche). Lysates were incubated overnight at 4 8C
with mouse monoclonal anti-HA antibody (Santa Cruz) and immune complexes were
collected with protein A/G–agarose beads. Samples were fractionated by SDS–PAGE,
transferred to nitrocellulose membrane and probed with anti-T1R3 antibody. As a control
for the specificity of the interactions, we have shown that artificially mixing extracts from
cells expressing tagged T1R1 or T1R2 with extracts from cells expressing T1R3 does not
produce complexes. Similarly, co-transfection of a Rho-tagged mGluR1 receptor15 did not
produce T1R–GluR1 complexes.

Nerve recording
Lingual stimulation and recording procedures were performed as previously described27.
Neural signals were amplified (2,000 £ ) with a Grass P511 AC amplifier (Astro-Med),
digitized with a Digidata 1200B A/D convertor (Axon Instruments), and integrated (r.m.s.
voltage) with a time constant of 0.5 s. Taste stimuli were presented at a constant flow rate of
4 ml min21 for 20-s intervals interspersed by 2-min rinses between presentations. All data
analyses used the integrated response over a 25-s period immediately after the application
of the stimulus. Each experimental series consisted of the application of six tastants
bracketed by presentations of 0.1 M citric acid to ensure the stability of the recording. The
mean response to 0.1 M citric acid was used to normalize responses to each experimental
series.
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Some background information to our work on adeno-associated
virus (AAV)-induced apoptosis in cells lacking p53 activity was
omitted owing to space constraints. The oncosuppressive activity
of parvoviruses has been reviewed1,2. AAV inhibits cell cycle pro-
gression3, even when ultraviolet-inactivated4, as do AAV-coded Rep
proteins5. p53-dependent cytopathic effects of parvovirus H1 have
been reported6. H1 is an autonomous virus that can replicate in cells
and lyse them. This is different from AAV, which is defective and
does not replicate in the conditions we used. H1 and AAV share little
sequence homology and the structures of the DNA termini are not
the same. A
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