G4210: Rise of Andean Civilization

September 29, 1999 T. D'Altroy

Early Formative Societies in Ecuador

- 1. rise of complex society in the Andes
 - a. most clearly exemplified by Late Preceramic societies of the central Peruvian coast
 - b. but one of the most precocious sedentary society still appears to have been Ecuador's coastal Valdivia culture
 - 1. 4th-3rd millennia BC
- 2. early societies in Ecuador
 - a. some of earliest evidence for agriculture in South America
 - b. some of the earliest ceramics in South America
 - c. some indications of social differentiation: e.g., in treatment of the dead
 - d. early evidence for sedentism: permanent villages
- 3. unfortunately: Ecuador is relatively understudied
 - a. compared to other areas of important developments in precolumbian LAm: Peru or Mexico
 - b. poor preservation
 - 1. climate
 - c. few investigators
 - 1. although pace has picked up significantly in recent years
- 4. ergo: we are at the mercy of a relatively small data set and few explanatory perspectives
 - a. incompletely reported
 - b. enthusiastically interpreted
 - 1. early interpretations: rampant, wishful speculation
 - 2. e.g., dueling origins
 - a. Japan
 - b. tropical lowlands
- 5. major issues that we can gain some insight into
 - a. regional settlement organization: Damp, Zeidler
 - b. internal site structure: Lathrap and Real Alto
 - c. development of subsistence strategies: Pearsall, Damp
 - d. development of craft production
- 6. also a few bizarre issues that have drawn excessive interest
 - a. issue of origins and competitive dates
 - b. Japanese origins of Andean civilization

Early Ceramic Period in Ecuador

(3300-1500 BC)

- 1. ceramic using cultures appear here long before pottery occurs in Peru
 - a. Santa Elena Peninsula: Achallan, San Pablo, Valdivia
 - b. Puerto Hormiga: Colombia
 - c. Rancho Peludo: Venezuela
- 2. Achallan and San Pablo complexes occur before the more widespread Valdivia ceramic complex
 - a. Achallan (OGSE-63) faunal remains
 - 1. continuation of Vegas exploitation patterns: terrestrial hunting with some fishing
 - b. data on plant remains are missing from both complexes
- 3. with introduction of Valdivia ceramics: patterns begin to change
 - a. introduction probably from the east
 - b. faunal analysis
 - 1. switch to primarily aquatic protein sources at peninsular and coastal sites
 - 2. terrestrial hunting predominant at the inland sites and at type site (Valdivia) on Sana Elena peninsula
 - 3. suggests pattern of year-round subsistence specialization
 - a. similar to that suggested for the Peruvian coast in Late Preceramic and Initial Periods
 - c. maize at Real Alto
 - 1. suggests further that the terrestrial orientation may correlate with agriculture

Valdivia: Settlement Patterns

Period A: 3300-2300 BC Period B: 2300-1850 BC Period C: 1850-1500 BC Machalilla: 1500-800 BC

- 1. three main cultures on Ecuadorian coast
 - a. Valdivia
 - b. Machalilla
 - c. Chorrera
- 2. Valdivia sites: both coast and inland
 - a. settled agricultural villages
 - 1. some with ceremonial structures
 - 2. villages of 3300 BC were U-shaped
 - 3. configuration provided basis for subsequent construction of ceremonial mounds
 - b. agriculture present

- 1. corn, achira, Canavalia plagiosperma, bottle gourd, cotton
- 2. Pearsall has noted various agricultural regimes
- 3. Damp: three Valdivia periods: 3300-1500 BC
 - a. Period A.: 3300-2300 BC
 - 1. ends with construction of ceremonial mounds at such sites as Real Alto
 - 2. includes Valdivia I and II of Hill
 - b. Period B: 2300-1850 BC
 - 1. includes Valdivia III, IV, and V
 - 2. main villages had their largest populations
 - c. Period C: 1850-1500 BC
 - 1. ends with transition into Machalilla
 - 2. establishment of satellite communities around such sites as Real Alto
 - 3. dispersion of population away from ceremonial centers

4. Loma Alta

- a. accrual of ashy refuse on west, north, and east edges: 10-15 m wide
- b. population estimates
 - 1. 150-200 village inhabitants
 - 2. comparable to forest-dwelling villages
- c. early village: U-shaped
 - 1. Valdivia I: 145 x 90 m
 - 2. Valdivia II: 175 x 115 m
- d. three caches of storage or cooking pots
 - 1. in open area at end of U: otherwise kept clean
 - 2. no bowls found here: normal vessel form
 - 3. no ashy midden: as in other, domestic areas of site

5. Real Alto

- a. scale
 - 1. area: 400 x 300 m
 - 2. maximum population: 1,500 inhabitants
- b. road cut exposed site to pothunters
 - 1. potted materials showed occupation
 - a. through most of Valdivia: 3550-1500 BC
 - b. into Machalilla: 1500-1000 BC
 - 2. greatest occupation: Valdivia III (ca. 3100 BC)
- c. east side: broad straight ridge of midden
 - 1. 2' deep x 400 m long
 - 2. Ridge A
- d. other sides
 - 1. S: destroyed by road cutting
 - 2. N: preserved and excavated
 - 3. W: narrower ridge paralleling A; called B

- e. Valdivia III-IV mounds: Fiesta and Charnel Houses toward center of Ridge B
 - 1. Charnel House Mound
 - a. opposite it: peninsula of refuse
 - 2. Fiesta Mound
 - 3. center open area kept largely clean

6. Fiesta Mound

- a. truncated elliptical cone
 - 1. 50 x 37 m at base
 - 13 x 9 m at top
 - 1.4 m high
- b. originally built in III
- c. elliptical basin-like depression in top
 - 1. floor of first ceremonial structure
 - 2. III sherds, other artifacts and food remains: different from those in rest of site
 - a. razor clams, rock crab claws, lobster tails, scallop, chiton shells, sea turtles
 - b. nearly all pieces of each bowl found inside same pit
 - a. implies that each pit was dug after special event
 - 3. pits dug through successive floors
- d. step-like depression mount front of mound
- e. at least 4 intentional resurfacings with yellow clay
- f. structure rebuilt 8 times
- g. door opened facing Charnel House mound

7. Charnel House Mound

- a. elliptical central precinct
 - 1. two semi-circular wings along ridgeline
- b. 2 m-wide door facing plaza
 - 1. bounded by massive posts
- c. burials in doorway and interior
 - 1. woman in stone-lined tomb under threshold of entrance
 - 2. floor lined with manos
 - 3. sides lined with metates
 - 4. entire tomb partially covered with metates
- d. dismembered male: bones stacked to side of tomb
- e. secondary burials of 7 males
 - 1. just west: bones stacked in common pit
 - 2. Lathrap: implies male sacrifice to high-status female buried inside the stone-lined tomb
- 8. Damp: overall spatial interpretation
 - a. U-shape: structured social relationships within community
 - 1. duality: separation of two wings
 - 2. central ceremonial area

b. c.	set apart domestic and ceremonial areas presaged later ceremonial structures

Late Preceramic on Peruvian Coast

[sources: Moseley 1975, 1992; Wilson 1981; Quilter 1990, 1991; Burger 1992; Benfer 1990; Weir and Dering, Benfer 1984]

Introduction

- 1. between 3500 and 1800 BC: major changes occurred in Peru
 - a. shift from foraging to agriculture
 - b. emergence of elites
 - c. construction of first significant monumental architecture
 - d. development of first important residential settlements
- 2. we know considerably more about this area than we do about the coast of Ecuador during the period 3500-1500 BC
 - a. but data base requires cautious interpretation
 - b. settlement data selective
 - 1. emphasis on a few areas
 - 2. not clear if those are representative of the period
 - 3. population estimates are poorly founded
- 3. important changes recorded for
 - a. central and north Peruvian coasts: focus of transformations
 - b. western valleys: central and north Peru
 - c. eastern slopes: central Peru
- 4. key questions for the Cotton Preceramic era
 - a. subsistence base: matter of contention
 - 1. do people need to control their food production to sustain a complex society?
 - 2. or can they rely on a productive natural habitat for adequate foraged resources
 - b. how complex were the societies of the era?
 - 1. in what ways were they complex?
 - 2. e.g., social differentiation
 - 3. political or economic complexity
 - 4. separation of ideological from other sorts of leadership
 - c. what is the significance of the monumental architecture?
 - 1. what were the social forms that underlay their construction

Chronology: the beginnings

- 1. major sites for era first recorded in 1941
 - a. Willey and Corbett failed to find pottery at Aspero
 - 1. assumed that corporate architecture could occur only in ceramic and agricultural societies
 - 2. so dated site on the basis of ceramics from nearby cemetery

[Late Preceramic]

-

- b. gradually became apparent that Aspero was not an anomaly
 - 1. much larger pattern
 - 2. El Paraíso: Chillón Valley
 - 3. Río Seco: Chancay
 - 4. Bandurria: Huaura V.
 - 5. Piedra Parada: Supe
 - 6. Salinas de Chao: Chao V.
- c. highland developments: Kotosh
- 2. chronology becoming better resolved in recent years
 - a. increasing # of C-14 dates
 - b. Aspero: stone platforms
 - 1. oldest C-14 dates from Huaca de los Sacrificios
 - a. 2772 BC, 2903 BC
 - b. architecture at least 200 yrs older
 - 2. Huaca de los Idolos
 - a. 3001 BC, 2483 BC
- 3. contemporaneous with
 - a. royal pyramids of Old Kingdom in Egypt
 - b. Early Dynastic Sumerian ziggurats
- 4. oldest monumental architecture in the New World
 - a. 1,000 years before Olmec
- 5. Quilter (1991) suggests 3 basic phases for Peruvian Preceramic
 - a. Early Preceramic: 13,000?-8,000 BP
 - 1. foraging economy
 - b. Middle Preceramic: 8,000-4,500 BP
 - 1. modern environmental conditions
 - 2. broad-based economies: focused on specific local resources
 - c. Late Preceramic: 4,450-3,800 BP
 - 1. beginning of widespread use of cultigens
 - 2. construction of monumental architecture in many parts of Peru

Overview of Major Changes

- 1. change in subsistence
 - a. stage 1: shift from a terrestrial adaptation for procurement of protein in Lithic or Archaic
 - 1. to an increasingly marine-based adaptation by coastal littoral peoples by about 3500 BC.
 - b. stage #2: shift to emphasis on agriculture by 1800 BC
 - 1. adoption of cultigens was slow and selective

- a. no evidence yet found for an early reliance on staple crops
- 2. irrigation-based agriculture became important quite early: i.e., about 1800 BC
- 3. controversy exists over certain features of early agriculture
 - a. dates of inception
 - b. importance in early subsistence systems
 - c. strategies of cultivation
 - 1. e.g., floodwater vs. dry farming
 - 2. or initially irrigation

2. demographics and settlement patterns

- a. significant population growth
- b. development of settled village life
- a. settlement diversification
 - 1. ceremonial centers
 - 2. population centers
 - 3. small villages
- b. articulation among settlements
- 3. political: some centralization of authority or integration of multiple settlements is probable
 - a. evidence present for incipient settlement hierarchies
 - b. at least some monumental construction
 - 1. some of which may have been centrally directed
 - c. the degree or nature of territoriality is unclear
 - 1. no good evidence for stylistic boundaries in material culture that would demarcate cultural or social territories
- 4. <u>ideology</u>: clear evidence for exchange or sharing of ideas over long distances
 - a. standardization of large-scale architecture
 - b. long-distance exchange of commodities that were valued over a wide area
 - 1. e.g., Spondylus
- 5. <u>key to remember is that the changes were all Preceramic</u>: i.e., occurred before ceramics were used as pottery
 - a. many important changes occurred before shift to agriculture
 - 1. at least as the dominant source of subsistence for most of the population
 - b. implication: processes of sociopolitical change do not coincide well with changes in other areas of society and culture that are traditionally associated in explanations
 - 1. e.g., economic change: social differentiation without staple agriculture
 - 2. e.g., social complexity without pottery
 - c. may be comparable to some early developments in the Near East
 - 1. e.g., Jericho in 8000 BC
 - 2. social differentiation based on a preceramic, H&G economy

Subsistence

Environmental setting

- 1. climate
 - a. rainfall occurs only a couple of times per decade
 - 1. destructive when it comes
 - b. juxtaposition of desert and sea
 - c. lomas vegetation
 - 1. about 6 mo/yr
 - 2. Lanning: part of seasonal round of H&G
- 2. rich maritime environment
 - a. upwelling brings up phosphates, nitrates, and other nutrients
 - b. feed plants: diatoms and photoplanktons
 - b. moves up to shellfish on littoral
 - c. through anchovies to larger fish offshore
- 3. coastal microenvironments
 - a. Moseley describes 9 basic resource zones
 - 1. reducible to fewer
 - 2. littoral most productive
 - b. beach littoral
 - 1. fish, invertebrates, algae, birds, sea mammals
 - 2. technology: some watercraft necessary
 - c. rocky littoral
 - 1. rich environment
 - 2. sea fowl and sea mammals roost
 - 3. invertebrate and molluskan fauna
 - 4. aquatic flora
 - 5. technology: simple collecting
 - d. coastal lagoon and river delta
 - 1. grasses, reeds, small fish and crustaceans
 - 2. technology: nets for fishing, collecting tools
 - e. river floodplain
 - 1. intermittent flow: max flow Feb-March
 - 2. fiber, wood
 - 3. crustaceans, reptiles, small mammals, deer
 - 4. arable soil for floodwater farming
 - f. desert: Tillandsia
 - g. lomas
 - 1. diverse flora: June-Oct

Early adaptations in foraging societies

- 1. best evidence for stable hunting and gathering societies comes from site of Paloma: 7,800-5,100 BP (corrected)
 - a. site located just north of Chilca Valley
 - 1. covers about 15 ha (Engel)
 - 2. some remains of dwellings and human occupation debris
 - b. resource zones nearby: within 50 km
 - 1. littoral
 - 2. river valley
 - 3. lomas
 - 4. western flanks of Andes
 - c. each m³ of shell-midden deposits weighs about 1,000 kg
 - 1. 300 kg: shell
 - 2. remainder: various plant, animal, cultural, and sediment materials
- 2. general trends
 - a. population growth during Middle and Late Preceramic Periods
 - b. population growth at La Paloma during the same time
 - 1. excess survival of children surviving to adulthood
 - 2. agglutination of local populations
 - 3. maybe both
 - c. increasing use of lomas degraded them
 - 1. reduction of food
 - 2. and water sources
 - d. may have forced diversification in use of resources
 - 1. including marine: especially toward end of sequence
 - 2. terrestrial foods
 - a. beans, cucurbits, tuberous begonia
 - b. emphasis on littoral and riverine resources
 - c. over lomas and arid floodplain settings
 - e. life expectancies increased over time
 - 1. i.e., decreasing proportions of dead in younger age groups were observed
 - f. health improved over time
 - 1. i.e., skeletal indicators of stress declined
- 2. appearance of cultigens
 - a. Cohen's model
 - 1. lag-time between domestication of crops in highlands
 - 2. and their appearance on the coast
 - b. Paloma preliminary evidence: support this perception of coastal lag
 - 1. see chart on p. 25
 - c. but: a couple of surprisingly early dates in Chilca Valley
 - 1. 5,300 BP: lima bean (Phaseolus lunatus)

- 2. 10,000 BP: potato (Solanum tuberosum) at high elevations Tres Ventanas (Engel)
- d. Paloma: some experimentation with tuberous begonia
- e. macrobotanical remains
 - 1. Paloma inhabitants were exploiting several different ecological and resource zones
 - 2. apparently at different times of the year
- 4. general trends at Paloma
 - a. increasing adaptation to coastal habitat
 - 1. change of sources of protein
 - a. shellfish, anchovies, sea mammals
 - 2. not toward a more protein-rich diet
 - b. decrease in Harris lines implies improved resistance to periodic disruptions
 - c. possible cultural control of birth rate
 - d. degradation of environment
 - 1. while population was becoming better adapted to it
 - e. eventual abandonment of lomas
 - 1. shift to other sets of plants
 - f. cultivation or semi-cultivation of plants
 - 1. probably sought as source of carbohydrates
 - 2. in wetter areas

Cotton Preceramic Subsistence Base: 2500-1800 BC

- 1. principal argument concerning subsistence base
 - a. Moseley: stable, productive resource base suffices to support rise of social complexity
 - 1. Peru: maritime resource base was adequate
 - 2. abundant marine species sufficed to nourish the builders of the early mound architecture
 - a. esp. mollusks and small fish
 - 3. immense shell middens mostly lack cultivated, staple crops
 - a. some over 3 meters deep
 - b. covering several hectares
 - b. Cohen, Wilson, Osborn, etc.
 - 1. maritime base was inadequate
 - a. too unreliable
 - b. low in calories
 - 2. necessary reliance on agriculture
 - a. intensified foraging failed to keep pace with population growth

3. limitations of marine diet accentuated during unpredictable El Niño climatic episodes

Maritime argument: Moseley

- 1. marine resources provided abundant resources
 - a. localized and perennially available
 - b. supported development of complex societies of Late Preceramic
 - c. pre-adapted populations to complexities of agriculturally-based economies
 - 1. with the central authorities needed for large-scale constructions
 - 2. e.g., irrigation systems, monumental architecture

2. Cotton Preceramic Stage

- a. exploitation of lomas ceased at or just before start of Cotton Preceramic
 - 1. marine resources assumed primacy
 - 2. fish, sea fowl, and algae other principal foods
 - 3. pinnipeds sometimes eaten
- b. distribution of anchovy schools reflects distribution of preceramic sites
 - 1. i.e., food that people ate relied on same conditions as anchovies
- c. main food resources not subject to seasonal fluctuations
 - 1. mollusks not seriously affected by Niños
 - 2. archaeological record reveals no obvious impact from Niños
 - 3. resources rejuvenate easily from Niños
- d. land resources limited spatially
- e. population juxtaposed with primary subsistence resources
 - 1. abundant, localized, perennial marine resources
 - 2. easily exploited with simple collecting and fishing technology
- f. so marine resources fostered
 - 1. sedentary way of life
 - 2. underwrote population growth
 - 3. development of permanently occupied settlements
 - a. housing large numbers of people
- g. cultivation most important where it could be combined with fishing
 - 1. e.g., El Paraiso
 - 2. jump from 2 to 6 cultivated species at beginning of Cotton Preceramic
 - 3. correlates with shift from mobile to sedentary life

Terrestrial subsistence base argument

- 1. maritime resources were unreliable
 - a. not sufficiently abundant
 - b. insufficiently nutritious
 - c. Wilson: inadequate technology

- 1. could not exploit many marine foods available to modern inhabitants
- d. so land-based resources must have played a key role
- e. Cohen: population pressure forced the development of agriculture
 - 1. prior to the development of social differentiation
- 2. widespread evidence for cultigens at coastal Preceramic sites
 - a. see tables
 - 1. Quilter 1991:398
 - 2. Burger 1992:30
 - b. potatoes, oca, ulluco at Ancón and Alto Salaverry
 - 1. suggests highland links

Evaluation of subsistence arguments

- 1. data base: significant problems with maritime and agricultural positions
 - a. Moseley
 - 1. subsistence capacity: assertions
 - a. no real calculations of productivity
 - b. no reliable estimates for population size
 - 2. significant problems with sample
 - 3. recovery techniques are questionable
 - a. no screening
 - b. no column samples
 - c. no flotation
 - d. no random elements in sampling strategy
 - 4. ergo: problems with extrapolation of sample to entire subsistence strategy
 - 5. differential preservation
 - a. does preservation of marine resources necessarily imply reliance on them?
 - 6. analysis based on loose version of catchment analysis
 - 7. are we really seeing the whole settlement pattern?
 - b. Wilson, Cohen, Raymond, Stocker, Osborn
 - 1. where are the botanical remains?
 - a. not provided in their publications
 - 2. where are the quantitative estimates of proportional consumption?
 - a. e.g., through ubiquity
 - 3. where are the evaluations of tools that would be associated with different subsistence strategies?
 - a. or just a part of it?
- 2. settlement pattern study possibly significantly skewed toward coastal sites
 - a. Burger: many Late Preceramic coastal sites in Supe Valley with monumental architecture
 - 1. Chupacigarro Chico
 - 2. Chupacigarro Centro

3. Alpacoto

- 3. most balanced analysis so far: Quilter's 1990, 1991 syntheses and study of El Paraiso
 - a. key point #1: societies practiced a wide variety of subsistence adaptations
 - 1. each probably mixed foraging and some exploitation of cultivated or managed plants
 - b. #2: a wide variety of cultigens was present in Late Preceramic
 - 1. both industrial and food
 - c. #3: even where cultigens were important, they probably did not constitute the dominant portion of the diet until close to the inception of the Initial Period
 - 1. either in protein or in carbohydrates
 - d. #4: domesticates were introduced over the long haul
 - 1. i.e., agriculture was adopted incrementally
 - 2. not as a package brought in from the outside in a major upheaval

Sociopolitical Transformations

- 1. several areas show evidence of gradual, apparently home-grown, development of practices tied to social differentiation and integration
 - a. most researchers assign group ceremony and ritual leadership pivotal roles in forming the character of the increasingly complex Andean societies
 - b. typically, the problem is addressed through study of patterns of ceremonial/public space and architecture
- 2. Feldman (1992) suggests that three basic patterns arose
 - a. one along coastal Ecuador
 - b. one in the central Peruvian highlands
 - c. one along the central-to-north Peruvian coast
 - _____
 - d. broadly speaking: ceremonies appear to have moved
 - 1. from exclusive rituals practiced in the interior of structures
 - 2. to more public, open-air affairs
 - 3. suggests that the scale and nature of social integration was gradually changing

Architectural data from the coast

- 1. beginning with Cotton Preceramic
 - a. Andean prehistory characterized by
 - 1. big settlements with monumental architecture
 - 2. increase in numbers and scale through time
 - b. in a given region: often one especially large site
 - 1. product of far greater labor expenditures than those underlying contemporary settlements
 - c. reflected at El Paraiso

- 1. more than 3x the size of largest contemporaries
- 2. monumental masonry
- d. many preceramic sites: mostly midden, as described above
- 2. largest known concentration of early settlement with corporate construction projects lies on coast between Rimac and Chicama Valleys
 - a. date to Cotton Preceramic: 2500-1800 BC
 - b. building activity included masonry terracing and walling for residential purposes
 - c. 20+ preceramic complexes: Supe-Patavilca-Fortaleza area alone
- 3. complexes do not appear south of Mala or north of Supe
 - a. Mala: only La Salitre
 - 1. late stylistically
 - b. Supe: La Empedrada in mid-valley
 - 1. style between Lurin and Huaura
 - c. Casma
 - 1. those related to the prototype belong to a different tradition
 - 2. more significant examples: Sechín Alto, Las Haldas
 - a. sequence of pyramid sunken rectangular court sunken circular patio
 - b. major constructions date to Initial Period
 - d. Moche: northern tradition seen at Huaca de los Reyes
 - 1. much more intimate and internally directed than the other complexes
 - 2. with their vast proportions and external character
- 4. form: enclosure with volumes or adornments on three side
 - a. fourth side: no structure
 - b. shows up over long time period
 - 1. early pyramids
 - 2. temples: Huaca de los Reyes
 - 3. audiencias of Chan Chan
- 5. rendition of form
 - a. central pyramid
 - 1. nucleus with an atrium: central focus
 - a. mounted by a stairway
 - b. opens onto a vestibule in the central field
 - b. flanked by two arms
 - 1. asymmetrical
 - 2. built of various truncated pyramids
 - c. levelled field: large proportions
 - 1. 30 ha in San Jacinto, Huando
 - d. U is broken in one corner: in all cases

- 1. between the central pyramid and at least one of the arms
- 6. Aspero: in Río Supe drainage
 - a. covers more than 13 ha
 - b. houses at least 6 platforms
 - 1. major excavations undertaken at two mounds
 - 2. Huaca de los Idolos: 30x50m at base
 - 3. Huaca de los Sacrificios: similar size
 - c. largest mound stands over 10m high
 - 1. built in multiple stages
 - a. each interspersed with periods of use
 - 2. basalt walls: plastered over and occasionally painted
 - 3. use centered on summit rooms and courts
 - a. occasionally ornamented with wall niches or geometric adobe friezes
 - d. artifactual evidence: three key types of goods show social complexity (Feldman)
 - 1. dedicatory caches
 - a. found in all mounds excavated
 - b. typically pit with sterile sand
 - c. textiles, featherwork, burnt wooden objects, human figurines
 - 2. high-status burial: infant at H. de los Sacrificios
 - a. buried with adult: poorly furnished
 - b. head: over 500 beads of shell, bone, plant stem, clay or silt stone
 - c. wrapped in textiles
 - d. accompanied by bundle and painted stone
 - e. treatment may reflect ascribed status
 - 3. trade goods
 - a. e.g., Spondylus
 - b. feathers that may be local or imported
 - 1. show high status
 - c. fine quality beads: show craft specialization (Feldman)
 - e. architectural evidence for complexity (Feldman)
 - 1. built with corporate labor
 - 2. concentration of ornamentation and cached artifacts in central rooms
 - a. indicates higher status for some rooms than others
 - 3. pattern of graded access: doorways became increasingly restricted
 - 4. concentration of friezes in internal rooms
 - 5. use of bagged fill in architecture
 - a. not found in domestic architecture
 - 6. general lack of domestic refuse in structures
 - a. on floors and in fill
- 6. Las Haldas and Huaynuná
 - a. major settlements
 - b. coastal setting

- c. substantial refuse
- d. monumental architecture: Las Haldas questionable here
- e. dominant cultigens: cotton and gourd
 - 1. in keeping with marine emphasis
 - 2. probable use of floodplains
 - 3. high frequency of nonusable parts: implies agriculture

7. El Paraiso

- a. largest preceramic site on the coast: 50+ ha
 - 1. 2 km inland
- b. 90 ha suitable for floodwater farming
 - 1. 150 ha easily irrigable by river diversion
- c. excavated by Engel in 1967
- d. series of masonry room complexes
 - 1. agglutinated rectangular rooms
 - a. growth by accretion
 - b. 8 or 9 distinct structural units
 - c. up to 5m high
 - 2. largest two complexes are mounds: 250+m long x 50m wide
 - a. parallel one another
 - 3. complexes required 10,000 tons of rock
 - 4. housed 1500-3000 inhabitants
- e. midden surprisingly small
 - 1. much of the architecture must have been nonresidential
- f. Engel's work not described in detail
 - 1. textiles: late Preceramic in date by style
 - 2. woven fabrics, mats, looped bags, nets
 - 3. wood and bone artifacts
 - 4. grinding stones, stone beads or spindle whorls, crude bifaces, polished stone mirror
 - 5. figurine fragments and other objects of baked clay
 - 6. shellfish main constituent
 - a. bone not common
 - 7. plants: cotton, gourd, guava, lúcuma, legumes, tubers, rhizomes
 - 8. exploitation of sandy beach resources indicated

Highlands

- 1. apparently regional and local traditions occurred at the same time (Burger)
 - a. suggests melding of local concepts and practices
 - b. with more general concepts
- 2. Huaricoto Tradition: in Callejón de Huaylas
 - a. part of standardized ceremonial construction pattern

- b. used for 2 millennia as ritual center
 - 1. focus on burnt offerings
- c. mostly small chambers
 - 1. with ventilated sunken interior hearths
 - 2. floors repeatedly refinished with clay surfaces
 - 3. walls were perishable
- d. several chambers could have been in use simultaneously
- e. midden remains
 - 1. fauna: deer, large camelids, sea shell, marine fish bone
- f. Burger: site was probably a gathering point for ceremonies conducted in a ritual cycle
 - 1. not a residential settlement on a permanent basis

3. Kotosh: 2000 BC

- a. several moderate-sized courts built by group labor
 - 1. enclosures built and used successively
- b. niches ornamented the interiors of plastered masonry walls
 - 1. friezes depicting crossed human forearms on one wall
- c. structures were not domestic nor residential
 - 1. specific kinds of behaviors pursued are not clear
 - 2. nor is the nature of the authority that commissioned their construction
- d. building activity
 - 1. suggests inequality in benefits between and elites
 - 2. fewer benefits than equivalent labor invested in subsistence activity
- e. courts denote corporate organization
 - 1. imply economy productive enough to free labor from subsistence concerns
- f. presumably not isolated phenomena
 - 1. but not well-documented elsewhere

4. La Galgada area: Bueno and Grieder

- a. 11 preceramic settlements in Tablachaca Valley
- b. all in area where valley widens: offers agricultural possibilities
 - 1. 10-km long strip
 - 2. many occupied into Initial Period
 - 3. population estimates not provided
- c. main site called La Galgada
 - 1. complex of monumental architecture
 - 2. numerous interior chambers
- d. site refurbished numerous times
 - 1. shift from asymmetric architectural construction
 - 2. to axial symmetry: rectangular structure at center
- e. elaborate burials inside chambers: see below

Domestic architecture

- 1. scope of research dedicated to more quotidian architecture has been overshadowed by efforts committed to public construction
 - a. imbalance partially redressed by Malpass and Stothert's (1992) review of the evidence for Preceramic households from Ecuador to Chile
 - b. they document a general transition toward changing family composition and greater sedentarism: in part implied by
 - 1. larger dwelling sizes
 - 2. subfloor burials
 - 3. greater investment of labor in more permanent constructions
 - c. such changes were precocious in Ecuador
 - 1. more fully elaborated in Peru
 - 2. later and less complex in northern Chile
 - d. they follow Flannery's notion that the construction of rectangular structures implies
 - 1. greater permanence
 - 2. development of hereditary resource ownership

- 3. intriguing: since rectangular houses appear for the first time on coastal Peru in association
 - a. with dependence on marine resources
 - b. and incipient horticulture

Mortuary evidence

- 1. between Middle and Late Preceramic, burials became
 - a. more formalized
 - b. more diversified
- 2. general features
 - a. dead usually wrapped in textiles in flexed position
 - b. dedicatory burials of children continue
- 3. best coastal data set from the site of Asia
 - a. 49 funeral bundles found
 - b. more artifacts than normally found in Middle Preceramic sites
 - c. a few burials had disproportionately more and finer grave goods than the majority of interments
 - 1. found in same structure as some with fewer goods
 - 2. implication: perhaps higher- and lower-ranking members of same kin group
 - d. trophy heads found
 - 1. earliest evidence

- 2. perhaps indicative of raiding or warfare
- 4. La Galgada: best highland material
 - a. spectacular burials
 - b. burials placed in former ritual chambers
 - c. 3-5 bodies placed in flexed or extended positions
 - d. accompaniments
 - 1. fancy twined textiles: bird, snake or geometrical designs
 - 2. shell pendants and bone hairpins: common
 - 3. beads of turquoise-like stone
- 5. overall mortuary pattern
 - a. reinforces the notion that non-egalitarian societies were developing
 - 1. dedicatory burials
 - 2. significant variations in the array of associated burial furniture
 - 3. interment of individuals in monumental architecture at numerous sites
 - b. collectively underscore view that individuals were treated differentially for their passage to the next world

Summary

- 1. Late Preceramic Period characterized by several features
- 2. subsistence diversification
 - a. great increase in importance of use of marine resources
 - b. slow adoption of cultigens
 - 1. both industrial plants: e.g., cotton, gourd
 - 2. and foods
- 3. beginnings of elaborated social differences
 - a. expressed in burial treatment
- 4. first significant monumental constructions
 - a. multiple traditions developed
 - 1. e.g., Peruvian coastal
 - 2. Peruvian highland
 - b. shared patterns of construction within traditions
 - c. long-term trend from
 - 1. interior to exterior rituals
 - 2. small-scale to large-scale
- 5. apparently widespread sharing of ideologies central to organization of society

6.	set stage for enormous changes of subsequent Initial Period	
		[Late Preceramic]

Supplemental Information

Late Preceramic: 7000-5000 BC

- 1. El Inga Cave (Strata II and III), Las Casitas and middle strata of the El Abra Rock shelters
 - a. date to this period
 - b. plant remains are entirely lacking
- 2. El Abra faunal remains
 - a. deer and guinea pig in equal proportions: most common types
 - b. location in mid-altitude sierran basins (2600 m)
 - 1. rich plant resources accessible in zone were probably also used
 - c. probably analogous to gathering and cultivation patterns at Guitarrero Cave
- 3. no sites from this period appear to be base camps or long-term occupation sites
- 4. Ecuadorian coast: Vegas culture
 - a. 6550-5300 BC
 - b. sites occur in western area of Santa Elena Peninsula
 - 1. 1-5 km from the sea
 - 2. along fossil drainage systems, near beaches, close to dry lagoons
 - 3. access to swamp, riverine, littoral, and forest areas
 - c. faunal remains from OGSE-80: large Vegas site 3.5 km from sea
 - 1. predominance of terrestrial protein
 - 2. variety of fish also present
 - 3. Stothert: year-round settlement
 - a. lack of plant remains makes it difficult to evaluate Stothert's suggestion of root crop agriculture
 - d. at least some sites were in long-term multiple use
 - 1. evidence
 - a. location of Vegas sites
 - b. varied faunal assemblage
 - 2. perhaps seasonal, more specialized camps made up another component of settlement system
 - e. first cultivars in a setting of rich marine and hunting resources: industrial plants
 - 1. bottle gourd, cotton
 - 2. other crops are very minor component
 - 3. not really a staple in the diet
 - 4. similar to pattern on Peruvian coast
- 5. small cave sites in southern Guayas coast of Ecuador
 - a. Spath: sporadic use of shelters as camps
 - 1. before 7000 BC until Late Preceramic
 - b. located between two extensive mangrove swamps
 - c. may have been resting place for populations traveling between swamps

- d. plant remains do not include food plants
 - 1. are from taxa that occur today in area of the shelters

Preceramic V: 5000-3000 BC

- 1. first half of MesoIndian period of Rouse and Cruxent
 - a. Cubagua complex on eastern coast of Venezuela and El Heneal on western coast
 - b. strong marine orientation for Cubagua and later complexes
 - 1. site locations: coast and islands
 - 2. shell remains
- 2. information lacking from coast of Colombia
 - a. Reichel-Dolmatoff: proposes gradual adaptation to sea resources in response to disappearance of big game animals
 - b. by 3000 BC: well-defined pattern of shell-mound dwelling emerges
- 3. sierra
 - a. seasonal occupation continues at El Abra rock shelters
 - b. shift from deer-guinea pig to dominantly guinea pig
 - 1. zone 3 (7000-2500 BC): 5x guinea pig than deer
 - 2. reminiscent of camelid-deer shift
 - a. 5500-4200 BC in Peru
 - c. Wing: guinea pig domestication occurred in 4200-2500 BC
 - 1. perhaps started earlier
 - 2. wild form of domesticated form found in NW South America
 - a. Cavia porcellus
- 4. coast of Ecuador
 - a. Vegas complex lasts until about 5300 BC
 - b. no sites on Santa Elena Peninsula until Achallan complex site OGSE-63
 - 1. just before 3000 BC
 - c. may result from abandonment of peninsula
 - d. or from lack of adequate survey

Ecuadorian Maize

- 1. basic issues concerning maize cultivation
 - a. early subsistence systems
 - b. settlement patterns
 - c. demographic trajectories
- 2. phytoliths: Pearsall and Piperno
 - a. phytoliths: silica bodies present in the epidermal cells of some plant groups

- b. used to indicate presence of grasses in sites with poor botanical preservation
- c. phytolith recovery used at sites in Santa Elena Peninsula
 - 1. Las Vegas culture: 5000 BC
 - 2. Real Alto: Valdivia culture (3000 1500 BC)
 - 3. OGCh-20: Machalilla culture (1500-1000 BC)
- 3. comparative materials
 - a. Ecuador
 - 1. 10 maize races
 - 2. 35 grasses
 - b. Panamanian
 - 1. 21 maize races
 - 2. 46 grass species
- 4. means of distinguishing maize from wild variants
 - a. 8 types of 3D structures: called Variants
 - b. characteristics
 - 1. cross-shape size: maize is larger
 - 2. Variant type
 - 3. ratio of dumbbell to cross-shaped phytoliths: maize has more cross-shapes
 - c. some degree of controversy over the degree to which domesticated maize is separated from other grasses
 - 1. a lot of overlap
- 5. empirical results
 - a. Real Alto
 - 1. clear separation of 3 samples as maize
 - 2. at least as early as 2500 BC: Valdivia II
 - 3. I-II samples: tend to fall between grasses and maize
 - b. Las Vegas
 - 1. OGSE-80: 3 maize-type samples fall into 6,000-5,000 BC range
- 6. implications of maize data
 - a. Early Formative Valdivia sites had larger kernels
 - 1. than later Middle/Late Formative sites
 - b. implies considerably complexity in development of local maize varieties
 - 1. and subsistence strategies
 - c. implies early introduction of maize into South America
 - 1. much experimentation
 - 2. 5000 BC: maize pollen from Calima Valley, Colombia
 - 3. same date for maize pollen from Panamanian archaeological sediments
- 7. Pearsall and Piperno: conclusion
 - a. primitive forms of maize dispersed by at least 5000 BC
 - 1. through lower Central America

- 2. and northern South America
- b. probably joined part of tropical forest subsistence pattern
- 8. critiques
 - a. Bonavia and Grobman: question of presence of maize as species should be separated from
 - 1. question of domestication
 - 2. probable that diffusion occurred naturally
 - 3. multiple occurrences of domestication
 - b. Bird: introduction by 3,000 BC
 - 1. widespread dissemination by 1,000 BC
- 9. in any event: maize not important in diet till about 1,000 BC

Beans

- 1. Real Alto: Canavalia beans
 - a. Damp et al.: probably domesticated
 - 1. cultivated from onset of Valdivia occupation
 - b. three carbonized fragments of sufficient size that gross morphology could be used to make an ID at the family level
 - c. comparisons
 - 1. to modern wild Leguminosae seeds
 - a. collected from coastal plain of Ecuador
 - 2. cultivated Phaseolus vulgaris (common bean)
 - 3. Phaseolus lunatus (lima bean)
 - c. archaeological specimens were larger than wild species
 - d. did not conform in size and proportion to either the wild or cultivated common or lima bean
- 2. electron microscopy provided ID of <u>Canavalia</u> sp.
 - a. conservatively: wild coastally distributed Canavalia maritima
 - b. probably: domesticate <u>C. plagiosperma</u>
- 3. carbon samples: 3 of 7 found in situ in refuse zone of a Valdivia I household cluster
 - a. dense shell (10 cm thick) surrounding remnant structure
 - b. mangrove-specific plants are most conspicuous elements of refuse zone
 - c. Valdivia I ceramic sherds found in definite association with this refuse zone and house floor
 - 1. 3300-2700 BC
 - d. context of seeds in certain
 - 1. cemented in place
- 5. search through Real Alto carbonized material produced the following

- a. 14 fragments from Valdivia I, III, IV/V, and VI
- b. 9 from undated features
- c. suggests that Canavalia was used during Valdivia I times
 - 1. and throughout occupation of Real Alto
- 6. other findings suggestive of early agriculture during Valdivia E. Formative
 - a. achira: phytoliths as early as Valdivia III
 - 1. not native on coast
 - 2. probably introduced
- 7. prehistoric occurrence of domesticated <u>C. plagiosperma</u> known for coastal Peru: 2500-1800 BC
 - a. recovered by Bird at Huaca Prieta: Chillón Valley, N. coast Peru
 - b. several wild and possibly ancestral forms of Canavalia species
 - 1. in Western Ecuador
 - 2. extending into extreme northern Peru
 - 3. area was probably site of early <u>Canavalia</u> domestication
 - d. Damp: Real Alto data give chronological priority to northern Ecuadorian origin
- 8. additionally: Canavalia species are confined to humid areas
 - a. irrigation necessary for growing domesticated species in areas with short rainy seasons
 - b. since SE Ecuador is area of marginal rainfall
 - 1. presence of Canavalia at Real Alto implies wetter area of origin for Valdivia
 - 2. possibly Colonche Hills
 - 3. and Guayas Basin of Ecuador

Japanese origins

- 1. Early Formative Valdivia appeared on Ecuadorian coast: ca. 3500 BC
 - a. Lathrap et al.: Valdivia culture developed in NW South America in tropical-forest, riverine agriculture
- 2. Meggers et al.: Neolithic Japanese fishermen encountered shellfish gatherers and fishermen on seashore
 - a. introduced Jomon culture
 - b. strongest evidence: stylistic affinities in incised ceramics
- 3. Lathrap's critique
 - a. if Jomon produced Valdivia pottery: Valdivia pottery should be the earliest in South America
 - 1. but Puerto Hormiga pottery is perhaps 200 years earlier
 - b. Middle Jomon decorative techniques are wide
 - 1. but the range of vessel types is not
 - 2. none is a prototype for Valdivia A

- c. choice of Valdivia sherds for comparison with Jomon is daisy picking
 - 1. most are not from Valdivia A: i.e., earliest Valdivia levels
 - 2. majority of decorative techniques are unique to B, C, and D
 - 3. question: how can specific decorative configurations confined to the end of A, end of B, and D can be used as evidence for the Japanese origins of the beginnings of A?
- d. general conclusion: Japanese origin for South American civilization is not a sustainable argument

Supplemental information on Paloma

- 1. human biological evidence
 - a. 200+ burials excavated
 - 1. 175 well-preserved individuals
 - b. Table 3.1 (Quilter 1990:50): demographic data from burials
 - 1. significant increase in survivorship rates over time
 - 2. potential sources of error
 - a. underrepresentation of newborns
 - b. underestimation of age at death for adults
 - c. change in use of site over time: favoring adults
 - 3. data indicate increasingly well-adapted use of resources
 - c. coprolite remains: 276 recovered
 - 1. 88% have shellfish
 - 2. 77%: bone fragments of fish, mammal, bird, reptile, etc.
 - 3. 74%: charcoal
 - 4. 63%: plant fibers
 - 5. 44%: grass fragments
 - 6. 26%: insects, arthropods
 - 7. 23%: seeds
 - 8. 2%: hair
 - d. health
 - 1. Patterson predicts increase in nutritional levels over time
 - a. as population became adapted to environment
 - 2. Harris lines: used to measure stress resulting from dietary interruptions or disease
 - a. Paloma evidence indicates reduction of Harris stress lines over time
 - b. consonant with improvement in diet and in consistency of diet
 - 3. possible population control
 - a. delay in marriage implied by late female deaths
 - 1. i.e., high incidence in 30s, not 20s
 - b. infanticide?: apparently high rate of female infant deaths
 - 4. increase in stature over time
 - a. estimated from length of long-bones
 - b. implies better diet
 - 5. cranial lesions
 - a. decreased over time

- b. disappeared among adults in highest level of occupation
- 6. dental wear decreased over time
- e. increase in muscle mass over time
 - 1. change in activities
 - 2. perhaps toward fishing

Moseley's data base for Middle Preceramic sites

- 1. many sites lacking pottery have cotton artifacts
 - a. particularly twined textiles and fishing nets
 - b. Engel suggested cotton as a time marker
 - c. all cotton in area: Gossypium barbadense
 - 1. early materials: like wild species
 - 2. later: greater similarity to (modern) domesticates
 - d. three sites with cotton, but not in textiles
 - 1. Padre Aban (Moche)
 - 2. As-8 (Supe)
 - 3. Pampa (Ventanilla Bay)
 - e. remaining sites have cotton in form of textiles
 - f. NB (Quilter): cotton was not integrated into the material culture of all the key sites at the same time
 - 1. long-term process
- 2. Pampa: basal stratum 2500±110 BC
 - a. 140x20 m
 - b. three components: last is Ceramic
 - c. materials recovered
 - 1. twined textiles, net fragments, cotton yard or cordage
 - 2. mollusks most abundant food resources
 - a. e.g., Cut 2: 20,520 pelecypods and gastropods 6,761 chiton shells
 - 3. no projectile points, grinding stones, lomas flora or fauna
 - a. earlier H&G economy is gone
 - 4. vegetable matter: cotton, tillandsia, junco, sedges, kelp, jack beans (<u>Canavalia</u>), legumes, guava squash
 - d. Moseley concludes: evidence implies sedentary, permanent settlements
 - 1. TND: not clear how that conclusion is supported
 - 2. evidence for multi-seasonal occupations ought to be presented
- 3. six sites in Ancon-Chillón have twined cotton textiles
- 4. three small settlements

- a. Yacht Club: Lanning
 - 1. two preceramic components
 - a. both with twined textiles
 - b. both sand- and rock-dwelling mollusks
- b. Camino: SE flank of hill above Ventanilla Bay
 - 1. 10x20 m
 - 2. one cut: 2 x 2 m: 1.35m average depth
 - 3. shellfish primary constituent
 - 4. fish and fowl not common
 - 5. kelp common; other plants not
 - 6. cotton textiles, 10 net fragments, stone net sinkers, digging stick, percussion struck flakes
 - 7. focus on resources of sandy littoral zones
- c. Banco Verde: N end of old bay; 500m east of Pampa
 - 1. 80 x 30 m
 - 2. one cut: 2.25 x 3.5 m
 - 3. textiles, mats, fish nets, stone fishing weights, shell fishhooks
 - 4. tunicates, bird, fish, sea mammal bone
 - 5. wild forms, gourd, cotton, guava, unidentified rhizome

4. Punta Grande

- a. biggest preceramic site at Ventanilla
- b. dominant feature: four artificial terraces at the base of the hill slope
 - 1. average 75x7x3 m
 - 2. Moseley: living surfaces for large numbers of people [evidence?]
- c. site occupied for long time
 - 1. subsistence activities relatively constant
- e. 29 fishnet fragments, weights, gourd floats
 - 1. sand beach orientation
- f. shellfish bulk of organic matter in refuse
 - 1. Mesodesma donacium most important
 - 2. tunicates common
 - 3. sea fowl and fish: most osseous material
 - 4. sea lion rare
- g. cotton, gourd, guava, capsicum peppers legumes, rhizomes (maybe Lupines)

8. Tank Site

- a. immense occupation on shore of Ancon Bay
 - 1. arbitrarily divided up
 - 2. Tank Site is the biggest
 - 3. up to 5m deep
- b. three cuts in areas of modern bulldozing
 - 1. 2 and 3: 2.5-5.5 x 1.6x2.0 m deep
 - a. nets, hooks: sandy and rocky littoral zone exploitation

- b. vegetable matter not common: kelp, cotton, gourd, squash seeds, guava, capsicum peppers, milkweed pods, tillandsia, junco, slat grass
- 2. 1: 1 x 2.1 x 3.9 m
 - a. 5 lower strata belong to close of Preceramic
 - b. list of plants given
- c. exploitation of rocky and sandy littoral
 - 1. small lagoons or marsh areas for some wild plants

Cohen: population pressure and origins of agriculture

- 1. underlying assumptions
 - a. population has inherent capacity to grow
 - b. adoption of agriculture is not a result of an increase in food availability
 - c. the availability is always there to be exploited
 - 1. people are aware of the foods
 - d. there must be a trigger to stimulate use
 - 1. population pressure
 - e. Boserup: general trend towards increasingly intensive use of resources
- 2. myths concerning agriculture and its origins
 - a. agriculture is not a difficult concept
 - 1. actually discovered several times in different places
 - 2. H&G promote growth of preferred species: e.g., through use of fire
 - b. health benefits of agriculture
 - 1. H&G are typically well-nourished
 - c. agriculture is less costly in labor
 - 1. not true: H&G put in little time in food quest
- 3. so why shift to agriculture?
 - a. must have been pressure
- 4. options under increasing pressure
 - a. decline in quality and quantity of food available
 - b. increased work load
 - c. limit population: infanticide, abortion, contraception
 - d. increase radius exploited
 - e. settle for less desirable foods
 - f. budding-off of settlements
- 5. major alternative: artificial increase of desirable crops within gathering radius
 - a. remove competing plants
 - b. protect them from predators
 - c. improve environment: e.g., weeding

- d. plant in other areas
- e. selectively aid more productive plots
- f. results in agriculture
- 6. why agriculture?
 - a. some groups may have done it, others not
 - b. those that did were able to compete successfully
- 7. general trends of Late Preceramic: consonant with model
 - a. initial occupation of coast along valley littoral and river
 - b. subsequent expansion into other areas
 - 1. e.g., coast between valleys
 - 2. lomas
 - 3. implies expanded use of resources
 - c. progressive decline in land mammals
 - 1. increased reliance on shellfish
 - d. increase use of grinding tools: grasses
 - 1. implies more intensive use of resources
 - e. increased use of imported cultigens
 - 1. response to pressure
 - 2. occurred <u>after</u> population crisis
 - 3. significant delays in importation of crops
 - a. despite known cultural contacts
 - 4. maize, beans, and irrigation arrived when the potential of relatively easy floodwater farming had been exhausted

Wilson

- 1. Moseley misrepresents environmental potential
 - a. distribution of marine biomass does not favor the central coast
 - 1. as Moseley asserts
 - b. ergo: there must be other reasons for the developments at Las Haldas, Aspero, and El Paraiso
- 2. El Niño probably critical as population dampener
 - a. no cyclic predictability
 - b. slow recovery time for the biomass critical to human population
 - 1. caused the human populations to adapt to non-maritime resources
- 3. maize: assumed to be the primary cultigen
 - a. based on modern traditional agriculture
 - 1. TND: poor reason
 - b. variety of cultigens obviously used
 - 2. TND: evidence not provided in article, although he is right

- c. maize productivity: good gauge of population
 - 1. once the proper crop mix has been established
 - 2. citation of Sanders and Price: about maize being used as a gauge of potential population density
 - 3. TND: essentially a story based on unsubstantiated assumptions
- d. earliest coastal maize: 2000 BC in Cotton Preceramic
 - 1. 70 km stretch: Las Haldas, Culebras I, Huarmey North I
- e. estimates productivity of 200 kg/ha
 - 1. based on cob size of 60 cm
- 4. carrying capacity argument
 - a. compare best-case maritime model
 - 1. 8 persons/km of shoreline
 - b. with worst-case agricultural model
 - 1. 48 persons/km
 - c. argument based on calories
 - 1. note that Moseley's argument is based on protein
 - d. average maritime carrying capacity
 - 1. 50 persons/km of coast
 - 2. Ancon-Chillón calculated out to 400 persons
 - a. Moseley's estimate: 2,400-5,450 persons
 - b. alternative source of food must be found for 2,000 people
 - c. i.e., 83-93% of people
 - 3. Las Haldas shell beds: could support about 78 people/yr
 - a. far too little for population
 - e. maize carrying capacity arguments
 - 1. worst case: 50 persons/km/yr (see 48 above)
 - 2. Ancon-Chillón: 2000 people would have required 40 km² of cultivated land