Problem Set 4

Note: This is for those who use the THIRD version of the textbook. Those who have the second version of the book please go to ps2-v2.ps

(Due June 26, 2003)

1. Problem Set 4.2: 4, 5, 13, 22

2. Problem Set 4.3: 12

3. Problem Set 4.4: 1, 12, 18, 23

4. Consider approximating the cubic \(y_3(x) = x^3 + 2x \) by a quadratic function \(y_2(x) = c_1 + c_2x + c_3x^2 \) in the interval \(-2 \leq x \leq 2\). To do this, sample the cubic at points \(x = (-2,-1,0,1,2) \) to obtain corresponding values of the function \(y_3(x) \) at those points. Then perform a least squares fit of these “data” to the quadratic function \(y_2 \) to obtain \((c_1, c_2, c_3) \).

5. (Weighted least squares (10 pts)) Compute the least squares solution \(\hat{x} \) by minimizing the following cost function with respect to \(x \):

\[
J(x) = (y - Ax)^T R^{-1} (y - Ax) + (x - x_o)^T W^{-1} (x - x_o)
\]
In the above, \(R \) and \(W \) are invertible, symmetric matrices known as the observation noise covariance matrix and the prior covariance matrix, respectively. \(x_o \) represents a prior guess of \(x \) (i.e., our best estimate of \(x \) before any observations \(y \) become available) and \(W \) represents the uncertainty in this guess. The matrix \(R \) represents the noisiness of the observations.