1 E3102: a study guide and review, Version 1.0

Here is a list of subjects thatthink we've covered in class (your mileage may
vary). If you understand and can do the basic problems in this guide you should
be in very good shape. If | get my act together I'll try to point out representative
problems from the homework for each section.

This guide is probably over-thorough. The test itself will have about 6 ques-
tions covering the whole course but emphasizing the basic concepts. I'll try to
avoid anything tricky or 5pt “land mines.”

1.1 Homogeneous Linear PDE’s in 2 variables

Separation of variables out the wazooBe able to solve the following separa-
ble problems with homogeneous boundary conditions and no forcing terms.
When in doubt use full-blown separation of variables. Alternatively, if you
know the appropriate eigenfunctions you can solve these by eigenfunction
expansion (the first three problems all have eigenfunctions that are some
combinations of sines and cosines determined by the boundary conditions)

e 1-D time dependent heat flow equation
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e 1-D vibrating string
0%u  ,0%u
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e Laplace’s EquatiorvV?u = 0 in cartesian coordinates (rectangles)
0%u  0%u
Viu=———+—==0
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and polar coordinates (disks)
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“ror or  r2o0
Note: For the disk, the eigenfunctions areéin The separated equa-

tions for f(r) is anequidimensional equatiowith trial solutions of
form f(r) =rP



e Helmholtz EquationV?u + Au = 0 in cartesian and polar coordi-
nates.Note: Helmholtz equation will give Eigenfunctions in both di-
rections for\ > 0. In cartesian coordinates you’ll get combinations of
sines and cosines inandy. In polar coordinates you'll get sines and
cosines irY and the dreaded Bessel functions-idf A < 0 (modified
helmholtz equation) you'll only get eigenfunctions in one direction.

1.2 Sturm-Liouville Boundary Value problems

Regular Sturm-Liouville Boundary Value problems are of the form

d df B
—p(@) 7+ q(a)f + Ao (0)f =0
with general homogeneous Boundary conditions ata andz = b
d
Bif(a)+ 52%(60 =0

B3 f(b) + ﬂ4%(b) =0

andp > 0,0 > 0 for a < x < b. (This eigenvalue problem can also be written as

L(f) ==X f)

Know: the basic properties of these problems (page 157 in Haberman).

1. They have an infinite number &ealeigenvalues\; < \; < ... < )\,
n — o0

2. For each eigenvaluk, there is a corresponding unique eigenfunctiqf)
(note: uniqueness is only for 1-D problems without periodic BC's).

3. The eigenfunctions a@thogonal under weight, i.e.

b
/ OnOmodr =0 form #n

4. The eigenfunctions areompletein the sense thany piecewise smooth
function g(x,t) can be written in terms of an infinite series of the eigen-
functions. i.e.

9@, 1) = 3 an()n ()

n=1
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where the coefficients,, (¢) are defined by the integrals

_ fabg<$> t)bn(x)o(x)dx
I 62 (x)o(x)de

an(t)

Also know

Green’s formula for SL problems (and where it can be useful)

b dv du
/a ulv —vLlu = p(x) (u% — v%)

for anyfunctionsu(z) andv(z).

b

a

Rayleigh Quotient and how to use it to estimate eigenvalues (or show if positive)

i eLoda
J 3 (@)o()dx

1.3 Fourier Series/Generalized Fourier Series

e Understand how Fourier series are a special case of Sturm-Liouville theory

e Be able to sketch full Fourier Series, Fourier Sine Series and Fourier Cosine
series

¢ Realize that fourier-Bessel series work the same way. l.e. for a0disk
r < a | can expand any functiog(r) (bounded at = 0) in terms of bessel
functions,e.g.

[e.9]

g(r) = Z I (Zmnt /@)

n=1

where
B foa (1) T (Zon /@) rdr

n foa J2 (Zpnr /@) rdr
i.e. ¢n(r) = Jpn(zmnr/a) ando = r.

e Understand when, and when not, to differentiate these infinite series term-
by-term. (i.e. it is okay for continuous functiogsvith the same boundary
conditions as the eigenfunctions).
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1.4 Homogeneous Linear PDE’s in 3 or more variables

These problems are just more complicated versions of the first set of problems.
In general they can be solved by either separation of variables or eigenfunction
expansion. For eigenfunction expansion, however, it is most useful to ugelhe
eigenfunctions of Helmholtz equation. Basic problems are

e Time dependent heat-flow on a rectanglé, =, y) or disku(t, r, 0)

% = kV?u

e Time dependent vibrations of a 2-d membrane
0%u 9o
w = C V Uu

¢ 3-D Laplace equatiorV?u = 0 on rectangular solid or cylinder

For the first two problems you can always separate out the time dependent parts
usingu(t,X) = h(t)w(x) wherex = (x,y) for cartesian problems and= (r, 6)
for polar problems. In both cases,will satisfy Helmholtz Equation

V2w + =0

Properties of Helmholtz equation For A > 0 and w having homogeneous
boundary conditions on some domdih(e.g. a rectangle or a disk), then many
of the properties of the 1-D Sturm-Liouville theory are relevant to the 2-D (or 3-
D) Eigenfunction problem defined by Helmholtz Equati¢8ee Sections 7.4-7.5,
pages 280—290)mportant examples are

e There are an infinite number ofal eigenvalues\; < \; < ... < A\,
n — oo

e For each eigenvalue theneaybe multiple orthogonal eigenfunctions (this
is different from the 1-D case).

e Eigenfunctions with different eigenvalues are orthogonal with regard to the
areaintegral over the domai®

/ /R dididady =0 fori # j

this can also be made generally true for any two eigenfunctions with the
same eigenvalue. (see below)



e The eigenfunctions areomplete in the sense that any piecewise-smooth
2-D function can be written as an infinite sum of appropriately weighted
eigenfunctions

g(ZL‘, y) = Z ai¢i(m7 y)
where

M9l y)eiz,y)dA
ffR ¢ (x,y)dA

%

Some example solutions of Helmholtz Eq.

rectangular region 0 < x < L, 0 < y < H with w = 0 on the boundary
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Note 1: if L=H (square region), the#,,,, and¢,,,,, are orthogonal but have
the same eigenvalue,,,, = A\,

Note 2: if the boundaries in: are homogeneous but instead wete/ 0z (0) =

Ow/0xz(L) = 0, the eigenvalues would be the same but the eigenfunc-

tions would bep,,,, = cos “F* sin =¥

circulardisk 0 < r < a, —7 < 6 < 7 with w(a,#) = 0 on the boundary (and
w(0, 0) is bounded).
Zmn 2
)\mn = (7)

with two orthogonal eigenfunctions for eagh,,,.

Do (1,0) = T, (zmn£> cosmf @2 (r,0) =, (zmnf> sin mé

a

where J,,,(r) is the Bessel function of the first kind of order and z,,,, is
thenth zero of themth Bessel function.

1.5 Non-Homogeneous PDE’s and method of eigenfunction ex-
pansion

Here we extended the homogeneous problems to problems with both non-homogeneous
source terms and non-homogeneous boundary conditions. For the latter problems



however it was always possible to s&t, x) = v(¢,x) + r(t,X) wherer is any
function that satisfies the non-homogeneous boundary conditions. Substituting
this into the original PDE, will produce a new equation fowherev hashomo-
geneoudoundary conditions. Given these reduced problems, there is a general
recipe for solving the non-homogeneous source terms usingéiieod of eigen-
function expansion which | will illustrate with the simplified time-dependent
problem

ov
E =Lv+ Q(t, X)

with
v(X,0) = f(x)
andv has homogeneous boundary conditions &n$ a 2nd order differential

operator that only includes spatial derivatives (ed): = kd2v/dz* in 1-D or
Lv = kV?vin 2-D or 3-D.)

1. Use separation of variables on the associated homogeneous problem (as-
sume@ = 0) to find the eigenvalues and eigenfunctions of the spatial
boundary value problei¢,, = —\, ¢, and¢,, has thesamehomogeneous
boundary conditions as

2. Expand both the solution arglin terms of these eigenfunctions, e.g.
=Y at)onx) Q1) = gu(t)dn(X)

3. Substitute these sums into the PDEf¢and you can take all the derivatives
term by term because and ¢,, all have the same boundary conditions) to
get

where we have used the relationship
Lv= Z Cln £¢n Z an n¢n -

using the definition of the eigenfunctions 6f



4. Use orthogonality of the,,’s to get the set of 1st-ordé&ton-homogeneous
Ordinary differential equations
da,,

Tn — g (t
5 + Ay, = ¢n (1)

5. solve this using variation of parameters (and initial conditions) todje)
(and thereforey). Here you will need to use the initial conditions

 Jp f(@)paodA
an(0) = [ ¢20dA

6. reconstruct the full solution(x,t) = v(z,t) + r(z,t)...the end

simple problems with equilibrium solutions In addition to the full eigenfunc-
tion expansion technique, sometimes it is easier to solve problems with steady
forcing termsQ)(z) by looking for a a steady state solutiop(x) that satisfies

Lu, = —Q(x)

and non-homogeneous boundary conditions, then look for a transient solution
v(z,t) of the remaining homogeneous problem with homogeneous BC’s. and
reconstruct the full solution(z,t) = v(x,t) 4+ u.(x). For example you can use
this to solve the heat flow equation with steady forcing and fixed temperature
boundary conditions.

1.6 Green’s Functions
Given a boundary value problem of form
Lu= f(x)

with homogeneous boundary conditions, find tAeeen’s Functions with the
same boundary conditions defined by

LG(x,10) = 6(x — x0)

whered(z — z,) is a Dirac delta function at pointy,. GivenG(x, z) the general
solution foru is

u(x,t):/Rf(xo)G(x,xo)dxo

Basic problems



1. Important: know how to find the 1-D green’s functions fdn = d?u/dz?
and appropriate boundary conditions.

2. you might also want to know how to find the infinite space green’s functions
for V2u = f(z)in 2 and 3-D.
1.7 Wave Equations and the method of characteristics
Understand
e How to find solutions of simple 1-D wave equation

a_w + C@_w =0
ot ox
with initial conditionsw(z,0) = f(z) using the method of characteristics.

e Know how to extend it to more general linear problems like

W el 22 = -
8t Cc\T w

dr
e and to non-linear shock problems like

ow 0w
ot Vox
with w(z,0) = f(x)

for each of these problems know how to qualitatively sketch what is going on in
space and time. A graphical answer will go a long way.

1.8 P.S.

That'’s it for now...watch this space for anything new and/or corrections. if you
have any questions come and see me in office hours or send me e-mail at mspieg@Ideo.columbia
to set up an appointment. Good luck and relax.



