
1 E3102: a study guide and review, Version 1.0

Here is a list of subjects thatI think we’ve covered in class (your mileage may
vary). If you understand and can do the basic problems in this guide you should
be in very good shape. If I get my act together I’ll try to point out representative
problems from the homework for each section.

This guide is probably over-thorough. The test itself will have about 6 ques-
tions covering the whole course but emphasizing the basic concepts. I’ll try to
avoid anything tricky or 5pt “land mines.”

1.1 Homogeneous Linear PDE’s in 2 variables

Separation of variables out the wazooBe able to solve the following separa-
ble problems with homogeneous boundary conditions and no forcing terms.
When in doubt use full-blown separation of variables. Alternatively, if you
know the appropriate eigenfunctions you can solve these by eigenfunction
expansion (the first three problems all have eigenfunctions that are some
combinations of sines and cosines determined by the boundary conditions)

• 1-D time dependent heat flow equation

∂u

∂t
= κ

∂ 2u

∂x2

• 1-D vibrating string
∂ 2u

∂t2
= c2 ∂ 2u

∂x2

• Laplace’s Equation∇2u = 0 in cartesian coordinates (rectangles)

∇2u =
∂ 2u

∂x2
+

∂ 2u

∂y2
= 0

and polar coordinates (disks)

∇2u =
1

r

∂

∂r
r
∂u

∂r
+

1

r2

∂u

∂θ
= 0

Note: For the disk, the eigenfunctions are inθ. The separated equa-
tions for f(r) is anequidimensional equationwith trial solutions of
form f(r) = rp
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• Helmholtz Equation∇2u + λu = 0 in cartesian and polar coordi-
nates.Note: Helmholtz equation will give Eigenfunctions in both di-
rections forλ > 0. In cartesian coordinates you’ll get combinations of
sines and cosines inx andy. In polar coordinates you’ll get sines and
cosines inθ and the dreaded Bessel functions inr. If λ < 0 (modified
helmholtz equation) you’ll only get eigenfunctions in one direction.

1.2 Sturm-Liouville Boundary Value problems

Regular Sturm-Liouville Boundary Value problems are of the form

d

dx
p(x)

df

dx
+ q(x)f + λσ(x)f = 0

with general homogeneous Boundary conditions atx = a andx = b

β1f(a) + β2
df

dx
(a) = 0

β3f(b) + β4
df

dx
(b) = 0

andp > 0, σ > 0 for a ≤ x ≤ b. (This eigenvalue problem can also be written as
L(f) = −λσf .)
Know: the basic properties of these problems (page 157 in Haberman).

1. They have an infinite number ofRealeigenvaluesλ1 < λ2 < . . . < λn

n → ∞
2. For each eigenvalueλn there is a corresponding unique eigenfunctionφn(x)

(note: uniqueness is only for 1-D problems without periodic BC’s).

3. The eigenfunctions areorthogonal under weightσ, i.e.
∫ b

a

φnφmσdx = 0 for m 6= n

4. The eigenfunctions arecomplete in the sense thatany piecewise smooth
function g(x, t) can be written in terms of an infinite series of the eigen-
functions. i.e.

g(x, t) =
∞∑

n=1

an(t)φn(x)
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where the coefficientsan(t) are defined by the integrals

an(t) =

∫ b

a
g(x, t)φn(x)σ(x)dx∫ b

a
φ2

n(x)σ(x)dx

Also know

Green’s formula for SL problems (and where it can be useful)

∫ b

a

uLv − vLu = p(x)

(
u

dv

dx
− v

du

dx

)∣∣∣∣
b

a

for any functionsu(x) andv(x).

Rayleigh Quotient and how to use it to estimate eigenvalues (or show if positive)

λ = −
∫ b

a
φLφdx∫ b

a
φ2

n(x)σ(x)dx

1.3 Fourier Series/Generalized Fourier Series

• Understand how Fourier series are a special case of Sturm-Liouville theory

• Be able to sketch full Fourier Series, Fourier Sine Series and Fourier Cosine
series

• Realize that fourier-Bessel series work the same way. I.e. for a disk0 <
r < a I can expand any functiong(r) (bounded atr = 0) in terms of bessel
functions,e.g.

g(r) =
∞∑

n=1

anJm(zmnr/a)

where

an =

∫ a

0
g(r)Jm(zmnr/a)rdr∫ a

0
J2

m(zmnr/a)rdr

i.e. φn(r) = Jm(zmnr/a) andσ = r.

• Understand when, and when not, to differentiate these infinite series term-
by-term. (i.e. it is okay for continuous functionsg with the same boundary
conditions as the eigenfunctions).
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1.4 Homogeneous Linear PDE’s in 3 or more variables

These problems are just more complicated versions of the first set of problems.
In general they can be solved by either separation of variables or eigenfunction
expansion. For eigenfunction expansion, however, it is most useful to use the2-D
eigenfunctions of Helmholtz equation. Basic problems are

• Time dependent heat-flow on a rectangleu(t, x, y) or disku(t, r, θ)

∂u

∂t
= κ∇2u

• Time dependent vibrations of a 2-d membrane

∂ 2u

∂t2
= c2∇2u

• 3-D Laplace equation∇2u = 0 on rectangular solid or cylinder

For the first two problems you can always separate out the time dependent parts
usingu(t, x) = h(t)w(x) wherex = (x, y) for cartesian problems andx = (r, θ)
for polar problems. In both cases,w will satisfy Helmholtz Equation

∇2w + λw = 0

Properties of Helmholtz equation For λ > 0 and w having homogeneous
boundary conditions on some domainR (e.g. a rectangle or a disk), then many
of the properties of the 1-D Sturm-Liouville theory are relevant to the 2-D (or 3-
D) Eigenfunction problem defined by Helmholtz Equation(See Sections 7.4-7.5,
pages 280–290).Important examples are

• There are an infinite number ofreal eigenvaluesλ1 < λ2 < . . . < λn

n → ∞
• For each eigenvalue theremaybe multiple orthogonal eigenfunctions (this

is different from the 1-D case).

• Eigenfunctions with different eigenvalues are orthogonal with regard to the
area integral over the domainR∫∫

R

φiφjdxdy = 0 for i 6= j

this can also be made generally true for any two eigenfunctions with the
same eigenvalue. (see below)
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• The eigenfunctions arecomplete in the sense that any piecewise-smooth
2-D function can be written as an infinite sum of appropriately weighted
eigenfunctions

g(x, y) =
∑

i

aiφi(x, y)

where

ai =

∫∫
R

g(x, y)φi(x, y)dA∫∫
R

φ2
i (x, y)dA

Some example solutions of Helmholtz Eq.

rectangular region 0 ≤ x ≤ L, 0 ≤ y ≤ H with w = 0 on the boundary

λmn =
(nπ

L

)2

+
(mπ

H

)2

φmn(x, y) = sin
nπx

L
sin

mπy

H

Note 1: if L=H (square region), thenφmn andφnm are orthogonal but have
the same eigenvalueλmn = λnm

Note 2: if the boundaries inx are homogeneous but instead were∂w/∂x(0) =
∂w/∂x(L) = 0, the eigenvalues would be the same but the eigenfunc-
tions would beφmn = cos nπx

L
sin mπy

H

circular disk 0 ≤ r ≤ a, −π ≤ θ ≤ π with w(a, θ) = 0 on the boundary (and
w(0, θ) is bounded).

λmn =
(zmn

a

)2

with two orthogonal eigenfunctions for eachλmn.

φ1
mn(r, θ) = Jm

(
zmn

r

a

)
cosmθ φ2

mn(r, θ) = Jm

(
zmn

r

a

)
sin mθ

whereJm(r) is the Bessel function of the first kind of orderm andzmn is
thenth zero of themth Bessel function.

1.5 Non-Homogeneous PDE’s and method of eigenfunction ex-
pansion

Here we extended the homogeneous problems to problems with both non-homogeneous
source terms and non-homogeneous boundary conditions. For the latter problems
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however it was always possible to setu(t, x) = v(t, x) + r(t, x) wherer is any
function that satisfies the non-homogeneous boundary conditions. Substituting
this into the original PDE, will produce a new equation forv wherev hashomo-
geneousboundary conditions. Given these reduced problems, there is a general
recipe for solving the non-homogeneous source terms using themethod of eigen-
function expansion which I will illustrate with the simplified time-dependent
problem

∂v

∂t
= Lv + Q(t, x)

with
v(x, 0) = f(x)

and v has homogeneous boundary conditions andL is a 2nd order differential
operator that only includes spatial derivatives (e.g.Lv = k∂ 2v/∂x2 in 1-D or
Lv = k∇2v in 2-D or 3-D.)

1. Use separation of variables on the associated homogeneous problem (as-
sumeQ = 0) to find the eigenvalues and eigenfunctions of the spatial
boundary value problemLφn = −λnφn andφn has thesamehomogeneous
boundary conditions asv.

2. Expand both the solution andQ in terms of these eigenfunctions, e.g.

v(x, t) =
∑

n

an(t)φn(x) Q(x, t) =
∑

n

qn(t)φn(x)

3. Substitute these sums into the PDE forv (and you can take all the derivatives
term by term becausev andφn all have the same boundary conditions) to
get ∑

i

[
dan

dt
+ λnan(t) − qn(t)

]
φn(x) = 0

where we have used the relationship

Lv =
∑

i

an(t)Lφn(x) = −
∑

i

an(t)λnφn(x) =

using the definition of the eigenfunctions ofL
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4. Use orthogonality of theφn’s to get the set of 1st-orderNon-homogeneous
Ordinary differential equations

dan

dt
+ λnan = qn(t)

5. solve this using variation of parameters (and initial conditions) to findan(t)
(and thereforev). Here you will need to use the initial conditions

an(0) =

∫
R

f(x)φnσdA∫
R

φ2
nσdA

6. reconstruct the full solutionu(x, t) = v(x, t) + r(x, t). . .the end

simple problems with equilibrium solutions In addition to the full eigenfunc-
tion expansion technique, sometimes it is easier to solve problems with steady
forcing termsQ(x) by looking for a a steady state solutionue(x) that satisfies

Lue = −Q(x)

and non-homogeneous boundary conditions, then look for a transient solution
v(x, t) of the remaining homogeneous problem with homogeneous BC’s. and
reconstruct the full solutionu(x, t) = v(x, t) + ue(x). For example you can use
this to solve the heat flow equation with steady forcing and fixed temperature
boundary conditions.

1.6 Green’s Functions

Given a boundary value problem of form

Lu = f(x)

with homogeneous boundary conditions, find theGreen’s Functions with the
same boundary conditions defined by

LG(x, x0) = δ(x − x0)

whereδ(x − x0) is a Dirac delta function at pointx0. GivenG(x, x0) the general
solution foru is

u(x, t) =

∫
R

f(x0)G(x, x0)dx0

Basic problems
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1. Important: know how to find the 1-D green’s functions forLu = d 2u/dx2

and appropriate boundary conditions.

2. you might also want to know how to find the infinite space green’s functions
for ∇2u = f(x) in 2 and 3-D.

1.7 Wave Equations and the method of characteristics

Understand

• How to find solutions of simple 1-D wave equation

∂w

∂t
+ c

∂w

∂x
= 0

with initial conditionsw(x, 0) = f(x) using the method of characteristics.

• Know how to extend it to more general linear problems like

∂w

∂t
+ c(x)

∂w

∂x
= −w

• and to non-linear shock problems like

∂w

∂t
+ w

∂w

∂x
= 0

with w(x, 0) = f(x)

for each of these problems know how to qualitatively sketch what is going on in
space and time. A graphical answer will go a long way.

1.8 P.S.

That’s it for now...watch this space for anything new and/or corrections. if you
have any questions come and see me in office hours or send me e-mail at mspieg@ldeo.columbia.edu
to set up an appointment. Good luck and relax.

8


