Columbia University in the City of New York
New York, N.Y. 10027

Chemistry C2407x			1998
Third Exam			George Flynn
December 3, 1998	Total Points: 150	75 Minutes	

Answer Key Exam 3, Chemistry C2407 1998

Problem 1: (35 points) [Oxtoby Problem 7.57] Imagine that 2.00 moles of argon gas, confined by a moveable, frictionless piston in a cylinder at a constant pressure of 1.00 atm and a temperature of 398 K , is cooled to 298 K . Argon is an ideal gas with a molar heat capacity $C_{p}=(5 / 2) R$, where $R=8.314 \mathrm{~J} / \mathrm{K}^{\circ}$.
a)(10 points) Calculate the work done on the system, w. Show all reasoning clearly.

$$
\begin{aligned}
& \mathrm{w}=-\int \mathrm{p}_{\mathrm{ex}} \mathrm{dV} \\
& \mathrm{p}_{\mathrm{ex}} \text { is constant } \Rightarrow \mathrm{w}=-\mathrm{p}_{\mathrm{ex}} \int \mathrm{dV} \\
& \mathrm{w}=-\mathrm{p}_{\mathrm{ex}}\left(\mathrm{~V}_{\mathrm{f}} \mathrm{~V}_{\mathrm{i}}\right) \\
& \mathrm{V}_{\mathrm{i}}=2 \mathrm{R}(398) / \mathrm{p}_{\mathrm{ex}} \\
& \mathrm{~V}_{\mathrm{f}}=2 \mathrm{R}(298) / \mathrm{p}_{\mathrm{ex}} \\
& \mathrm{w}=-\left(\mathrm{p}_{\mathrm{ex}} / \mathrm{p}_{\mathrm{ex}}\right)(2 \mathrm{R})(298-398)=200 \mathrm{R} \\
& \mathrm{w}=1662.8 \text { Joules }
\end{aligned}
$$

b)(10 points) Calculate the heat absorbed by the system, q. Show all reasoning clearly.

$$
\begin{aligned}
& \mathrm{dq} / \mathrm{dT}=\mathrm{C}_{\mathrm{p}} \text { at constant pressure (per mole) } \\
& \mathrm{q}=\int \mathrm{C}_{\mathrm{p}} \mathrm{dT}=\mathrm{C}_{\mathrm{p}} \int \mathrm{dT} \text { when } \mathrm{C}_{\mathrm{p}} \text { is constant } \\
& \mathrm{q}=\mathrm{C}_{\mathrm{p}}\left(\mathrm{~T}_{\mathrm{f}} \mathrm{~T}_{\mathrm{i}}\right) \text { per mole } \\
& \mathrm{C}_{\mathrm{p}}=[(5 / 2) \mathrm{R} / \mathrm{mole}] \\
& \mathrm{q}=(2 \text { moles })(5 / 2) \mathrm{R}(298-398) \\
& \mathrm{q}=-4157 \text { Joules }
\end{aligned}
$$

c)(10 points) Calculate the energy change for the system, $\Delta \mathrm{E}$. Show all reasoning clearly.

$$
\begin{aligned}
& \Delta \mathrm{E}=\mathrm{q}+\mathrm{w} \\
& \mathrm{w}=1662.8 \text { joules(part a) } \\
& \mathrm{q}=-4157 \text { joules (part b) } \\
& \Delta \mathrm{E}=[-4157+1662.8] \text { joules } \\
& \Delta \mathrm{E}=-2494.2 \text { joules }
\end{aligned}
$$

Alternate approach:
$\mathrm{E}=(3 / 2) \mathrm{RT} /$ mole for an ideal gas
$\Delta \mathrm{E}=(2$ moles $)[(3 / 2) \mathrm{R}(298-398)]$
$\Delta \mathrm{E}=-300 \mathrm{R}$
$\Delta \mathrm{E}=-2494.2$ joules
d)(5 points) Calculate the enthalpy change for the system, $\Delta \mathrm{H}$. Show all reasoning clearly.

We showed in class (see free formula sheet) that $\Delta H=q_{p}$
Since p is constant here, $\mathrm{q}=\mathrm{q}_{\mathrm{p}}$
From part b, $q=-4157$ joules $=q_{p}$
$\Delta H=q_{p}=-4157$ joules
Problem 2: (30 Points) [Much in common with Oxtoby problem 8.33] At the normal boiling point of water, $\Delta \mathrm{H}_{\text {vap }}=40.7 \mathrm{~kJ} / \mathrm{mole}$. In the following, assume that the volume of one mole of liquid water is negligible compared to that of one mole of water vapor, which can be treated as an ideal gas.
a) (5 points) Determine q, the heat absorbed by the system in the reversible conversion of one mole of liquid water to one mole of water vapor at its boiling point. Show all reasoning clearly.

We showed in class (see free formula sheet) that $\Delta H=q_{p}$
But $\Delta \mathrm{H}=\Delta \mathrm{H}_{\text {vap }}=40.7 \mathrm{~kJ} / \mathrm{mole}$
Therefore, $\mathrm{q}_{\mathrm{p}}=\Delta \mathrm{H}_{\text {vap }}=40.7 \mathrm{~kJ} / \mathrm{mole}$
b) (10 points) Determine the work, w, done by the system in converting one mole of liquid water to one mole of water vapor at the boiling point. Show all reasoning clearly.

```
\(w=-\int \mathrm{p}_{\mathrm{ex}} \mathrm{dV}\)
\(\mathrm{p}_{\mathrm{ex}}\) is constant at one \(\mathrm{atm} \Rightarrow \mathrm{w}=-\mathrm{p}_{\mathrm{ex}} \int \mathrm{dV}\)
\(\mathrm{w}=-\mathrm{p}_{\mathrm{ex}}\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right)\)
\(\mathrm{V}_{\mathrm{i}}=0\) (see instructions with problem)
\(\mathrm{w}=-\mathrm{p}_{\mathrm{ex}}\left(\mathrm{V}_{\mathrm{f}}\right)\)
\(\mathrm{V}_{\mathrm{F}}=\mathrm{R}(373) / \mathrm{p}_{\mathrm{ex}}\)
\(\mathrm{w}=-\left(\mathrm{p}_{\mathrm{ex}} / \mathrm{p}_{\mathrm{ex}}\right)(\mathrm{R})(373)=-373 \mathrm{R}\)
\(\mathrm{w}=-3101\) Joules
```

c) (5 points) What is $\Delta \mathrm{E}$ for this process? Show all reasoning clearly.
$\Delta E=q+w$
$\mathrm{w}=-3101$ joules(part b)
$\mathrm{q}=+40,700$ joules (part a)
$\Delta \mathrm{E}=[40,700-3101]$ joules
$\Delta \mathrm{E}=37,599$ joules
d) (10 points) Determine $\Delta \mathrm{S}$ for this process. Show all reasoning clearly.
$\Delta \mathrm{S}=\int(1 / \mathrm{T}) \mathrm{dq}_{\mathrm{rev}}$
But this is an isothermal process $(\mathrm{T}=373 \mathrm{~K})$
$\Delta \mathrm{S}=(1 / \mathrm{T}) \mathrm{dq}_{\mathrm{rev}}$
$\Delta \mathrm{S}=(1 / \mathrm{T}) \mathrm{q}_{\mathrm{rev}}$
Here $\mathrm{q}_{\text {rev }}=\mathrm{q}_{\mathrm{p}}=\Delta \mathrm{H}_{\text {vap }}=40.7 \mathrm{~kJ} / \mathrm{mole}$
$\Delta \mathrm{S}=(40,700$ joules $/$ mole $) / 373 \mathrm{~K}$
$\Delta S=109$ joules $/$ mole deg
Problem 3: ($\mathbf{3 5}$ Points) Consider the chemical reaction:
$\mathrm{NO}(\mathrm{g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{NO}_{2}(\mathrm{~g})$
The following table of thermodynamic quantities may be useful:

	$\Delta \mathbf{H}^{\circ}{ }_{\text {f }}\left(\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$	$\mathrm{S}^{\circ}\left(\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$	$\Delta \mathrm{G}^{\circ}{ }_{\mathrm{f}}\left(25^{\circ} \mathrm{C}\right)$	$\mathrm{C}_{\mathrm{p}}\left(\mathbf{2 5}^{\circ} \mathrm{C}\right)$
	(kJ/mole)	(J/K ${ }^{\circ} \mathrm{mole}$)	(kJ/mole)	($\mathrm{J} / \mathrm{K}^{\circ}$ mole
NO	90.25	210.65	86.55	29.84
NO_{2}	33.18	239.95	51.29	37.20
O_{2}	0	205.03	0	29.36
\mathbf{N}_{2}	0	191.50	0	29.12

a) (5 points) Determine $\Delta \mathrm{G}^{\circ}$ for the reaction forming NO_{2} from NO and O_{2} at $25^{\circ} \mathrm{C}$. Show all reasoning clearly!
$\Delta \mathrm{G}^{\circ}=\Delta \mathrm{G}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{NO}_{2}\right)-\Delta \mathrm{G}^{\circ}{ }_{\mathrm{f}}(\mathrm{NO})-(1 / 2) \Delta \mathrm{G}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{O}_{2}\right)$
$\Delta \mathrm{G}^{\circ}=[51,290-86,550-(1 / 2)(0)]$ Joules
$\Delta \mathrm{G}^{\circ}=-35,260$ Joules
b) (5 points) Determine $\Delta \mathrm{H}^{\circ}$ for the reaction forming NO_{2} from NO and O_{2} at $25^{\circ} \mathrm{C}$. Show all reasoning clearly!
$\Delta \mathrm{H}^{\circ}=\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{NO}_{2}\right)-\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}(\mathrm{NO})-(1 / 2) \Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}\left(\mathrm{O}_{2}\right)$
$\Delta \mathrm{H}^{\circ}=[33,180-90,250-(1 / 2)(0)]$ Joules
$\Delta \mathrm{H}^{\circ}=-57,070$ Joules
c) (10 points) What is the entropy of formation, $\Delta \mathrm{S}^{\circ}{ }_{\mathrm{f}}$, for $\mathrm{NO}_{2}\left(1 \mathrm{~atm}\right.$ and $\left.25^{\circ} \mathrm{C}\right)$. Show all reasoning clearly.

The relevant reaction for determining an entropy of formation is:
$(1 / 2) \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{S}^{\circ}{ }_{\mathrm{f}}$
$\left[\mathrm{NOT}: \mathrm{NO}(\mathrm{g})+(\mathbf{1} / \mathbf{2}) \mathrm{O}_{\mathbf{2}}(\mathrm{g}) \leftrightarrow \mathrm{NO}_{2}(\mathrm{~g})\right]$
$\Delta \mathrm{S}^{\circ}{ }_{\mathrm{f}}=\mathrm{S}^{\circ}\left(25^{\circ} \mathrm{C}, \mathrm{NO}_{2}\right)-\mathrm{S}^{\circ}\left(25^{\circ} \mathrm{C}, \mathrm{O}_{2}\right)-(1 / 2) \mathrm{S}^{\circ}\left(25^{\circ} \mathrm{C}, \mathrm{N}_{2}\right)$
$\Delta \mathrm{S}^{\circ}{ }_{\mathrm{f}}=[239.95-205.03-(1 / 2)(191.50)]$ Joules $/ \mathrm{K}^{\circ}$-mole
$\Delta \mathrm{S}^{\circ}{ }_{\mathrm{f}}=-60.83 \mathrm{Joules} / \mathrm{K}^{\circ}$-mole
d) (10 points) Suppose a mixture of $\mathrm{NO}, \mathrm{NO}_{2}$, and O_{2} is contained in a closed vessel at $25^{\circ} \mathrm{C}$ with the partial pressures of each gas equal to one atm. In which direction (toward NO or toward NO_{2}) will the reaction
$\mathrm{NO}(\mathrm{g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{NO}_{2}(\mathrm{~g})$
go spontaneously? Show all reasoning clearly.
At least two ways to approach this problem. Can either calculate the equilibrium constant or $\Delta \mathrm{G}$ for the reaction:

$$
\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \left(\mathrm{P}_{\mathrm{NO}_{2}}\right)-\mathrm{RT} \ln \left(\mathrm{P}_{\mathrm{NO}}\right)-(1 / 2) \mathrm{RT} \ln \left(\mathrm{P}_{\mathrm{O}_{2}}\right)
$$

But each partial pressure is 1 atm and $\ln (1)=0$
So, $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}$
From part a above: $\Delta \mathrm{G}^{\circ}=-35,260$ Joules
So, $\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}<0$
Reaction is spontaneous in direction written (toward NO_{2})
If calculate equilibrium constant:
$\ln \mathrm{K}_{\mathrm{p}}=-\Delta \mathrm{G}^{\circ} / \mathrm{RT}$
$\mathrm{T}=298 \mathrm{~K},-\Delta \mathrm{G}^{\circ}=35,260$ Joules, $\mathrm{R}=8.314$ Joules $/ \mathrm{mole}-\mathrm{deg}$
$\ln K_{p}=(35,260) /(8.314)(298)=14.232$
$\mathrm{K}_{\mathrm{p}}=\mathrm{e}^{14.232} \gg 1$
When all partial pressures are 1 atm , the ratio

$$
\mathrm{P}_{\mathrm{NO}_{2}} / \mathrm{P}_{\mathrm{NO}}\left(\mathrm{P}_{\mathrm{O}_{2}}\right)^{1 / 2}=1
$$

But this ratio must equal $\mathrm{e}^{14.232}$ if the system is to reach equilibrium!
To do this must increase NO_{2} and decrease NO and O_{2} or shift to right toward NO_{2} !
e) (5 points) If the temperature of an equilibrium mixture of $\mathrm{NO}, \mathrm{O}_{2}$, and NO_{2} is increased, in which direction (toward NO or toward NO_{2}) will the equilibrium shift? Show all reasoning clearly.
$\ln K_{p}=-\Delta G^{\circ} / R T=-\Delta H^{\circ} / R T+\Delta S^{\circ} / R$
T dependence is contained in $\Delta \mathrm{H}^{\circ}$ term (assumes $\Delta \mathrm{H}^{\circ}$ and $\Delta \mathrm{S}^{\circ}$ are roughly independent of T) However, $\Delta \mathrm{H}^{\circ}=-57,070$ Joules is negative (see part b above)
As increase T, term in $-\Delta \mathrm{H}^{\circ} / \mathrm{RT}$ is positive and gets smaller
Thus, $\ln K_{p}$ decreases as T increases, and K_{p} decreases as T increases
Thus, the equilibrium shifts to the left (toward NO) as T increases.

Problem 4: (50 Points) [A challenging problem that has much in common with Oxtoby problems $10.45,10.49,10.54$ and 10.55 and the titration recitation exercise.] A solution of an unknown monobasic, weak acid, HA, was titrated with O .100 M NaOH base. The equivalence point was reached when 36.12 mL of base had been added to the solution. Then
18.06 mL of 0.100 M HCl was added to the solution, the pH measured, and found to be 4.92 . NaOH is a strong base and HCl is a strong acid.
a)(10 points) How many moles of the acid HA were contained in the original solution before the titration began? Show all reasoning and calculations clearly!
$\mathrm{HA}+\mathrm{OH}^{-}=\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O}$
At the equivalence point: moles base added = initial moles of acid
Moles base added $=(0.100 \mathrm{moles} /$ liter $)(36.12 \mathrm{~mL})(1$ liter $/ 1000 \mathrm{~mL})$
Moles of base added=(3.612/1000) moles
Moles of base added $=3.612$ millimoles $=3.612 \times 10^{-3}$ moles
Original moles of $\mathrm{HA}=3.612 \times 10^{-3}$ moles
b)(15 points) How many moles of HA are contained in solution after the addition of the HCl and the NaOH ? (Use appropriate approximations.) Show all reasoning and calculations clearly!

At the equivalence point have almost all A^{-}with no HA
HCl converts A^{-}into HA almost quantitatively
The table below gives the number of millimoles of each substance at various points:

This is a buffer with large amounts of both HA and A^{-}
Therefore, expect $\mathrm{x} \ll 1.806$ millimoles \Rightarrow
Moles HA $=1.806 \times 10^{-3}$
c)(10 points) How many moles of the conjugate base of $\mathrm{HA}, \mathrm{A}^{\text {- }}$, are contained in solution after the addition of the HCl and the NaOH ? (Use appropriate approximations.) Show all reasoning and calculations clearly!

At the equivalence point have almost all A^{-}with no HA
HCl converts A^{-}into HA almost quantitatively
The table below gives the number of millimoles of each substance at various points:

A^{-}	+	$\mathrm{H}_{3} \mathrm{O}^{+}$	$=$	HA	$+\quad \mathrm{H}_{2} \mathrm{O}$
3.612		≈ 0		≈ 0	\quad (Equiv. Point)
3.612		1.806		≈ 0	\quad (Add HCl)
$3.612-1.806$		≈ 0		1.806	
(Reaction)					

This is a buffer with large amounts of both HA and A^{-}
Therefore, expect $\mathrm{x} \ll 1.806$ millimoles \Rightarrow
Moles $\mathrm{A}^{-}=1.806 \times 10^{-3}$
d)(15 points) Determine the acid ionization constant K_{a} for the weak unknown acid HA. Show all reasoning clearly.
$\mathrm{HA}+\mathrm{H}_{2} \mathrm{O}=\mathrm{A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
$\mathrm{K}_{\mathrm{a}}=\left[\mathrm{A}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /[\mathrm{HA}]$

Millimoles of A- $=$ millimoles of $\mathrm{HA}=1.806$ millimoles \Rightarrow
$[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]=1.806 \times 10^{-3} / \mathrm{V}$
$\mathrm{V}=$ total volume of solution after addition of both base and acid
V is unknown in the problem
At these conditions, $\mathrm{pH}=4.92 \Rightarrow$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-4.92}$
$\mathrm{K}_{\mathrm{a}}=\left\{1.806 \times 10^{-3} / \mathrm{V}\right\}\left\{10^{-4.92}\right\} /\left\{1.806 \times 10^{-3} / \mathrm{V}\right\}$
Thus, even though V is unknown in the problem, it drops out \Rightarrow
$\mathrm{K}_{\mathrm{a}}=10^{-4.92}=1.202 \times 10^{-5}$
$\mathrm{pK}_{\mathrm{a}}=4.92$
The End

