Columbia University in the City of New York
 New York, N.Y. 10027

Department of Chemistry
212-854-4162
Chemistry C2407x, 1999

3109 Havemeyer Hall
George Flynn

Homework Assignment 4 Solution to Even Numbered Problem 3.42

Problem 3.42:

a) Phosphorous trifluoride has a central P atom with SN 4. The molecule is trigonal pyramidal, like NH_{3} (See Oxtoby text Figure 14-17) [P has 5 valence electrons 3 of which are used to complete the shell of 3 F atoms. The remaining 2 valence electrons on P go to the lone pair.]

b) Sulfuryl chloride has a central S with SN 4. The molecule is close to tetrahedral, but somewhat distorted because of the different steric requirements of the O's and the Cl's. [S has 6 valence electrons, 2 of which are used to complete the shell of 2 Cl atoms. The remaining 4 valence electrons on S go to complete the shell of each O atom, each of which needs 2 electrons to form an octet.]

c) The $\mathrm{PF}_{6}{ }^{-}$anion has a central P with SN 6 . The anion is octahedral. [P has 5 valence electrons and the negative charge makes 6 electrons to complete the shells of 6 F atoms.]

d) $\mathrm{The}^{-} \mathrm{ClO}_{2}{ }^{-}$anion has a central Cl with SN 4 . The anion is bent. [Cl has 7 valence electons and the negative charge makes 8 . Each O atom needs 2 electrons to complete its shell. This leaves 4 electrons for two sets of lone pairs.]

e) Germanium hydride has a central Ge with SN 4. It is tetrahedral. [Ge has 4 valence electrons, all of which go to complete the 1 s shell of the H atom. GeH_{4} is the $4^{\text {th }}$ row analog of CH_{4}]

