UNDERSTANDNG PRESSURE Pressure Calculations

The mass of the atmosphere is $5.136 \times 10^{18} \mathrm{~kg}$. The surface area of the earth is $5.101 \times 10^{14} \mathrm{~m}^{2}$. Calculate atmospheric pressure.
$P=F /$ Area
$F=m g=5.136 \times 10^{18} \mathrm{~kg} \times 9.8 \mathrm{~m} \mathrm{~s}^{-2}=5.0 \times 10^{19} \mathrm{~N} \mathrm{~m}^{-2}$
$P=5.0 \times 10^{19} \mathrm{~N} \mathrm{~m}^{-2} / 5.101 \times 10^{14} \mathrm{~m}^{2}=9.8 \times 10^{4} \mathrm{~Pa}$

UNDERSTANDNNG PRESSURE

 Pressure CalculationsAirplanes stay aloft due to the upward force on the wings from the difference in air pressure below and above the wings. For a $450,000 \mathrm{lb}$ airplane with a wing area of $7,000 \mathrm{ft}^{2}$, what does this pressure difference have to be to keep the plane aloft?

Force of the pressure difference between the top and bottom of the wings must offset gravitational force on plane. $450,000 \mathrm{lb} /\left(7,000 \mathrm{ft}^{2} \times 144 \mathrm{in}^{2} \mathrm{ft}^{-2}\right)=0.5 \mathrm{lb} \mathrm{in}^{-2}$, i. e. 0.5 psi.

UNDERSTANDNG PRESSURE Pressure Calculations

PROPERTIES OF PHASES

Compressibility Calculations
Changes in atmospheric pressure associated with low pressure and high pressure air masses are of the order of 0.02 atm . For a pressure increase from 0.99 to 1.01 atm calculate the fractional change in volume for water as a solid, liquid, and gas.

```
\kappa=-(\deltaV/V)/ \deltaP, so \deltaV/V = - к \deltaP and \deltaP = 0.02 atm, so:
\deltaV/V = - 1.1 \times 10.6 H2O(s)
\deltaV/V = - 9.0 x 10-7 H2O(I)
\deltaV/V = - 0.02 H2O(g)
```


PROPERTIES OF PHASES

Compressibility Calculations
The pressure at the top of Mt. Everest is 0.320 atm. Using compressibility data, estimate the change in density in taking a sample of ice from sea level to the top of Mt.Everest.
$\kappa=-(\delta V / V) / \delta P$, so $\delta V / V=-\kappa \delta P$ and $\delta P=0.680 \mathrm{~atm}$, so:
$\delta V / V=-3.6 \times 10^{-5}$. Now, $d=m / V$ or $d x V=m=$ constant.
So
$(d+\delta d)(V+\delta V)=$ constant $=d x V$.
and $\quad[(d+\delta d)(V+\delta V)] /(d x V)=1$
$[(1+\delta d / d)][(1+\delta V / V)]=1$
$[(1+\delta d / d)]\left[\left(1-3.6 \times 10^{-5}\right)\right]=1$
$\delta d / d=+3.6 \times 10^{-5}$

PROPERTIES OF PFIASES

Thermal Expansivity Calculations
The thermal expansivity of mercury is $0.000133 \mathrm{~K}^{-1}$. If $0.00330 \mathrm{~cm}^{3}$ of mercury is contained in a tube of diameter 0.00450 cm how much will the height of the mercury in the tube increase for a temperature rise of 17 K? (Note: You must assume that the tube itself does not expand.)
$\alpha=(\delta \mathrm{V} / \mathrm{V}) / \delta \mathrm{T}$, so $\delta \mathrm{V} / \mathrm{V}=\alpha \delta \mathrm{T}$ and $\delta \mathrm{T}=17 \mathrm{~K}$, so: $\delta V / V=2.26 \times 10^{-3}$ and $\delta V=7.46 \times 10^{-6} \mathrm{~cm}^{3}$. Now, $\delta V=\left(\pi r^{2}\right) \delta l$ and $r=2.25 \times 10^{-3} \mathrm{~cm}$ so $\delta l=0.469 \mathrm{~cm}$.

UNDERSTANDNNG DENSJTY

Measurements on water show a molecular volume of $1.7 \times 10^{-23} \mathrm{~cm}^{3}$ molecule ${ }^{-1}$.

The molecular density is $1 /\left(1.7 \times 10^{-23} \mathrm{~cm}^{3}\right.$ molecule $\left.^{-1}\right)=$ 5.9×10^{22} molecule cm^{-3}.

The mass density, d, implied by this molecular density is $\mathrm{d}=\left(18.0 \mathrm{~g} \mathrm{~mole}-1 / 6.022 \times 10^{23} \mathrm{molecules}^{-1} \mathrm{~mole}^{-1}\right)$
$\times 5.9 \times 10^{22}$ molecule cm^{-3}
$=1.8 \mathrm{~g} \mathrm{~cm}^{-3}$
The density is very close to the actual density of liquid and solid water, $\mathrm{d}=1.0 \mathrm{~g} \mathrm{~cm}^{-3}$.

UNDERSTANDJNG DENSJTY Packing of Water Molecules

The actual density cannot be quite as high as the result of our calculation, which assumes the water molecules can be packed to occupy all space.

UNDERSTANDJNG DENSJTY

 Density CalculationsCalculate the densities of $\mathrm{Li}(\mathrm{s}), \mathrm{Na}(\mathrm{s}), \mathrm{K}(\mathrm{s}), \mathrm{Rb}(\mathrm{s})$, and $\mathrm{Cs}(\mathrm{s})$ based on their atomic radii. Compare the result to actual densities (tabulated in the Handbook of Chemistry and Physics available on-line in our library).

Answer in next lecture.

UNDERSTANDNNG DENSJTY

Molecules in solids and liquids are packed together about as closely as their size allows.

The density of a gas at 1 atm pressure is only about 0.001 times the density of the same substance as a liquid or solid.

Conclusion: In a gas most of the volume occupied by the gas is actually empty space.

Yet a property of all gases is that they expand to occupy all of the container in which they are placed.

A MOLECULAR VIEN

Liquid

Solid

Density limited by molecular size.
Compressibility low due to close packing.

A MOLECULAR VIEN

Density low due to large
spacing between molecules.
Compressibility high due to large spacing between molecules.

Gas
Why does the gas exert a pressure on the walls?
Why don't the molecules fall to the bottom?

MOLECULES IN MOTION

The molecules are in constant random motion.

The speeds of the molecules are determined by the temperature.

Impact of collisions with the walls gives rise to the pressure.
Gas

MOLECULAR VELOCJTY DETERMMNATION

Gas

Punch a little hole Place a detector here to let
/molecules out. here.

Measure the time it takes each molecule to get to the detector.

Determine molecular speed from this time: $\mathbf{u}=\mathbf{x} / \mathbf{t}$.

MOLECULAR VELOCJTY DETERNMNATION

The molecules have a distribution of velocities.
The velocity distribution depends on the mass.

MOLECULAR VELOCJTY DETERMMNATION

The molecules have a distribution of velocities.
The velocity distribution depends on the temperature.

MOLECULAR VELOCJTY DETERMINATION

The velocity distribution depends on the temperature.

MOLECULAR BASIS OF PRESSURE

The pressure (Force/Area) is the result of the collection of individual molecular impacts on the walls of the container.

> A cube of side length I.

The force for a single molecular impact on one wall is:

$$
\mathrm{F}=\mathrm{m}\left(\mathrm{u}^{2} / 3\right) / \mathrm{l} .
$$

The distribution of molecular velocities gives a distribution of magnitudes of this force.

MOLECULAR BASIS OF PRESSURE

The average force for all the N molecules on one wall is: $\langle\mathrm{F}\rangle=\mathrm{N}<\mathrm{m}\left(\mathrm{U}^{2} / 3\right) / \mathrm{l}>\quad$ - means the average, also.
$\left.=N(\mathrm{~m} / 3 \mathrm{I})<\mathrm{u}^{2}\right\rangle$
$=\mathbf{N}(\mathbf{m} / 3 \mathrm{l}) \overline{\mathbf{U}^{2}}$. The mean square velocity.
< > means the average.

MOLECULAR BASIS OF PRESSURE

The average force for all the \mathbf{N} molecules on one wall is:

$$
\langle\mathrm{F}\rangle=\mathrm{Nm} /(3 \mathrm{I}) \overline{\mathbf{U}}^{2} .
$$

The pressure is this force divided by the area of one face of the cube:

$$
\begin{aligned}
P & =\langle F\rangle / A=\langle F\rangle / l^{2} \\
& =\mathrm{Nm} /\left(\left.3\right|^{3}\right) \mathbf{u}^{2}=\mathrm{Nm} /\left(\left.3\right|^{3}\right) \mathbf{u}^{2}=\mathrm{Nm} /(3 \overline{\mathrm{~V}}) \mathbf{u}^{2} .
\end{aligned}
$$

The mean square velocity is $\mathrm{u}^{2}=3 \mathrm{kT} / \mathrm{m}$.

MOLECULAR BASIS OF PRESSURE

Number of moles

So:

$$
P=N k T / V=n N_{0} k T / V=n R T / V
$$

Avogadro's Number

$\mathbf{N}_{\mathbf{0}}=\mathbf{6 . 0 2 2 1 4} \times 10^{23} \mathrm{~mol}^{-1}$

Universal Gas Constant
$\mathbf{R}=\mathbf{8 . 3 1 4 4 7} \mathbf{J ~ m o l}^{-1} \mathbf{K}^{-1}$

The Ideal Gas Law: $P V=n R T$.

THE IDEAL GAS LAN

The Ideal Gas Law
$\mathbf{P V}=\mathbf{n R T}$
This is called the Ideal Gas Law because the analysis that leads to it assumes that the molecules do not interact with one another. All real molecules do interact.
However, experiments show that the Ideal Gas Law is a pretty good description of real gases under most conditions.

There are simple ways to modify the Ideal Gas Law to get a relation between P, V, and T that is a quantitatively good description of real gases.

THE EQUATJON OF STATE

The Ideal Gas Law is an Equation of State.
An Equation of State is a mathematical formula that relates the variables P, V, and T .

We can write $P=n R T / V$ or $V=n R T / P$ or $T=P V / n R$. All are Equations of State for the Ideal Gas.

The Equation of State is important. Everything that can be said, everything that can be known, about the gas is specified by a particular combination of P, V, and T .

This is true for any Equation of State, for any gas, liquid, or solid.

EQUATJONS OF STATE

For liquids and solids there is an Equation of State specific to a particular substance.

There is no general Equation of State for liquids or solids.

However, the Ideal Gas Law is entirely general. It does not make reference to any characteristic of any particular substance.

The Ideal Gas Law actually was first developed by generalizing experimental observations using real gases.

MEASURJNG PRESSURE

.

DETERMHNANG PV BEHAVHOR

Boyle's J-Tube

Robert Boyle

Volume (cm^{3})	$P_{\text {atm }}=760 \mathrm{~mm} \mathrm{Hg}$	$P_{\mathrm{atm}}=760 \mathrm{~mm} \mathrm{Hg}$
	Height (mm)	\downarrow Height (mm)
	Height (mm)500	
		-500
	-400	-400
	-300	-300
	200 Volume $\left(\mathrm{cm}^{3}\right) h$	-200
V_{1}	-200 ${ }^{\text {l }}$	-100
${ }_{10}{ }^{0}$	-100 $\quad \begin{gathered}0 \\ 10\end{gathered}$	-100
20	- 20 立	0

DETERMINJNG PV BERHADOR

Boyle derived part of the Ideal Gas Law by generalizing experimental observations of the PV behavior of gases.

Boyle's Law: The product of the pressure
and volume is constant at constant
temperature: $\mathrm{PV}=\mathrm{C}_{\mathrm{T}} \mathrm{r} \quad$ A constant that depends
 on the temperature and the amount of gas.

DETERMINJNG VT BEFHAVIOR

Measure gas volume as a function of temperature.

Joseph Gay-Lussac

GChem 1404 • JValentini

DETERMINDNG VT BEFHAVIOR

Measure gas volume as a function of temperature.
$V=V_{0}+C_{P} T$
A constant that depends on the pressure and the amount of gas
$\mathrm{V}=\mathrm{C}_{\mathrm{p}}\left(\mathrm{T}-273.15^{\circ} \mathrm{C}\right)$

Leads to the absolute temperature scale:

DETERMINJNG VT BEHAVIOR

Charles' Law: The ratio of the volume and

 temperature is constant at constantpressure: $V / T=C_{p}$. Or, $V=C_{p} \times \mathbf{T}^{\prime}$

Invented the hydrogen balloon, but never stated the law that carries his name.

Jacques Charles
GChem 1404 • JValentini

THE CONNECJTON OF V AND A

A gas at a particular pressure and temperature has a fixed density:

The volume of a gas is proportional to the amount of gas $V=C_{P, T} \times n_{\text {. }}$ Or, $n / V=1 / C_{P, T=}$

A constant that depends on the pressure and temperature

The amount of gas

The amount of gas can be measured in different units. We will use the number of moles, and the symbol " n " following Avogadro's Law to make this general.

