Soluble Salts in Water

- KI and $\mathrm{K}_{2} \mathrm{CrO}_{4}$:
- Potassium iodide and potassium chromate are water-soluble.
- AgI and PbCrO_{4}
- Silver iodide and lead chromate and are sparingly soluble:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}}(\mathrm{AgI})=8.5 \times 10^{-17} \\
& \mathrm{~K}_{\mathrm{sp}}\left(\mathrm{PbCrO}_{4}\right)=1.8 \times 10^{-14}
\end{aligned}
$$

TABLE 12-2 Solubility Product Constants at $25^{\circ} \mathrm{C}$

Compound	$K_{\text {sp }}$	Compound	$K_{\text {sp }}$
AgBr	5.2×10^{-13}	MgCO_{3}	4.0×10^{-5}
AgCl	2.8×10^{-10}	$\mathrm{Mg}(\mathrm{OH})_{2}$	1.2×10^{-11}
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$	1.9×10^{-12}	$\mathrm{Mn}(\mathrm{OH})_{2}$	1.0×10^{-14}
AgI	8.5×10^{-17}	MnS	1.4×10^{-15}
$\mathrm{Ag}_{2} \mathrm{~S}$	1.6×10^{-49}	$\mathrm{Ni}(\mathrm{OH})_{2}$	1.6×10^{-16}
$\mathrm{Al}(\mathrm{OH})_{3}$	1.8×10^{-33}	NiS	1.4×10^{-24}
BaCO_{3}	1.6×10^{-9}	PbCO_{3}	1.5×10^{-13}
BaCrO_{4}	8.5×10^{-11}	PbCrO_{4}	1.8×10^{-14}
BaF_{2}	1.7×10^{-6}	$\mathrm{Pb}(\mathrm{OH})_{2}$	1.8×10^{-16}
BaSO_{4}	1.1×10^{-10}	PbS	3.4×10^{-28}
CaCrO_{4}	7.1×10^{-4}	PbSO_{4}	1.3×10^{-8}
CaF_{2}	1.7×10^{-10}	$\mathrm{Sn}(\mathrm{OH})_{2}$	5×10^{-26}
$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	1.3×10^{-32}	SnS	8×10^{-29}
$\mathrm{Cu}(\mathrm{OH})_{2}$	1.6×10^{-19}	SrCO_{3}	1.6×10^{-9}
CuS	8.5×10^{-45}	SrF_{2}	2.8×10^{-9}
$\mathrm{Fe}(\mathrm{OH})_{2}$	1.6×10^{-15}	ZnCO_{3}	2×10^{-10}
FeS	3.7×10^{-19}	$\mathrm{Zn}(\mathrm{OH})_{2}$	4.5×10^{-24}
HgS	3×10^{-53}	ZnS	4.5×10^{-24}

Common Ion Effect

- Silver iodide

$$
\begin{aligned}
& \mathrm{AgI}(\mathrm{~s}) \square \mathrm{Ag}^{+}+\mathrm{I}^{-} \\
& \mathrm{K}_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{I}^{-}\right]=8.5 \mathrm{X} 10^{-17} \\
& {\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{I}^{-}\right]=\text {solubility }=\sqrt{8.5 \times 10^{\square 17}}=9.2 \times 10^{\square 9}}
\end{aligned}
$$

- What if the solution were 0.1 M in Ag^{+}ions?
- What if the solution were 0.1 M in I^{-}ions?

Common Ion Effect

Common Ion Effect

- Lead chromate

$$
\begin{aligned}
& \left.\mathrm{PbCrO}_{4}(\mathrm{~s})\right] \mathrm{Pb}^{2+}+\mathrm{CrO}_{4}^{2-} \\
& \mathrm{K}_{\text {sp }}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{CrO}_{4}^{2-}\right]=1.8 \mathrm{X} \mathrm{10}^{-14} \\
& \mathrm{Let} \mathrm{x}=\text { solubility of }\left[\mathrm{Pb}^{2+}\right]=\left[\mathrm{CrO}_{4}{ }^{2-}\right]
\end{aligned}
$$

- What if $\left[\mathrm{Pb}^{2+}\right]=0.1 \mathrm{M}$?
- What if $\left[\mathrm{CrO}_{4}{ }^{2-}\right]=0.1 \mathrm{M}$?
- What if $\left[\mathrm{Pb}^{2+}\right]=\left[\mathrm{CrO}_{4}{ }^{2-}\right]=0.1 \mathrm{M}$?

Common Ion Effect

- Calcium fluoride
$\mathrm{CaF}_{2}(\mathrm{~s}) \square \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right]\left[2 \mathrm{~F}^{-}\right]^{2}=1.7 \times 10^{-10}
$$

Solubility $=x=\left[\mathrm{Ca}^{2+}\right]=5.6 \mathrm{X} \mathrm{10-4}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ca}^{2+}\right][2 \mathrm{~F}-]^{2}=(\mathrm{x})(2 \mathrm{x})^{2}=4 \mathrm{x}^{3}=1.7 \times 10^{-10} \\
& K_{s p}=\sqrt[3]{4.25 \times 10^{\square 11}}=3.5 \times 10^{\square 4}
\end{aligned}
$$

Selective Precipitation

- A solution where $\left[\mathrm{Ba}^{2+}\right]=\left[\mathrm{Ca}^{2+}\right]=0.1 \mathrm{M}$
- Add sulfate ions:
- $\mathrm{K}_{\text {sp }}\left(\mathrm{BaSO}_{4}\right)=10^{-10} ; \mathrm{K}_{\text {sp }}\left(\mathrm{CaSO}_{4}\right)=10^{-5}$
- Sparingly soluble BaSO_{4} and CaSO_{4} precipitate.
- Which salt precipitates first?
- How much of the first is left in solution when the second begins to precipitate?

Dissolving Precipitates

- AgCl
- Add ammonia
- Forms soluble $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{2+}$ complex
- AgBr
- Add lots of ammonia
- Forms soluble $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{2+}$ complex
- AgI
- Add cyanide ion
- Forms soluble $\mathrm{Ag}\left(\mathrm{CN}_{2}\right)^{-}$complex

Complex Ion Formation

$$
\begin{aligned}
& -\mathrm{AgI}(\mathrm{~s}) \square \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{I}-(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right][\mathrm{II}]=10^{-16} \\
& -\mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq}) \square \mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{2+}(\mathrm{aq}) \\
& K_{f}=\frac{\left[\mathrm{Ag}_{\mathrm{f}}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]}{\left.\left[\mathrm{NH}_{3}\right]^{[} \mathrm{Ag}^{+}\right]} \square 10^{12} \\
& -\mathrm{AgI}(\mathrm{~s})+2 \mathrm{NH}_{3}(\mathrm{aq}) \square \mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{2+}(\mathrm{aq})+\mathrm{I}(\mathrm{aq}) \\
& K_{s p} K_{f}=\frac{\left[\mathrm{Ag}_{\mathrm{g}}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]\left[I^{[1]}\right]}{\left[\mathrm{NH}_{3}\right]^{2}} \square\left(10^{12}\right)\left(10^{[16}\right)=10^{\boxed{4}}
\end{aligned}
$$

Complex ion formation demos

- AgCl ppt
- $\mathrm{AgBr} p \mathrm{pp}$
- AgI ppt
- Dissolve in ammonia and cyanide

Electrolytes

- Conductivity in water is due to hydrated ions moving about.
- Water and aqueous sugar solutions
- Acetic acid and vinegar
- Aqueous salt solutions
- Experiments
- Electrolytes
- Nonelectrolytes

Autoionization of Water

- $\mathrm{H}_{2} \mathrm{O}(\mathrm{liq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{liq}) \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$

$$
\begin{aligned}
& K=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{\square}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}} \\
& K_{W}=K\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}=\left[\mathrm{H}_{3} O^{+}\right]\left[O H^{\square}\right]=1.0 \times 10^{\square 14} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[O H^{\square}\right]=\sqrt{K_{W}}=\sqrt{1.0 \times 10^{014}}=1.0 \times 10^{07} \mathrm{M}}
\end{aligned}
$$

Autoionization of Water

- $\mathrm{H}_{2} \mathrm{O}(\mathrm{liq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{liq}) \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$ $K=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{\square}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}$
$K_{W}=K\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{\square}\right]=1.0 \times 10^{\square 14}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{\square}\right]=x \mathrm{~mol} \mathrm{~L}^{\square}$
$K_{W}=\left[H_{3} O^{+}\right]\left[\mathrm{OH}^{\square}\right]=(x)(x)=x^{2}=1.0 \times 10^{\square 14}$
$x=\sqrt{K_{W}}=\sqrt{1.0 \times 10^{\square 14}}=1.0 \times 10^{\square 7} \mathrm{M}$

Acid-Base Theories

- Arrhenius

$\mathrm{HCl} \square \mathrm{H}^{+}+\mathrm{Cl}^{-}$

- Could not explain alkalinity of aqueous ammonia
- Brönsted

$$
\begin{array}{ll}
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \square & \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\
\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \square & \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}
\end{array}
$$

- Lewis

$$
\mathrm{NH}_{3}+\mathrm{H}^{+} \square \mathrm{NH}_{4}^{+}
$$

pH Scale

Measures acidity of Aqueous Solutions

- $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
by definition
- $\mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}$
because.... $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
- For neutral solutions...

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M} \text { and } \mathrm{pH}=7
$$

TABLE 12-3 Approximate pH Values for Some Familiar Solutions

Solution	pH
1 M NaOH (lye)	14
1 M NH (household ammonia)	11.6
saturated $\mathrm{Mg}(\mathrm{OH})_{2}$	
\quad (milk of magnesia)	10.5
blood	$7.3-7.5$
saliva	$6.5-7.5$
urine	$5.5-7.5$
coffee	$4.5-5.5$
beer	$4.0-5.0$
tomato juice	$4.0-4.4$
wine	$2.8-3.8$
vinegar	$2.4-3.4$
lemon juice	$2.2-2.4$
gastric juice	$1.0-3.0$
battery acid	0.5
1 M HCl	0

pH of Aqueous Solutions

- If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.25 \times 10^{-3} \mathrm{M}$
- Then $\mathrm{pH}=-\log 5.25 \times 10^{-3}=2.28$
- If $\mathrm{pH}=5.25$
- Then $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-5.25}=5.6 \times 10^{-6} \mathrm{M}$
- And $\left[\mathrm{OH}^{-}\right]=\mathrm{Kw} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.78 \times 10^{-9} \mathrm{M}$
- So $\mathrm{pOH}=8.75$
- And pH=14-8.75=5.25

pH of Aqueous Solutions

- When pH is low.....
- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
- When pH is neutral....
- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
- When pH is high.....
- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$

Dissociation of HA in Water $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$

- For an acid of the general form HA

$$
\begin{aligned}
& K_{H A}=\frac{\left[H_{3} O^{+}\right]\left[A^{\square}\right]}{[H A]} \\
& K_{H A} \frac{[H A]}{\left[A^{\square}\right]}=\left[H_{3} O^{+}\right] \\
& p K_{H A}+\log \frac{\left[A^{\square}\right]}{[H A]}=p H
\end{aligned}
$$

| Acid | Acid Strength | Conjugate Base |
| :---: | :---: | :---: | :---: |
| $\mathrm{H}_{3} \mathrm{O}^{+}$ | | |
| HSO_{4}^{-} | Moderately | |
| HSO_{3}^{-} | | |

Acid	$K_{\text {a }}$	Base	$K_{\text {b }}$
HClO_{4}	large	$\mathrm{ClO}_{4}{ }^{-}$	very small
$\mathrm{H}_{2} \mathrm{SO}_{4}$	large	HSO_{4}^{-}	very small
HCl	large	Cl^{-}	very small
HNO_{3}	large	$\mathrm{NO}_{3}{ }^{-}$	very small
$\mathrm{H}_{3} \mathrm{O}^{+}$	55.5	$\mathrm{H}_{2} \mathrm{O}$	1.8×10^{-16}
$\mathrm{H}_{2} \mathrm{SO}_{3}$	1.2×10^{-2}	$\mathrm{HSO}_{3}{ }^{-}$	8.3×10^{-13}
$\mathrm{HSO}_{4}{ }^{-}$	1.2×10^{-2}	$\mathrm{SO}_{4}{ }^{2-}$	8.3×10^{-13}
$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.5×10^{-3}	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	1.3×10^{-12}
$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$	6.3×10^{-3}	$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}$	1.6×10^{-12}
HF	7.2×10^{-4}	F^{-}	1.4×10^{-11}
HNO_{2}	4.5×10^{-4}	$\mathrm{NO}_{2}{ }^{-}$	2.2×10^{-11}
$\mathrm{HCO}_{2} \mathrm{H}$	1.8×10^{-4}	$\mathrm{HCO}_{2}{ }^{-}$	5.6×10^{-11}
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$	6.3×10^{-5}	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}{ }^{-}$	1.6×10^{-10}
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	1.8×10^{-5}	$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$	5.6×10^{-10}
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$	1.3×10^{-5}	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{-}$	7.7×10^{-10}
$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$	7.9×10^{-6}	$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}$	1.3×10^{-9}
$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.2×10^{-7}		2.4×10^{-8}
$\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$	1.6×10^{-7}	$\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}$	6.25×10^{-8}
$\mathrm{H}_{2} \mathrm{~S}$	1×10^{-7}	HS^{-}	1×10^{-7}
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	6.2×10^{-8}	$\mathrm{HPO}_{4}{ }^{2-}$	1.6×10^{-7}

Acid	$K_{\text {a }}$	Base	$K_{\text {b }}$
$\mathrm{HSO}_{3}{ }^{-}$	6.2×10^{-8}	$\mathrm{SO}_{3}{ }^{2-}$	1.6×10^{-7}
HClO	3.5×10^{-8}	ClO^{-}	2.9×10^{-7}
$\mathrm{Pb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$	1.5×10^{-8}	$\mathrm{Pb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}$	6.7×10^{-7}
$\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$	1.3×10^{-9}	$\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}$	7.7×10^{-6}
$\mathrm{B}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	7.3×10^{-10}	$\mathrm{B}(\mathrm{OH})_{4}{ }^{-}$	1.4×10^{-5}
$\mathrm{NH}_{4}{ }^{+}$	5.6×10^{-10}	NH_{3}	1.8×10^{-5}
HCN	4.0×10^{-10}	CN^{-}	2.5×10^{-5}
$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$	3.2×10^{-10}	$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}$	3.1×10^{-5}
$\mathrm{HCO}_{3}{ }^{-}$	4.8×10^{-11}	$\mathrm{CO}_{3}{ }^{2-}$	2.1×10^{-4}
$\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right) 6^{2+}$	2.5×10^{-11}	$\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{+}$	4.0×10^{-4}
$\mathrm{HPO}_{4}{ }^{2-}$	3.6×10^{-13}	$\mathrm{PO}_{4}{ }^{3-}$	2.8×10^{-2}
$\mathrm{H}_{2} \mathrm{O}$	1.8×10^{-16}	OH^{-}	55.5
HS^{-}	1×10^{-19}	S^{2-}	1×10^{5}
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	very small	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$	large
NH_{3}	very small	$\mathrm{NH}_{2}{ }^{-}$	large
H_{2}	very small	H^{-}	large
CH_{4}	very small	$\mathrm{CH}_{3}{ }^{-}$	large

Indicators HInd + $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{3} \mathrm{O}^{+}+$Ind-

- Indicator equation

$$
\begin{aligned}
& K_{H I n d}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\text {Ind }^{\square}\right]}{[H I n d]} \\
& K_{H I n d} \frac{[H I n d]}{\left[\text { Ind }{ }^{\square}\right]}=\left[H_{3} O^{+}\right] \\
& p K_{H I n d}+\log \frac{\left[\text { Ind }{ }^{\square}\right]}{[H I n d]}=p H
\end{aligned}
$$

Oxides and Hydrides

- Metallic oxides

$$
\begin{array}{ll}
\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} & 2 \mathrm{NaOH} \\
\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} & \mathrm{Ca}(\mathrm{OH})_{2}
\end{array}
$$

- Nonmetallic oxides

$$
\begin{array}{lll}
\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} & \mathrm{H}_{2} \mathrm{SO}_{3} \\
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} & \mathrm{H}_{2} \mathrm{CO}_{3}
\end{array}
$$

- Metal Hydrides
$\mathrm{NaH}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{NaOH}+\mathrm{H}_{2}$

For Strong Acids

- Aqueous hydrochloric acid solutions $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
- $0.1 \mathrm{M} \mathrm{HCl}=0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{O}^{+}$
- Presumption is complete dissociation
- $\mathrm{pH}=1$
- Add 10 mL to 990 mL of $\mathrm{H}_{2} \mathrm{O}$
- pH change is... huge!

For Weak Acids

- Aqueous acetic acid solutions

$$
\begin{aligned}
& \mathrm{HOAC}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OAC}^{-} \\
& \mathrm{k}_{\mathrm{a}}=1.75 \times 10^{-5} \\
& 0.1 \mathrm{M} \mathrm{HOAc}<0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{O}+ \\
& \text { Incomplete dissociation: } \mathrm{pH}=2.87
\end{aligned}
$$

- Aqueous HF

$$
\begin{array}{r}
\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-} \\
\mathrm{k}_{\mathrm{a}}=7.2 \times 10^{-4} \text { and } \mathrm{pH}=?
\end{array}
$$

For Very Weak Acids

- Aqueous hydrogen cyanide solutions $\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CN}^{-}$
- 0.1M HCN <<< 0.1M H3 O^{+}
- $\mathrm{K}_{\mathrm{a}}=4.0 \times 10^{-10}$ and $\mathrm{pH}=5.2$
- 0.1M NaCN
$\mathrm{pH}=$?
- 0.1 M NaF
$\mathrm{pH}=$?
- 0.1M NaOAc
$\mathrm{pH}=$?

0.10M Solutions of HA:

HCl
HOAc HCN
$\mathrm{NH}_{3} \quad{ }^{\sim} 10^{-16}$
pK
pH
1
3
6
7

${ }^{\sim} 10^{-14}$
-7
5
${ }^{\sim} 10{ }^{7}$
~10-5
${ }^{\sim} 10^{-11}$
11
14
16

Indicators HInd + $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{3} \mathrm{O}^{+}+$Ind-

- Indicator equation

$$
\begin{aligned}
& K_{H I n d}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\text {Ind }^{\square}\right]}{[H I n d]} \\
& K_{H I n d} \frac{[H I n d]}{\left[\text { Ind }{ }^{\square}\right]}=\left[H_{3} O^{+}\right] \\
& p K_{H I n d}+\log \frac{\left[\text { Ind }{ }^{\square}\right]}{[H I n d]}=p H
\end{aligned}
$$

Solvolysis/Hydrolysis

- For a weak acid HA.....
- the anion is strong and reacts with the solvent in a proton-transfer reaction:

$$
\mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{HA}+\mathrm{OH}^{-}
$$

- For a weak base B.....
- the cation ion is strong and reacts with the solvent in a proton-transfer reaction:

$$
\mathrm{BH}^{+}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{~B}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Hydrolysis

- Alkaline solutions: $\mathrm{NaOAc}, \mathrm{NaF}, \mathrm{NaCN}$
- Acidic solutions: $\mathrm{NH}_{4} \mathrm{Cl}$
- Neutral solutions from $\mathrm{NH}_{4} \mathrm{OAc}$
- NaCN and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solutions?
- AlCl_{3} and $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ solutions?
- $\mathrm{NH}_{4} \mathrm{CN}$ solutions?

pH of 0.10M Aqueous NaOAc

- $\mathrm{NaOAc}(s)] \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OAc}^{-}(\mathrm{aq})$
- OAC - $+\mathrm{H}_{2} \mathrm{O}$ - $\mathrm{HOAC}+\mathrm{OH}^{-}$

$$
\begin{aligned}
& K_{b}=\frac{K_{w}}{K_{a}}=\frac{\left[H_{3} O^{+}\right]\left[O H^{\square}\right]}{\frac{\left[H_{3} O^{+}\right]\left[O A^{\square}\right]}{[H O A c]}}=\frac{[H O A c]\left[O H^{\square}\right]}{\left[O A c^{\square}\right]}=\frac{10^{\square 14}}{10^{\square 5}}=10^{\square 9} \\
& 10^{\square 9}=\frac{(x)(x)}{(.1 \square x)} \square \frac{x^{2}}{.1} \text { and } x=\left[O H^{\square}\right]=10^{\square 5} \mathrm{M}
\end{aligned}
$$

- $\mathrm{pOH}=5$ and $\mathrm{pH}=14-5=9$

Buffers

- Solutions of a weak acid and its conjugate base:

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}
$$

- Solutions of a weak base and its conjugate acid:

$$
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{BH}^{+}+\mathrm{OH}^{-}
$$

Buffers

- Buffers act across an [A-]/[HA] range of $10 / 1$ to $1 / 10 \ldots$ or 2 pH units:

$$
K_{H A}=\frac{\left[H_{3} O^{+}\right]\left[A^{\square}\right]}{[H A]}
$$

$$
K_{H A} \frac{[H A]}{\left[A^{\square}\right]}=\left[H_{3} O^{+}\right]
$$

$$
p K_{H A}+\log \frac{\left[A^{\square}\right]}{[H A]}=p H
$$

Buffers

- Aqueous acetic acid solutions $\mathrm{HOAc}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OAc}^{-}$
- For 0.1M HOAc: $\quad \mathrm{pH}=2.87$
- For $\mathrm{HOAc} / \mathrm{NaOAc}$ buffer: $\mathrm{pH}=\mathrm{pKa}=4.76$
- PROBLEM: Add 50 mL 0.10M HCl to 950 mL $\mathrm{H}_{2} \mathrm{O}$ containing 0.050 mole HOAc and 0.050 mole NaOAc .
- Buffer soaks up the acid
- pH change is relatively small.

Polyprotic Acids

- Carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$ K_{a} $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HCO}_{3}^{-} \quad 10^{-7}$ $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CO}_{3}^{2-} \quad 10^{-11}$
- Acidity is essentially supplied by $K_{a}(1)$
- Blood is buffered by $\left[\mathrm{CO}_{2}\right] /\left[\mathrm{HCO}_{3}{ }^{-}\right]$

Polyprotic Acids

- Sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-} \quad-5$ $\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}^{2-} \quad 2$
- Phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \quad 2.1$ $\left.\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}\right] \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HPO}_{4}{ }^{2-} \quad 7.2$ $\mathrm{HPO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \square \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{PO}_{4}{ }^{3-} \quad 12.3$
- Note:K values are lower by several orders of magnitude due to increasing negative charge.

Titration curves

Titration curves

Titration curves

Finding K_{a} for Weak Acids

- For a monoprotic acid, at the mid-point,
$[H A]=[A-]$

$$
\mathrm{pH}=\mathrm{pKa}
$$

$$
\begin{aligned}
& K_{H A}=\frac{\left[H_{3} O^{+}\right]\left[A^{\square}\right]}{[H A]} \\
& K_{H A} \frac{[H A]}{\left[A^{\square}\right]}=\left[H_{3} O^{+}\right] \\
& p K_{H A}+\log \frac{\left[A^{\square}\right]}{[H A]}=p H
\end{aligned}
$$

ACID/BASE ISSUES

- Acid rain and coal mine run-off:
- Kentucky, West Virginia, Indiana, Illinois, Minnesota... many places.
- Industrial acid/base run-off in rivers:
- Raritan River is one of many.
- Acid rain and steel manufacture Acid:
- Adirondks and Great Smokys
- Illinois and Indiana mills

ACID/BASE ISSUES

- Corrosion
- N and S oxides
- Acidic oxides
- Particulates in the air:
- Donora, Pennsylvania
- Dupont "nylon" in downtown Chicago

Lessons from History

The disadvantage of men not knowing the past is that they do not know the present.

- G. K. Chesterton

