Soluble Salts in Water

- KI and K_2CrO_4 :
 - Potassium iodide and potassium chromate are water-soluble.
- AgI and PbCrO₄
 - Silver iodide and lead chromate and are sparingly soluble: K_{sp}(AgI)=8.5 X 10⁻¹⁷ K_{sp}(PbCrO₄)=1.8 X 10⁻¹⁴

TABLE 12–2 Solubility Product Constants at 25°C				
Compound	<i>K</i> _{sp}	Compound	K _{sp}	
AgBr	5.2×10^{-13}	MgCO ₃	4.0×10^{-5}	
AgCl	2.8×10^{-10}	Mg(OH) ₂	1.2×10^{-11}	
Ag ₂ CrO ₄	1.9×10^{-12}	Mn(OH) ₂	1.0×10^{-14}	
AgI	8.5×10^{-17}	MnS	1.4×10^{-15}	
Ag ₂ S	1.6×10^{-49}	Ni(OH) ₂	1.6×10^{-16}	
Al(OH) ₃	1.8×10^{-33}	NiS	1.4×10^{-24}	
BaCO ₃	1.6×10^{-9}	PbCO ₃	1.5×10^{-13}	
BaCrO ₄	8.5×10^{-11}	PbCrO ₄	1.8×10^{-14}	
BaF ₂	1.7×10^{-6}	Pb(OH) ₂	1.8×10^{-16}	
BaSO ₄	1.1×10^{-10}	PbS	3.4×10^{-28}	
CaCrO ₄	7.1×10^{-4}	PbSO ₄	1.3×10^{-8}	
CaF ₂	1.7×10^{-10}	Sn(OH) ₂	5×10^{-26}	
$Ca_3(PO_4)_2$	1.3×10^{-32}	SnS	8×10^{-29}	
Cu(OH) ₂	1.6×10^{-19}	SrCO ₃	1.6×10^{-9}	
CuS	8.5×10^{-45}	SrF ₂	2.8×10^{-9}	
Fe(OH) ₂	1.6×10^{-15}	ZnCO ₃	2×10^{-10}	
FeS	3.7×10^{-19}	$Zn(OH)_2$	4.5×10^{-24}	
HgS	3×10^{-53}	ZnS	4.5×10^{-24}	

- Silver iodide $AgI(s) \Leftrightarrow Ag^{+} + I^{-}$ $K_{sp} = [Ag^{+}][I^{-}] = 8.5 \times 10^{-17}$ $[Ag^{+}] = [I^{-}] = \text{solubility} = \sqrt{8.5 \times 10^{-17}} = 9.2 \times 10^{-9}$
- What if the solution were 0.1M in Ag⁺ ions?
- What if the solution were 0.1M in I⁻ ions?

- Lead chromate $PbCrO_4(s) \Leftrightarrow Pb^{2+} + CrO_4^{2-}$ $K_{sp} = [Pb^{2+}][CrO_4^{2-}] = 1.8 \times 10^{-14}$ Let x = solubility of $[Pb^{2+}] = [CrO_4^{2-}]$
- What if $[Pb^{2+}] = 0.1M?$
- What if $[CrO_4^{2-}] = 0.1M?$
- What if $[Pb^{2+}] = [CrO_4^{2-}] = 0.1M?$

• Calcium fluoride

 $CaF_2(s) \Leftrightarrow Ca^{2+}(aq) + 2F^{-}(aq)$

 $K_{sp} = [Ca^{2+}][2F^{-}]^2 = 1.7 \text{ X } 10^{-10}$

Solubility = $x = [Ca^{2+}] = 5.6 \times 10^{-4}$

$$K_{sp} = [Ca^{2+}] [2F^{-}]^{2} = (x)(2x)^{2} = 4x^{3} = 1.7 X 10^{-10}$$
$$K_{sp} = \sqrt[3]{4.25x10^{-11}} = 3.5x10^{-4}$$

Selective Precipitation

- A solution where $[Ba^{2+}] = [Ca^{2+}] = 0.1M$
 - Add sulfate ions:
 - $K_{sp}(BaSO_4) = 10^{-10}; K_{sp}(CaSO_4) = 10^{-5}$
 - Sparingly soluble BaSO₄ and CaSO₄ precipitate.
 - Which salt precipitates first?
 - How much of the first is left in solution when the second begins to precipitate?

Dissolving Precipitates

- AgCl
 - Add ammonia
 - Forms soluble Ag(NH₃)²⁺ complex
- AgBr
 - Add lots of ammonia
 - Forms soluble Ag(NH₃)²⁺ complex
- AgI
 - Add cyanide ion
 - Forms soluble Ag(CN₂)⁻ complex

Complex Ion Formation

 $-AgI(s) \Leftrightarrow Ag^{+}(aq) + I^{-}(aq)$ $K_{sp} = [Ag^{+}][I^{-}] = 10^{-16}$ $- Ag^{+}(aq) + 2NH_{3}(aq) \Leftrightarrow Ag(NH_{3})^{2+}(aq)$ $K_{f} = \frac{[Ag(NH_{3})^{+}_{2}]}{[NH_{3}]^{2}[Ag^{+}]} \approx 10^{12}$

- $AgI(s) + 2NH_3(aq) \Leftrightarrow Ag(NH_3)^{2+}(aq) + I^{-}(aq)$

$$K_{sp}K_{f} = \frac{[Ag(NH_{3})_{2}^{+}][I^{-}]}{[NH_{3}]^{2}} \cong (10^{12})(10^{-16}) = 10^{-4}$$

Complex ion formation demos

- AgCl ppt
- AgBr ppt
- AgI ppt
- Dissolve in ammonia and cyanide

Electrolytes

- Conductivity in water is due to <u>hydrated</u> ions moving about.
 - Water and aqueous sugar solutions
 - Acetic acid and vinegar
 - Aqueous salt solutions
- Experiments
 - Electrolytes
 - Nonelectrolytes

Autoionization of Water

• $H_2O(liq) + H_2O(liq) \Leftrightarrow H_3O^+ + OH^-$

$$K = \frac{[H_3O^+][OH^-]}{[H_2O]^2}$$

$$K_W = K[H_2O]^2 = [H_3O^+][OH^-] = 1.0x10^{-14}$$

$$[H_3O^+] = [OH^-] = \sqrt{K_W} = \sqrt{1.0x10^{-14}} = 1.0x10^{-7}M$$

Autoionization of Water

• $H_2O(liq) + H_2O(liq) \Leftrightarrow H_3O^+ + OH^ K = \frac{[H_3O^+][OH^-]}{[H_2O]^2}$ $K_{W} = K[H_{2}O]^{2} = [H_{3}O^{+}][OH^{-}] = 1.0 \times 10^{-14}$ $[H_3O^+] = [OH^-] = x \mod L^{-1}$ $K_W = [H_3O^+][OH^-] = (x)(x) = x^2 = 1.0x10^{-14}$ $x = \sqrt{K_w} = \sqrt{1.0 x 10^{-14}} = 1.0 x 10^{-7} M$

Acid-Base Theories

- Arrhenius
 - $HC1 \Leftrightarrow H^+ + Cl^-$
 - Could not explain alkalinity of aqueous ammonia
- Brönsted
- Lewis

 $NH_3 + H^+ \Leftrightarrow NH_4^+$

pH Scale Measures <u>acidity</u> of Aqueous Solutions

- pH = -log[H₃O⁺]
 by definition
- $pK_w = pH + pOH$ because.... $K_w = [H_3O^+][OH^-]$
- For <u>neutral</u> solutions... $[H_3O^+] = [OH^-] = 10^{-7}M$ and pH = 7

TABLE 12–3Approximate pH Value Familiar Solutions	s for Some
Solution	pH
1 M NaOH (lye)	14
1 M NH ₃ (household ammonia)	11.6
saturated Mg(OH) ₂	
(milk of magnesia)	10.5
blood	7.3-7.5
saliva	6.5 - 7.5
urine	5.5 - 7.5
coffee	4.5-5.5
beer	4.0 - 5.0
tomato juice	4.0-4.4
wine	2.8 - 3.8
vinegar	2.4-3.4
lemon juice	2.2-2.4
gastric juice	1.0 - 3.0
battery acid	0.5
1 M HCl	0

pH of Aqueous Solutions

- If $[H_3O^+] = 5.25 \times 10^{-3}M$
 - Then pH = $-\log 5.25 \times 10^{-3} = 2.28$
- If pH = 5.25
 - Then $[H_3O^+] = 10^{-5.25} = 5.6 \times 10^{-6}M$
 - And $[OH^-] = Kw/[H_3O^+] = 1.78 \times 10^{-9}M$
 - So pOH = 8.75
 - And pH = 14 8.75 = 5.25

pH of Aqueous Solutions

- When pH is *low*.....
 - $[H_3O^+] > [OH^-]$
- When pH is <u>neutral</u>.....
 - $[H_3O^+] = [OH^-]$
- When pH is <u>high</u>.....
 - $[H_3O^+] < [OH^-]$

Dissociation of HA in Water HA + $H_2O \Leftrightarrow H_3O^+ + A^-$

• For an acid of the general form HA

$$K_{HA} = \frac{[H_3O^+][A^-]}{[HA]}$$
$$K_{HA} \frac{[HA]}{[A^-]} = [H_3O^+]$$
$$pK_{HA} + \log \frac{[A^-]}{[HA]} = pH$$

Acid	Ka	Base	K _b
HClO ₄	large	ClO_4^-	very small
H_2SO_4	large	HSO_4^-	very small
HCl	large	Cl ⁻	very small
HNO ₃	large	NO_3^-	very small
$H_{3}O^{+}$	55.5	H_2O	1.8×10^{-1}
H_2SO_3	1.2×10^{-2}	HSO_3^-	8.3×10^{-1}
HSO_4^-	1.2×10^{-2}	SO_4^{2-}	8.3×10^{-1}
H_3PO_4	7.5×10^{-3}	$H_2PO_4^-$	1.3×10^{-1}
$Fe(H_2O)_6^{3+}$	6.3×10^{-3}	$Fe(H_2O)_5OH^{2+}$	1.6×10^{-1}
HF	$7.2 imes 10^{-4}$	\mathbf{F}^{-}	1.4×10^{-1}
HNO ₂	$4.5 imes 10^{-4}$	NO_2^-	2.2×10^{-1}
HCO ₂ H	$1.8 imes 10^{-4}$	HCO_2^-	5.6×10^{-1}
C ₆ H ₅ CO ₂ H	6.3×10^{-5}	$C_6H_5CO_2^-$	1.6×10^{-1}
CH ₃ CO ₂ H	1.8×10^{-5}	$CH_3CO_2^-$	5.6×10^{-1}
CH ₃ CH ₂ CO ₂ H	1.3×10^{-5}	$CH_3CH_2CO_2^-$	7.7×10^{-1}
$Al(H_2O)_6^{3+}$	7.9×10^{-6}	$Al(H_2O)_5OH^{2+}$	1.3×10^{-9}
H_2CO_3	4.2×10^{-7}	HCO_3^-	2.4×10^{-8}
$Cu(H_2O)_6^{2+}$	1.6×10^{-7}	$Cu(H_2O)_5OH^+$	
H_2S	1×10^{-7}	HS ⁻	1×10^{-7}
$H_2PO_4^-$	6.2×10^{-8}	HPO_4^{2-}	1.6×10^{-7}

Acid	Ka	Base	K _b
HSO_3^-	6.2×10^{-8}	SO_{3}^{2-}	1.6×10^{-7}
HClO	$3.5 imes 10^{-8}$	ClO ⁻	2.9×10^{-7}
$Pb(H_2O)_6^{2+}$	1.5×10^{-8}	$Pb(H_2O)_5OH^+$	6.7×10^{-7}
$Co(H_2O)_6^{2+}$	$1.3 imes 10^{-9}$	$\rm Co(H_2O)_5OH^+$	7.7×10^{-6}
$B(OH)_3(H_2O)$	$7.3 imes 10^{-10}$	$B(OH)_4^-$	1.4×10^{-5}
NH4 ⁺	5.6×10^{-10}	NH ₃	1.8×10^{-5}
HCN	4.0×10^{-10}	CN ⁻	2.5×10^{-5}
${\rm Fe}({\rm H}_2{\rm O})_6{}^{2+}$	3.2×10^{-10}	$\mathrm{Fe}(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{OH}^{+}$	3.1×10^{-5}
HCO_3^-	4.8×10^{-11}	CO_{3}^{2-}	2.1×10^{-4}
$Ni(H_2O)_6^{2+}$	2.5×10^{-11}	Ni(H ₂ O) ₅ OH ⁺	4.0×10^{-4}
HPO_4^{2-}	$3.6 imes 10^{-13}$	PO_{4}^{3-}	2.8×10^{-2}
H_2O	1.8×10^{-16}	OH-	55.5
HS ⁻	1×10^{-19}	S^{2-}	1×10^5
C_2H_5OH	very small	$C_2H_5O^-$	large
NH ₃	very small	$\mathrm{NH_2}^-$	large
H_2	very small	H^{-}	large
CH_4	very small	CH_3^-	large

Indicators HInd + $H_2O \Leftrightarrow H_3O^+$ + Ind-

Indicator equation

$$K_{HInd} = \frac{[H_3O^+][Ind^-]}{[HInd]}$$
$$K_{HInd} \frac{[HInd]}{[Ind^-]} = [H_3O^+]$$
$$pK_{HInd} + \log \frac{[Ind^-]}{[HInd]} = pH$$

Oxides and Hydrides

Metallic oxides

 $Na_2O + H_2O \Leftrightarrow 2NaOH$ $CaO + H_2O \Leftrightarrow Ca(OH)_2$

Nonmetallic oxides

 $SO_2 + H_2O \Leftrightarrow H_2SO_3$ $CO_2 + H_2O \Leftrightarrow H_2CO_3$

Metal Hydrides
 NaH + H₂O ⇔ N

 $NaH + H_2O \Leftrightarrow NaOH + H_2$

For Strong Acids

- Aqueous hydrochloric acid solutions HCl + $H_2O \Leftrightarrow H_3O^+ + Cl^-$
- 0.1M HCl = 0.1M H_3O^+
 - Presumption is complete dissociation
 - pH = 1
- Add 10 mL to 990 mL of H_2O
 - pH change is... huge!

For Weak Acids

- Aqueous acetic acid solutions $HOAc + H_2O \Leftrightarrow H_3O^+ + OAc^$ k_a =1.75 X 10⁻⁵ 0.1M HOAc << 0.1M H_3O+ <u>Incomplete</u> dissociation: pH = 2.87
- Aqueous HF
 - HF + $H_2O \Leftrightarrow H_3O^+$ + F⁻ k_a=7.2 X 10⁻⁴ and pH = ?

For Very Weak Acids

- Aqueous hydrogen cyanide solutions HCN + $H_2O \Leftrightarrow H_3O^+ + CN^-$
- 0.1M HCN <<< 0.1M H_3O^+
 - $K_a = 4.0 \times 10^{-10}$ and pH = 5.2
- 0.1M NaCN pH = ?
- 0.1M NaF pH = ?
- 0.1M NaOAc pH = ?

0.10M Solutions of HA:						
	Kα	pΚa	рН			
HCI	~107	-7	1			
HOAC	~10-5	5	3			
HCN	~10-11	11	6			
H ₂ O	~10-14	14	7			
NH ₃	~10-16	16	8			

Indicators HInd + $H_2O \Leftrightarrow H_3O^+$ + Ind-

Indicator equation

$$K_{HInd} = \frac{[H_3O^+][Ind^-]}{[HInd]}$$
$$K_{HInd} \frac{[HInd]}{[Ind^-]} = [H_3O^+]$$
$$pK_{HInd} + \log \frac{[Ind^-]}{[HInd]} = pH$$

Solvolysis/Hydrolysis

- For a weak acid HA.....
 - the anion is strong and reacts with the solvent in a proton-transfer reaction: $A^- + H_2O \iff HA + OH^-$
- For a weak base B.....
 - the cation ion is strong and reacts with the solvent in a proton-transfer reaction: BH⁺ + H₂O \Leftrightarrow B + H₃O⁺

Hydrolysis

- <u>Alkaline</u> solutions: NaOAc, NaF, NaCN
- <u>Acidic</u> solutions: NH₄Cl
- <u>Neutral</u> solutions from NH₄OAc
- NaCN and Na₂CO₃ solutions?
- AlCl₃ and Fe(NO₃)₃ solutions?
- NH_4CN solutions?

pH of 0.10M Aqueous NaOAc

- NaOAc(s) \Leftrightarrow Na⁺(aq) + OAc⁻(aq)
- OAc- + $H_2O \Leftrightarrow HOAc + OH^-$

$$K_{b} = \frac{K_{w}}{K_{a}} = \frac{[H_{3}O^{+}][OH^{-}]}{[H_{3}O^{+}][OAc^{-}]} = \frac{[HOAc][OH^{-}]}{[OAc^{-}]} = \frac{10^{-14}}{10^{-5}} = 10^{-9}$$
$$[HOAc]$$
$$10^{-9} = \frac{(x)(x)}{(.1-x)} \approx \frac{x^{2}}{.1} \text{ and } x = [OH^{-}] = 10^{-5}M$$

• pOH = 5 and pH = 14 - 5 = 9

Buffers

- Solutions of a weak acid and its conjugate base:
 HA + H₂O ⇔ H₃O⁺ + A⁻
- Solutions of a weak base and its conjugate acid:

 $B + H_2O \Leftrightarrow BH^+ + OH^-$

Buffers

 Buffers act across an [A-]/[HA] range of 10/1 to 1/10 ... or 2 pH units: $K_{HA} = \frac{[H_3O^+][A^-]}{[HA]}$ $K_{HA} \frac{\lfloor HA \rfloor}{\lceil A^{-} \rceil} = [H_3 O^+]$ $pK_{HA} + \log \frac{\lfloor A^- \rfloor}{\lceil HA \rceil} = pH$

Buffers

- Aqueous acetic acid solutions HOAC + $H_2O \Leftrightarrow H_3O^+$ + OAC^-
 - For 0.1M HOAc: pH = 2.87
 - For HOAc/NaOAc buffer: pH = pKa = 4.76
 - PROBLEM: Add 50mL 0.10M HCl to 950 mL H₂O containing 0.050 mole HOAc and 0.050 mole NaOAc.
 - Buffer soaks up the acid
 - pH change is relatively small.

Polyprotic Acids

- Carbonic acid (H_2CO_3) K_a $H_2CO_3 + H_2O \Leftrightarrow H_3O^+ + HCO_3^ 10^{-7}$ $HCO_3^- + H_2O \Leftrightarrow H_3O^+ + CO_3^{2-}$ 10^{-11}
 - Acidity is essentially supplied by $K_a(1)$
 - Blood is buffered by $[CO_2]/[HCO_3^-]$

Polyprotic Acids

- Sulfuric acid (H_2SO_4) pK_a $H_2SO_4 + H_2O \Leftrightarrow H_3O^+ + HSO_4^-$ -5 $HSO_4^- + H_2O \Leftrightarrow H_3O^+ + SO_4^{2-}$ 2
- Phosphoric acid (H_3PO_4) pK_a $H_3PO_4 + H_2O \Leftrightarrow H_3O^+ + H_2PO_4^-$ 2.1 $H_2PO_4^- + H_2O \Leftrightarrow H_3O^+ + HPO_4^{2-}$ 7.2 $HPO_4^- + H_2O \Leftrightarrow H_3O^+ + PO_4^{3-}$ 12.3
 - Note: K values are lower by several orders of magnitude due to increasing negative charge.

Titration curves

Titration curves

Titration curves

Finding K_a for Weak Acids

- For a monoprotic acid, at the mid-point, [HA] = [A-] pH = pKa $K_{HA} = \frac{[H_3 O^+][A^-]}{[HA]}$ $K_{HA} \frac{[HA]}{[A^-]} = [H_3O^+]$ $pK_{HA} + \log \frac{[A^-]}{[HA]} = pH$

ACID/BASE ISSUES

- Acid rain and coal mine run-off:
 - Kentucky, West Virginia, Indiana, Illinois, Minnesota... many places.
- Industrial acid/base run-off in rivers:
 - Raritan River is one of many.
- Acid rain and steel manufacture Acid:
 - Adirondks and Great Smokys
 - Illinois and Indiana mills

ACID/BASE ISSUES

- Corrosion
 - N and S oxides
 - Acidic oxides
- Particulates in the air:
 - Donora, Pennsylvania
 - Dupont "nylon" in downtown Chicago

Lessons from History

The disadvantage of men not knowing the past is that they do not know the present.

- G. K. Chesterton

