
Soluble Salts in Water

• KI and K₂CrO₄:

 Potassium iodide and potassium chromate are water-soluble.

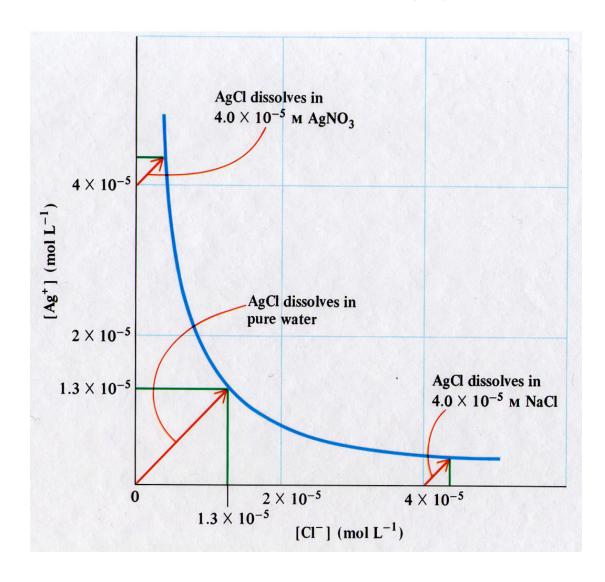
AgI and PbCrO₄

 Silver iodide and lead chromate and are sparingly soluble:

$$K_{sp}(AgI)=8.5 \times 10^{-17}$$

 $K_{sp}(PbCrO_4)=1.8 \times 10^{-14}$

TABLE 12-2 Solubility Product Constants at 25°C


Compound	$K_{ m sp}$	Compound	K_{sp}
AgBr	5.2×10^{-13}	$MgCO_3$	4.0×10^{-5}
AgCl	2.8×10^{-10}	$Mg(OH)_2$	1.2×10^{-11}
Ag ₂ CrO ₄	1.9×10^{-12}	Mn(OH) ₂	1.0×10^{-14}
AgI	8.5×10^{-17}	MnS	1.4×10^{-15}
Ag_2S	1.6×10^{-49}	Ni(OH) ₂	1.6×10^{-16}
$Al(OH)_3$	1.8×10^{-33}	NiS	1.4×10^{-24}
BaCO ₃	1.6×10^{-9}	PbCO ₃	1.5×10^{-13}
BaCrO ₄	8.5×10^{-11}	PbCrO ₄	1.8×10^{-14}
BaF ₂	1.7×10^{-6}	$Pb(OH)_2$	1.8×10^{-16}
BaSO ₄	1.1×10^{-10}	PbS	3.4×10^{-28}
CaCrO ₄	7.1×10^{-4}	PbSO ₄	1.3×10^{-8}
CaF ₂	1.7×10^{-10}	Sn(OH) ₂	5×10^{-26}
$Ca_3(PO_4)_2$	1.3×10^{-32}	SnS	8×10^{-29}
Cu(OH) ₂	1.6×10^{-19}	SrCO ₃	1.6×10^{-9}
CuS	8.5×10^{-45}	SrF ₂	2.8×10^{-9}
Fe(OH) ₂	1.6×10^{-15}	$ZnCO_3$	2×10^{-10}
FeS	3.7×10^{-19}	$Zn(OH)_2$	4.5×10^{-24}
HgS	3×10^{-53}	ZnS	4.5×10^{-24}

Silver iodide

$$AgI(s) \Leftrightarrow Ag^{+} + I^{-}$$

 $K_{sp} = [Ag^{+}][I^{-}] = 8.5 \times 10^{-17}$

[Ag⁺] = [I⁻] = solubility =
$$\sqrt{8.5 \times 10^{-17}}$$
 = 9.2 × 10⁻⁹

- What if the solution were 0.1M in Ag⁺ ions?
- What if the solution were 0.1M in I⁻ ions?

Lead chromate

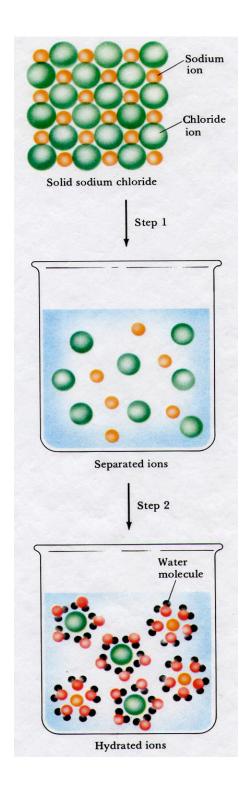
PbCrO₄(s)
$$\Leftrightarrow$$
 Pb²⁺ + CrO₄²⁻
 $K_{sp} = [Pb^{2+}][CrO_4^{2-}] = 1.8 \times 10^{-14}$
Let x = solubility of $[Pb^{2+}] = [CrO_4^{2-}]$

- What if $[Pb^{2+}] = 0.1M$?
- What if $[CrO_4^{2-}] = 0.1M$?
- What if $[Pb^{2+}]=[CrO_4^{2-}]=0.1M$?

Calcium fluoride

$$CaF_2(s) \Leftrightarrow Ca^{2+}(aq) + 2F^{-}(aq)$$

$$K_{sp} = [Ca^{2+}][2F^{-}]^{2} = 1.7 \text{ X } 10^{-10}$$


Solubility =
$$x = [Ca^{2+}] = 5.6 \times 10^{-4}$$

$$K_{sp}=[Ca^{2+}][2F^{-}]^{2}=(x)(2x)^{2}=4x^{3}=1.7 \times 10^{-10}$$

$$K_{sp} = \sqrt[3]{4.25 \times 10^{-11}} = 3.5 \times 10^{-4}$$

Selective Precipitation

- A solution where $[Ba^{2+}] = [Ca^{2+}] = 0.1M$
 - Add sulfate ions:
 - $K_{sp}(BaSO_4) = 10^{-10}$; $K_{sp}(CaSO_4) = 10^{-5}$
 - Sparingly soluble BaSO₄ and CaSO₄ precipitate.
 - Which salt precipitates first?
 - How much of the first is left in solution when the second begins to precipitate?

Electrolytes

- Conductivity in water is due to <u>hydrated</u> ions moving about.
 - Water and aqueous sugar solutions
 - Acetic acid and vinegar
 - Aqueous salt solutions
- Experiments
 - Electrolytes
 - Nonelectrolytes

Autoionization of Water

• $H_2O(liq) + H_2O(liq) \Leftrightarrow H_3O^+ + OH^-$

$$K = \frac{[H_3O^+][OH^-]}{[H_2O]^2}$$

$$K_W = K[H_2O]^2 = [H_3O^+][OH^-] = 1.0x10^{-14}$$

$$[H_3O^+] = [OH^-] = \sqrt{K_W} = \sqrt{1.0x10^{-14}} = 1.0x10^{-7}M$$

Autoionization of Water

• $H_2O(liq) + H_2O(liq) \Leftrightarrow H_3O^+ + OH^-$

$$K = \frac{[H_3O^+][OH^-]}{[H_2O]^2}$$

$$K_W = K[H_2O]^2 = [H_3O^+][OH^-] = 1.0x10^{-14}$$

$$[H_3O^+] = [OH^-] = x \, mol \, L^{-1}$$

$$K_W = [H_3O^+][OH^-] = (x)(x) = x^2 = 1.0x10^{-14}$$

$$x = \sqrt{K_W} = \sqrt{1.0x10^{-14}} = 1.0x10^{-7} M$$

Acid-Base Theories

Arrhenius

$$HC1 \Leftrightarrow H^+ + C1^-$$

- Could not explain alkalinity of aqueous ammonia
- Brönsted

$$NH_3 + H_2O \Leftrightarrow NH_4^+ + OH^-$$

 $HCl + H_2O \Leftrightarrow H_3O^+ + Cl^-$

Lewis

$$NH_3 + H^+ \Leftrightarrow NH_4^+$$

pH Scale

Measures <u>acidity</u> of Aqueous Solutions

pH =
$$-log[H_3O^+]$$

by definition
pK_w = pH + pOH
because.... K_w=[H₃O⁺][OH⁻]
For neutral solutions...
[H₃O⁺] = [OH⁻]
= 10^{-7} M
pH = $-log[H_3O^+]$
pH = 7

TABLE 12–3 Approximate pH Values for Some Familiar Solutions

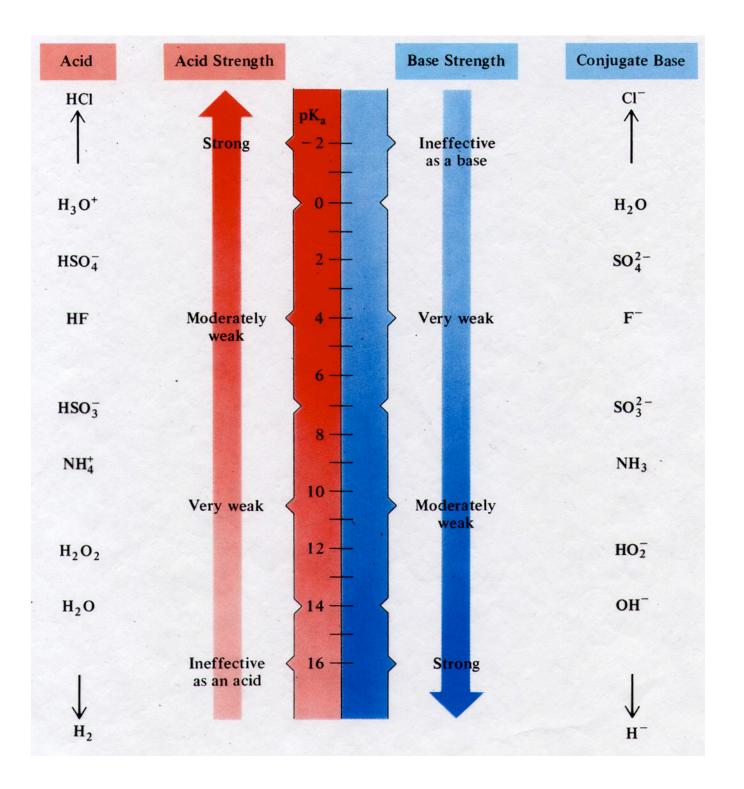
Solution	pН
1 M NaOH (lye)	14
1 M NH ₃ (household ammonia)	11.6
saturated Mg(OH) ₂	
(milk of magnesia)	10.5
blood	7.3-7.5
saliva	6.5 - 7.5
urine	5.5-7.5
coffee	4.5 - 5.5
beer	4.0 - 5.0
tomato juice	4.0-4.4
wine	2.8 - 3.8
vinegar	2.4-3.4
lemon juice	2.2-2.4
gastric juice	1.0-3.0
battery acid	0.5
1 M HCl	0

pH of Aqueous Solutions

- If $[H_3O^+] = 5.25 \times 10^{-3}M$
 - Then pH = $-\log 5.25 \times 10^{-3} = 2.28$
- If pH = 5.25
 - Then $[H_3O^+] = 10^{-5.25} = 5.6 \times 10^{-6}M$
 - And $[OH^-] = Kw/[H_3O^+] = 1.78 \times 10^{-9}M$
 - So pOH = 8.75
 - And pH = 14 8.75 = 5.25

pH of Aqueous Solutions

- When pH is <u>low</u>.....
 - $[H_3O^+] > [OH^-]$
- When pH is <u>neutral</u>.....
 - $[H_3O^+] = [OH^-]$
- When pH is <u>high</u>.....
 - $[H_3O^+] < [OH^-]$


Dissociation of HA in Water $HA + H_2O \Leftrightarrow H_3O^{+} + A^{-}$

· For an acid of the general form HA

$$K_{HA} = \frac{[H_3O^+][A^-]}{[HA]}$$

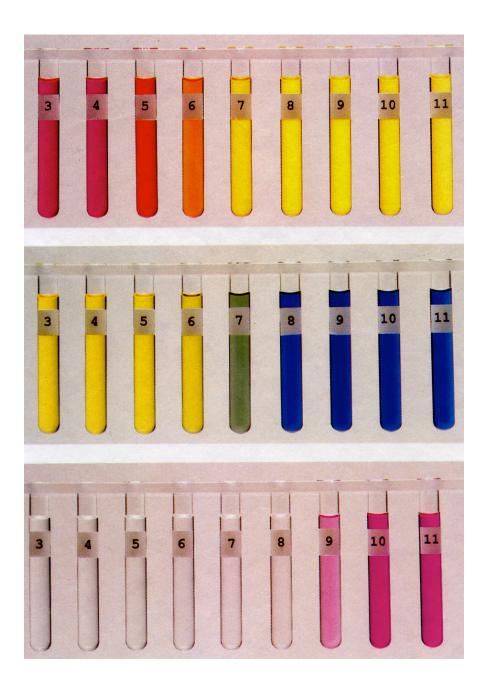
$$K_{HA} \frac{[HA]}{[A^-]} = [H_3 O^+]$$

$$pK_{HA} + \log\frac{[A^{-}]}{[HA]} = pH$$

Acid	$K_{\rm a}$	Base	K_{b}
HClO ₄	large	${ m ClO_4}^-$	very small
H_2SO_4	large	$\mathrm{HSO_4}^-$	very small
HCl .	large	Cl ⁻	very small
HNO_3	large	NO_3^-	very small
H_3O^+	55.5	H_2O	1.8×10^{-16}
H_2SO_3	1.2×10^{-2}	$\mathrm{HSO_3}^-$	8.3×10^{-13}
ISO ₄	1.2×10^{-2}	SO_4^{2-}	8.3×10^{-13}
H_3PO_4	7.5×10^{-3}	$\mathrm{H_2PO_4}^-$	1.3×10^{-12}
$\mathrm{Fe(H_2O)_6}^{3+}$	6.3×10^{-3}	$\mathrm{Fe}(\mathrm{H_2O})_5\mathrm{OH^{2+}}$	1.6×10^{-12}
IF	7.2×10^{-4}	F^-	1.4×10^{-11}
INO_2	4.5×10^{-4}	$\mathrm{NO_2}^-$	2.2×10^{-11}
HCO_2H	1.8×10^{-4}	$\mathrm{HCO_2}^-$	5.6×10^{-11}
$C_6H_5CO_2H$	6.3×10^{-5}	$C_6H_5CO_2^-$	1.6×10^{-10}
CH ₃ CO ₂ H	1.8×10^{-5}	$\mathrm{CH_3CO_2}^-$	5.6×10^{-10}
CH ₃ CH ₂ CO ₂ H	1.3×10^{-5}	CH ₃ CH ₂ CO ₂	7.7×10^{-10}
$M(H_2O)_6^{3+}$	7.9×10^{-6}	$\mathrm{Al}(\mathrm{H_2O})_5\mathrm{OH^{2+}}$	1.3×10^{-9}
H_2CO_3	4.2×10^{-7}	HCO ₃	2.4×10^{-8}
$Cu(H_2O)_6^{2+}$	1.6×10^{-7}	$Cu(H_2O)_5OH^+$	6.25×10^{-8}
H_2S	1×10^{-7}	HS ⁻	1×10^{-7}
$H_2PO_4^-$	6.2×10^{-8}	HPO_4^{2-}	1.6×10^{-7}

Acid	$K_{\rm a}$	Base	$K_{\rm b}$
HSO ₃	6.2×10^{-8}	SO_3^{2-}	1.6×10^{-7}
HClO	3.5×10^{-8}	ClO-	2.9×10^{-7}
$Pb(H_2O)_6^{2+}$	1.5×10^{-8}	$\mathrm{Pb}(\mathrm{H_2O})_5\mathrm{OH}^+$	6.7×10^{-7}
$Co(H_2O)_6^{2+}$	1.3×10^{-9}	$\mathrm{Co}(\mathrm{H_2O})_5\mathrm{OH}^+$	7.7×10^{-6}
$B(OH)_3(H_2O)$	7.3×10^{-10}	$\mathrm{B(OH)_4}^-$	1.4×10^{-1}
NH ₄ ⁺	5.6×10^{-10}	NH_3	1.8×10^{-1}
HCN	4.0×10^{-10}	CN-	2.5×10^{-1}
$\mathrm{Fe}(\mathrm{H_2O})_6^{2+}$	3.2×10^{-10}	$\mathrm{Fe}(\mathrm{H_2O})_5\mathrm{OH^+}$	3.1×10^{-1}
HCO_3^-	4.8×10^{-11}	CO_3^{2-}	2.1×10^{-6}
$Ni(H_2O)_6^{2+}$	2.5×10^{-11}	$Ni(H_2O)_5OH^+$	4.0×10^{-6}
$\mathrm{HPO_4}^{2-}$	3.6×10^{-13}	PO_4^{3-}	2.8×10^{-9}
H_2O	1.8×10^{-16}	OH-	55.5
HS-	1×10^{-19}	S^{2-}	1×10^5
C_2H_5OH	very small	$C_2H_5O^-$	large
NH_3	very small	NH_2^-	large
H_2	very small	H^-	large
CH_4	very small	$\mathrm{CH_3}^-$	large

Indicators


$$HInd + H_2O \Leftrightarrow H_3O^+ + Ind-$$

Indicator equation

$$K_{HInd} = \frac{[H_3O^+][Ind^-]}{[HInd]}$$

$$K_{HInd} \frac{[HInd]}{[Ind^-]} = [H_3O^+]$$

$$pK_{HInd} + \log \frac{[Ind^-]}{[HInd]} = pH$$

Oxides and Hydrides

Metallic oxides

$$Na_2O + H_2O \Leftrightarrow 2NaOH$$

 $CaO + H_2O \Leftrightarrow Ca(OH)_2$

· Nonmetallic oxides

$$SO_2 + H_2O \Leftrightarrow H_2SO_3$$

 $CO_2 + H_2O \Leftrightarrow H_2CO_3$

Metal Hydrides

$$NaH + H_2O \Leftrightarrow NaOH + H_2$$

For Strong Acids

- Aqueous hydrochloric acid solutions $HCl + H_2O \Leftrightarrow H_3O^+ + Cl^-$
- $0.1M HCI = 0.1M H_3O^+$
 - Presumption is complete dissociation
 - pH = 1
- · Add 10 mL to 990 mL of H2O
 - pH change is... huge!

For Weak Acids

• Aqueous acetic acid solutions $HOAc + H_2O \Leftrightarrow H_3O^+ + OAc^ k_a=1.75 \times 10^{-5}$

 $0.1M \, HOAc \leftrightarrow 0.1M \, H_3O +$

Incomplete dissociation: pH = 2.87

· Aqueous HF

HF +
$$H_2O \Leftrightarrow H_3O^+ + F^-$$

 $k_a = 7.2 \times 10^{-4}$ and pH = ?

For Very Weak Acids

- Aqueous hydrogen cyanide solutions $HCN + H_2O \Leftrightarrow H_3O^+ + CN^-$
- $0.1M \, HCN \, \leftrightarrow \, 0.1M \, H_3O^+$

•
$$K_a = 4.0 \times 10^{-10}$$
 and pH = 5.2

- 0.1M NaCN pH = ?
- 0.1M NaF pH = ?
- 0.1M NaOAc pH = ?

0.10M Solutions of HA

	Kα	pK_a	pН
HCI	~107	-7	1
HOAc	~10-5	5	3
HCN	~10-11	11	6
H_2O	~10-14	14	7

0.10M Solutions of B

	K_b	pK_b	рОН
NH_3	~10-5	5	3

Solvolysis/Hydrolysis

- For a weak acid HA....
 - the anion is strong and reacts with the solvent in a proton-transfer reaction:

$$A^- + H_2O \Leftrightarrow HA + OH^-$$

- For a weak base B....
 - the cation ion is strong and reacts with the solvent in a proton-transfer reaction:

$$BH^+ + H_2O \Leftrightarrow B + H_3O^+$$

Hydrolysis

- · Alkaline solutions: NaOAc, NaF, NaCN
- Acidic solutions: NH₄Cl
- · Neutral solutions: NH4OAc
- NaCN and Na₂CO₃ solutions?
- AlCl₃ and Fe(NO₃)₃ solutions?
- NH₄CN solutions?

pH of 0.10M Aqueous NaOAc

- NaOAc(s) \Leftrightarrow Na⁺(aq) + OAc⁻(aq)
- OAc- + $H_2O \Leftrightarrow HOAc + OH^-$

$$K_{b} = \frac{K_{w}}{K_{a}} = \frac{[H_{3}O^{+}][OH^{-}]}{[H_{3}O^{+}][OAc^{-}]} = \frac{[HOAc][OH^{-}]}{[OAc^{-}]} = \frac{10^{-14}}{10^{-5}} = 10^{-9}$$

$$[HOAc]$$

$$10^{-9} = \frac{(x)(x)}{(.1-x)} \cong \frac{x^2}{.1} \text{ and } x = [OH^-] = 10^{-5}M$$

• pOH = 5 and pH = 14 - 5 = 9

Buffers

 Solutions of a weak acid and its conjugate base:

$$HA + H_2O \Leftrightarrow H_3O^+ + A^-$$

 Solutions of a weak base and its conjugate acid:

$$B + H_2O \Leftrightarrow BH^+ + OH^-$$

Buffers

• Buffers act across an [A-]/[HA] range of 10/1 to 1/10 ... or 2 pH units:

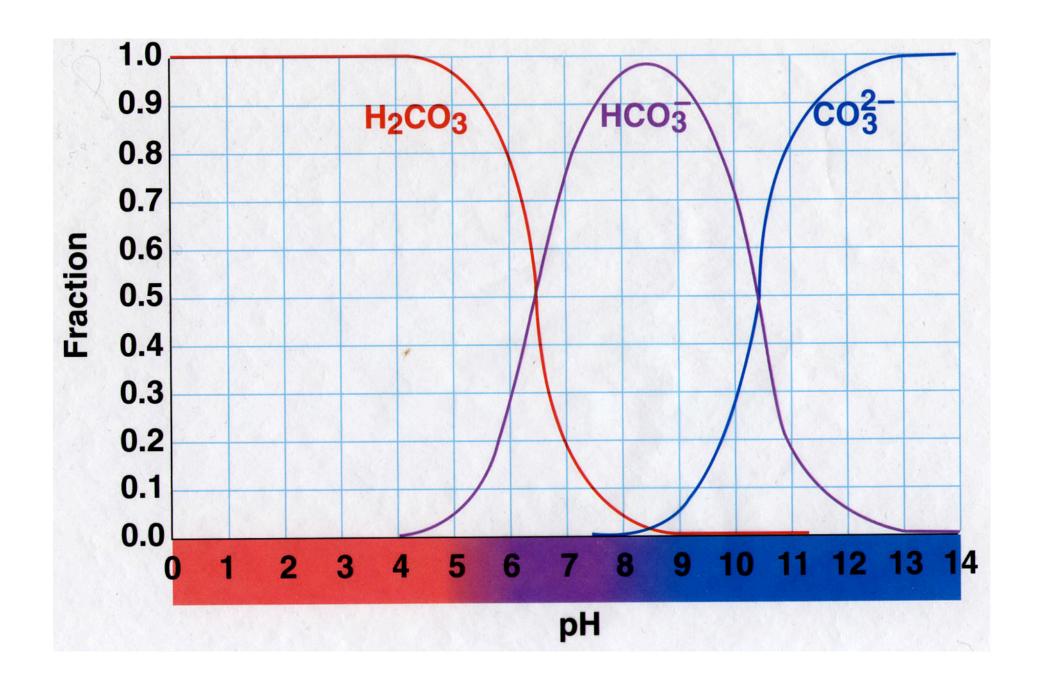
$$K_{HA} = \frac{[H_3O^+][A^-]}{[HA]}$$

$$K_{HA} \frac{[HA]}{[A^-]} = [H_3 O^+]$$

$$pK_{HA} + \log\frac{[A^{-}]}{[HA]} = pH$$

Buffers

· Aqueous acetic acid solutions

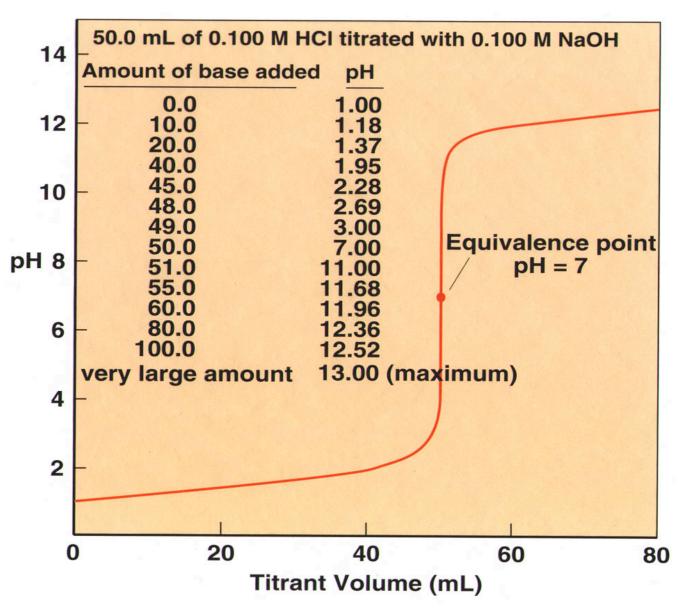

$$HOAc + H_2O \Leftrightarrow H_3O^+ + OAc^-$$

- For 0.1M HOAc: pH = 2.87
- For HOAc/NaOAc buffer: pH = pKa = 4.76
- PROBLEM: Add 50mL 0.10M HCl to 950 mL H_2O containing 0.050 mole HOAc and 0.050 mole NaOAc.
 - Buffer soaks up the acid
 - pH change is relatively small.

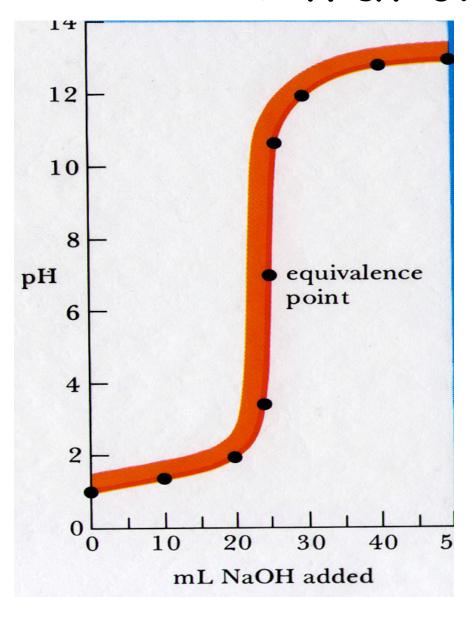
Polyprotic Acids

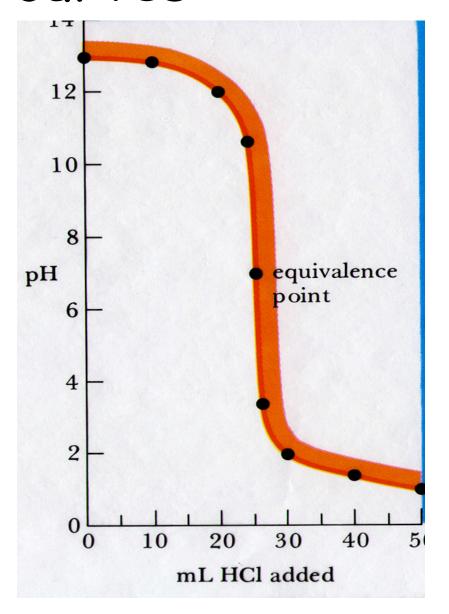
• Carbonic acid
$$(H_2CO_3)$$
 K_a $H_2CO_3 + H_2O \Leftrightarrow H_3O^+ + HCO_3^ 10^{-7}$ $HCO_3^- + H_2O \Leftrightarrow H_3O^+ + CO_3^{2-}$ 10^{-11}

- Acidity is essentially supplied by $K_a(1)$
- Blood is buffered by [CO₂]/[HCO₃-]

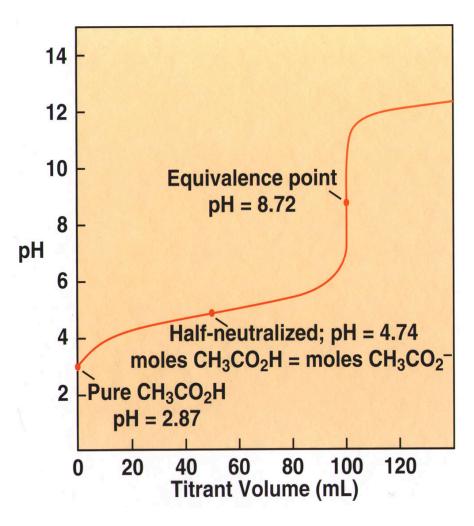


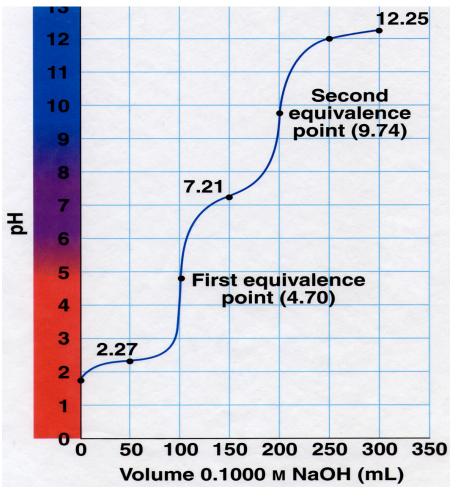
Polyprotic Acids


- Sulfuric acid
$$(H_2SO_4)$$
 pK_a
 $H_2SO_4 + H_2O \Leftrightarrow H_3O^+ + HSO_4^-$ -5
 $HSO_4^- + H_2O \Leftrightarrow H_3O^+ + SO_4^{2-}$ 2
- Phosphoric acid (H_3PO_4) pK_a
 $H_3PO_4 + H_2O \Leftrightarrow H_3O^+ + H_2PO_4^-$ 2.1
 $H_2PO_4^- + H_2O \Leftrightarrow H_3O^+ + HPO_4^{2-}$ 7.2
 $HPO_4^- + H_2O \Leftrightarrow H_3O^+ + PO_4^{3-}$ 12.3


 Note: K values are lower by several orders of magnitude due to increasing negative charge.

Titration curves




Titration curves

Titration curves

Finding K_a for Weak Acids

- For a monoprotic acid, at the mid-point,

$$K_{HA} = \frac{[H_3O^+][A^-]}{[HA]}$$

$$K_{HA} \frac{[HA]}{[A^{-}]} = [H_3 O^{+}]$$

$$pK_{HA} + \log\frac{[A^-]}{[HA]} = pH$$

ACID/BASE ISSUES

- · Acid rain and coal mine run-off:
 - Kentucky, West Virginia, Indiana, Illinois, Minnesota... many places.
- Industrial acid/base run-off in rivers:
 - Raritan River is one of many.
- Acid rain and steel manufacture Acid:
 - Adirondks and Great Smokys
 - Illinois and Indiana mills

ACID/BASE ISSUES

- · Corrosion
 - N and S oxides
 - Acidic oxides
- · Particulates in the air:
 - Donora, Pennsylvania
 - Dupont "nylon" in downtown Chicago

Lessons from History

The disadvantage of men not knowing the past is that they do not know the present.

- G. K. Chesterton

Complex Ion Formation

1)
$$AgI(s) \Leftrightarrow Ag^{+}(aq) + I^{-}(aq)$$

 $K_{sp} = [Ag^{+}][I^{-}] = 10^{-16}$

2)
$$Ag^{+}(aq) + 2NH_{3}(aq) \Leftrightarrow Ag(NH_{3})_{2}^{+}(aq)$$

$$K_{f} = \frac{[Ag(NH_{3})_{2}^{+}]}{[NH_{3}]^{2}[Ag^{+}]} \approx 10^{12}$$

3)
$$AgI(s) + 2NH_3(aq) \Leftrightarrow Ag(NH_3)_2^+(aq) + I^-(aq)$$

$$K_{sp}K_f = \frac{[Ag(NH_3)_2^+][I^-]}{[NH_3]^2} \cong (10^{12})(10^{-16}) = 10^{-4}$$

Complex ion formation

- AgCl ppt dissolves in aq. NH₃
- AgBr ppt dissolves in aq. NH₃ but with difficulty
- AgI ppt does not dissolve in aq. NH₃ but does dissolve in aq. CN⁻

Dissolving Precipitates

- AgCl
 - Add ammonia
 - Forms soluble Ag(NH₃)+ complex
- AgBr
 - Add lots of ammonia
 - Forms soluble Ag(NH₃)+ complex
- AgI
 - Add cyanide ion
 - Forms soluble Ag(CN)₂ complex