CHEMICAL EQUILIBRIUM
 Reversibility and Chemical Change

- Equilibrium vapor pressure
- Evaporation and condensation
- Triple point conditions
- Chemical Reactions:
$-\mathrm{CaCO}_{3}(\mathrm{~s}) \square \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
$-\mathrm{CaCO}_{3}(s)+2 \mathrm{NaCl}(\mathrm{s}) \square \mathrm{CaCl}_{2}(\mathrm{~s})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$

Chemical equilibrium

- Reversibility is a general property of chemical change.
- Macroscopic reversibility depends on law of mass action:
- Rate of a reaction is a function of how much material is reacting (concentration or partial pressure).
- Chemical equilibrium is achieved when the rate of the forward reaction equals the rate of the reverse.
- Phase changes often accompany chemical change.
- Le Chatelier's Principle:
- Systems at equilibrium try to stay in equilibrium and respond to external stresses accordingly.

Systems at Equilibrium

- Systems move spontaneously toward equilibrium.
- Equilibrium is a dynamic state.
- Approach to equilibrium is independent of direction.
- Trade-off between organization and randomization.

CHEMICAL EQUILIBRIUM $\mathrm{H}_{2}(\mathrm{~g}) \square \quad 2 \mathrm{H}(\mathrm{g})$

- Drive toward maximum entropy:
- Favors bond dissociation, converting H_{2} molecules to free H atoms.
- Energy is required.
- Equilibrium shifts to the right.
- Drive to achieve minimum energy
- favors bond formation and H_{2} molecules over free H atoms.
- Equilibrium shifts to the left..

Hydrogen Iodide
 Synthesis and Decomposition

MEITSEHRTET	
PHYSIKAJTSCHE CHEME	
STÖCHIOMETRIE UNI	VERWANDTSCHAFTSLEHRE
UNTER MITWIRKUNGvos	
8. arrhenius in Stockhols, m. berthelot in Parie, J. w. brUHL in Heidilakro, Hi le chatelier in Paris, c. M. guldberg uxd P. Wafge in christianta, d mendelejew uxd n. menschutkin in St. Pxtkrsbura, Lothar meyer in Temixome,	
victor meyer ix Hridzlakro, w. nernst is gottixans, Lh f. nilson und O. pettersson ix Stockiond, l. pfaundler ix Glaz, w. ramsay ix Lompor, F. M. raoult in Gmboble, r. schiff in Modena, W. spring in lettich, SOWIE ANDERER pachemiossem	
heraubgegeben von	
WILH. OSTWALD PROYESBOR A. D. UNIVER8, ZE I.EIPZIO	vxd J. H. VAN'T HOFF PROYKssor A. D. UNIVERS. ZU AMSTKRDAM.
DREIZEHNTER BAND MIT 40 FIGUREN IM TEXT.	
LEIPZIG	
verlag von w	ILHELM ENGELMANN

ZEITSCHRIFT

FỠ

PHYSIKALISCHE CHEMIE

sTÖCHIOMETRIE UND VERWANDTSCHAFTSLEHRE

UNTER MITWIRKUNG

vos
8. ARRHENIUS im Stockholm, M. BERTHELOT in Paris, J. W. BRUHL im Hitdiklakro, H_{i} Ls CHATELIER ix Paris, C. M. quldderg uxd P. WAAGE in CHristianta, A. HORSTMANN in Hkidelmerg, H. LaNDOLT in Berlim, O. LEHMANN in Karlaruhk, D. MENDELEJEW UND N. MENSCHUTKIN IN ST. PKTKRSBURG, LOTHAF MEYER IN TUATMOKR, Victor meyer in Hzidelbero, W. NERNST in Gottimaer, L. F. NiLSON und
O. PETTERSSON ix STOGKHOLM, L. PFAUNDLER in GRaz, W. RAMSAY im LONDON, F. M. RAOULT in Grenoble, R. SCHIFF in Modena, W. SPRING in LOtich,
F. STOHMANN in Lempio, J. THOMSEN in Korgenlaukn, T. E. THORPE in Londox

SOWIE ANDERER FACHGRNOSEEM

HERAUSGEGEBEN VON

WILH. OSTWALD
provesmor A. D. UnIVERE, zU hatpzie

UND
\qquad

DREIZEHNTER BAND
mit to figuren im text.

LEIPZIG

VERLAG VON WILHELM ENGELMANN
1894.

The Equilibrium Constant

- For a general reaction: - $p=$ partial pressure,

$$
\begin{gathered}
\mathrm{aA}+\mathrm{bB} \square \mathrm{cC}+\mathrm{dD} \\
K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \\
K_{p}=\frac{p^{c} p^{d}}{p^{a} p^{b}}
\end{gathered}
$$

- $\quad K_{p}=K_{c}(R T)^{\square n}$ usually measured in units of torr or atm.
- [conc] = [mol/L]
$\square \mathrm{n}=$ difference in moles (n) of products and reactants:

$$
\square n=n_{p}-n_{r}
$$

The Equilibrium Constant

- $2 \mathrm{HI}(\mathrm{g}) \mathrm{H} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

$$
K=\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right] /[\mathrm{HI}]^{2}
$$

- $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \mathrm{C} 2 \mathrm{HI}(\mathrm{g})$

$$
K^{\prime}=1 / K=[H I]^{2} /\left[H_{2}\right]\left[I_{2}\right]
$$

- $K_{p}=K_{c}$ because $\Delta n=0$

Ammonium Chloride

Synthesis and Decomposition

- Chemical equilibrium is achieved from either direction
- Equilibrium depends on...
- Temperature
- Pressure
- Moles of reactants and products

TABLE 10-1 Partial Pressures of $\mathrm{NH}_{3}(\mathrm{~g})$ and $\mathrm{HCl}(\mathrm{g})$ in Equilibrium with $\mathrm{NH}_{4} \mathrm{Cl}$ (s) at $300^{\circ} \mathrm{C}$, in Atmospheres

Exp. \#	$\boldsymbol{p}_{\mathbf{N H}_{3}}$	$\boldsymbol{p}_{\mathbf{H C l}}$	$\boldsymbol{K}=\boldsymbol{p}_{\mathbf{N H}_{3}} \boldsymbol{p}_{\mathbf{H C l}}$
1	2.3×10^{-1}	2.3×10^{-1}	5.3×10^{-2}
2	3.1×10^{-1}	1.8×10^{-1}	5.6×10^{-2}
3	4.0×10^{-1}	1.4×10^{-1}	5.6×10^{-2}
4	4.9×10^{-1}	1.1×10^{-1}	5.4×10^{-2}
5	6.0×10^{-1}	9.2×10^{-2}	5.5×10^{-2}
6	1.7×10^{-1}	3.2×10^{-1}	5.4×10^{-2}
7	1.2×10^{-1}	4.5×10^{-1}	5.4×10^{-2}
8	8.9×10^{-2}	6.2×10^{-1}	5.5×10^{-2}

The Equilibrium Constant

- $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \square \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{c}}=\left[\mathrm{NH}_{3}\right][\mathrm{HCl}] \\
& \mathrm{K}_{\mathrm{p}}=\mathrm{p}_{\mathrm{NH} 3} \mathrm{P}_{\mathrm{HCl}}
\end{aligned}
$$

- $\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \square \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$

$$
\begin{aligned}
& K^{\prime}=1 / \mathrm{K}=\left[\mathrm{NH}_{3}\right][\mathrm{HCl}] \\
& \mathrm{K}^{\prime}=1 / \mathrm{K}=1 / \mathrm{p}_{\mathrm{NH} 3} \mathrm{p}_{\mathrm{HCl}}
\end{aligned}
$$

- $K_{p} \neq K_{c}$ because $\Delta n \neq 0$

The Equilibrium Constant

- $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \square 2 \mathrm{NH}_{3}(\mathrm{~g})$

$$
\mathrm{K}=\left[\mathrm{NH}_{3}\right]^{2} /\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right]
$$

- $2 \mathrm{NH}_{3}(\mathrm{~g}) \square 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})$

$$
K^{\prime}=1 / K=\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{~N}_{2}\right] /\left[\mathrm{NH}_{3}\right]^{2}
$$

- $K_{p} \neq K_{c}$ because $\Delta n \neq 0$

Le Chatelier's Principle

- Systems in equilibrium tend to stay in equilibrium unless acted upon by an external stress such as.....
- changes in concentration
- changes in temperature
- changes in pressure/volume
- Catalysts alter only the rate at which equilibrium is achieved.

Ammonia Synthesis

Le Chatelier's Principle

$$
\begin{array}{r}
-3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \square 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
\Delta \mathrm{H}=-93 \mathrm{~kJ}
\end{array}
$$

$$
-\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \square \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$$
\mathrm{H}=+41 \mathrm{~kJ}
$$

$$
-4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \square 2 \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$$
\Delta H=+118 \mathrm{~kJ}
$$

Examples

- Decomposition of nitrosyl bromide (NOBr)
- $\mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \square \mathrm{NOBr}(\mathrm{g})$
- Carbon monoxide shift reaction

$$
-\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \square \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

- Hydrogen iodide formation

$$
-\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \square 2 \mathrm{HI}(\mathrm{~g})
$$

$2 \mathrm{NO}_{2}$ (red) $\square \quad \mathrm{N}_{2} \mathrm{O}_{4}$ (colorless)

$2 \mathrm{NO}_{2}$ (red) $\square \quad \mathrm{N}_{2} \mathrm{O}_{4}$ (colorless)

$2 \mathrm{NO}_{2}$ (red) $\square \quad \mathrm{N}_{2} \mathrm{O}_{4}$ (colorless)

TABLE 10-2 Equilibrium Mixtures of $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$

$p_{\mathrm{NO}_{2}}$	$p_{\mathrm{N}_{2} \mathrm{O}_{4}}$	$P_{\text {toal }}$	$K=\frac{p_{\mathrm{N}_{2} \mathrm{O}_{4}}}{p_{\mathrm{NO}_{2}}^{2}}$
1.0×10^{-2}	8.8×10^{-4}	1.1×10^{-2}	8.8
2.0×10^{-2}	3.5×10^{-3}	2.4×10^{-2}	8.8
4.0×10^{-2}	1.4×10^{-2}	5.4×10^{-2}	8.8
8.0×10^{-2}	5.6×10^{-2}	1.36×10^{-1}	8.8
1.6×10^{-1}	2.3×10^{-1}	3.9×10^{-1}	9.0
3.2×10^{-1}	9.0×10^{-1}	1.22×10^{0}	8.8
6.4×10^{-1}	3.6×10^{0}	4.2×10^{0}	8.8

Soluble Salts in Water

- KI and $\mathrm{K}_{2} \mathrm{CrO}_{4}$:
- Potassium iodide and chromate are soluble
- Lead chromate and silver iodide are insoluble.... sparingly soluble:
- $\mathrm{Ksp}(\mathrm{PbCro4})$

TABLE 12-2 Solubility Product Constants at $25^{\circ} \mathrm{C}$

Compound	$K_{\text {sp }}$	Compound	$K_{\text {sp }}$
AgBr	5.2×10^{-13}	MgCO_{3}	4.0×10^{-5}
AgCl	2.8×10^{-10}	$\mathrm{Mg}(\mathrm{OH})_{2}$	1.2×10^{-11}
$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$	1.9×10^{-12}	$\mathrm{Mn}(\mathrm{OH})_{2}$	1.0×10^{-14}
AgI	8.5×10^{-17}	MnS	1.4×10^{-15}
$\mathrm{Ag}_{2} \mathrm{~S}$	1.6×10^{-49}	$\mathrm{Ni}(\mathrm{OH})_{2}$	1.6×10^{-16}
$\mathrm{Al}(\mathrm{OH})_{3}$	1.8×10^{-33}	NiS	1.4×10^{-24}
BaCO_{3}	1.6×10^{-9}	PbCO_{3}	1.5×10^{-13}
BaCrO_{4}	8.5×10^{-11}	PbCrO_{4}	1.8×10^{-14}
BaF_{2}	1.7×10^{-6}	$\mathrm{Pb}(\mathrm{OH})_{2}$	1.8×10^{-16}
BaSO_{4}	1.1×10^{-10}	PbS	3.4×10^{-28}
CaCrO_{4}	7.1×10^{-4}	PbSO_{4}	1.3×10^{-8}
CaF_{2}	1.7×10^{-10}	$\mathrm{Sn}(\mathrm{OH})_{2}$	5×10^{-26}
$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	1.3×10^{-32}	SnS	8×10^{-29}
$\mathrm{Cu}(\mathrm{OH})_{2}$	1.6×10^{-19}	SrCO_{3}	1.6×10^{-9}
CuS	8.5×10^{-45}	SrF_{2}	2.8×10^{-9}
$\mathrm{Fe}(\mathrm{OH})_{2}$	1.6×10^{-15}	ZnCO_{3}	2×10^{-10}
FeS	3.7×10^{-19}	$\mathrm{Zn}(\mathrm{OH})_{2}$	4.5×10^{-24}
HgS	3×10^{-53}	ZnS	4.5×10^{-24}

An agricultural scientist, Norman Borlaug was recognized By the Nobel Peace Prize in 1970 for his work on food and agriculture.

He often speculates that if Alfred Nobel had written his will to establish the various prizes and endowed them fifty years earlier, the first prize established would have
 been for food and agriculture. However, by the time Nobel wrote his will in 1895, there was no serious food production problem haunting Europe like the widespread potato famine in 1845-51, that took the lives of untold millions.
http://www.nobel.se/peace/laureates/1970/

The Equilibrium Constant

- For a general reaction: - $p=$ partial pressure,

$$
\begin{gathered}
\mathrm{aA}+\mathrm{bB} \square \mathrm{cC}+\mathrm{dD} \\
K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \\
K_{p}=\frac{p^{c} p^{d}}{p^{a} p^{b}}
\end{gathered}
$$

- $\quad K_{p}=K_{c}(R T)^{\square n}$ usually measured in units of torr or atm.
- [conc] = [mol/L]
$\square \mathrm{n}=$ difference in moles (n) of products and reactants:

$$
\square n=n_{p}-n_{r}
$$

The Equilibrium Constant

- $2 \mathrm{HI}(\mathrm{g}) \mathrm{H} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

$$
K=\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right] /[\mathrm{HI}]^{2}
$$

- $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \mathrm{C} 2 \mathrm{HI}(\mathrm{g})$

$$
K^{\prime}=1 / K=[H I]^{2} /\left[H_{2}\right]\left[I_{2}\right]
$$

- $K_{p}=K_{c}$ because $\Delta n=0$

The Equilibrium Constant

- $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \square \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{c}}=\left[\mathrm{NH}_{3}\right][\mathrm{HCl}] \\
& \mathrm{K}_{\mathrm{p}}=\mathrm{p}_{\mathrm{NH} 3} \mathrm{p}_{\mathrm{HCl}}
\end{aligned}
$$

- $\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \square \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$

$$
\begin{aligned}
& K^{\prime}=1 / K=\left[\mathrm{NH}_{3}\right][\mathrm{HCl}] \\
& K^{\prime}=1 / \mathrm{K}=1 / \mathrm{p}_{\mathrm{NH}} \mathrm{P}_{\mathrm{HCl}}
\end{aligned}
$$

- $K_{p} \neq K_{c}$ because $\Delta n \neq 0$

The Equilibrium Constant

- $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \square 2 \mathrm{NH}_{3}(\mathrm{~g})$

$$
\mathrm{K}=\left[\mathrm{NH}_{3}\right]^{2} /\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right]
$$

- $2 \mathrm{NH}_{3}(\mathrm{~g}) \mathrm{C} \quad 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})$

$$
K^{\prime}=1 / K=\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right] /\left[\mathrm{NH}_{3}\right]^{2}
$$

- $K_{p} \neq K_{c}$ because $\Delta n \neq 0$

Le Chatelier's Principle

- Systems in equilibrium tend to stay in equilibrium unless acted upon by an external stress such as.....
- changes in concentration
- changes in temperature
- changes in pressure/volume
- Catalysts alter only the rate at which equilibrium is achieved.

Le Chatelier's Principle

Enthalpy Change - Heat of Reaction

$$
\begin{array}{r}
-3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \square 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
\Delta \mathrm{H}=-93 \mathrm{~kJ}
\end{array}
$$

$$
\left.-\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})\right] \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$$
\mathrm{H}=+41 \mathrm{~kJ}
$$

Examples

- Decomposition of nitrosyl bromide (NOBr)
- $\mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \mathrm{n} \mathrm{NOBr}(\mathrm{g})$
- Carbon monoxide shift reaction

$$
-\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \square \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

- Hydrogen iodide formation

$$
-\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \square 2 \mathrm{HI}(\mathrm{~g})
$$

Fritz HABER

- Fertilizers/Explosives
- Ammonium salts
- Nitrates
- Nitric acid
- Refrigerant
- Drugs-Dyes-Fibers
- Photography
- Household

Haber Ammonia

Carl
 Friedrich BOSCH BERGIUS

Haber Ammonia

Haber Ammonia and War Reparations

- 33 billion dollars $=50,000$ tons of gold
- Could not resort to...
- Synthetic ammonia
- Dye industry
- German colonies
- Estimated total gold content of the oceans:
- 8 billion tons
- Based on estimates of $5-10 \mathrm{mg} /$ metric ton

Gold from seawater (1923)

- Chemistry:
- Add lead acetate or mercuric nitrate, followed by ammonium sulfide, precipitating the sulfide $\left(\mathrm{Au}_{2} \mathrm{~S}\right)$
- Separate silver by dissolving in nitric acid
- Alchemy

$\mathrm{N}_{2} \mathrm{O}_{4}$ (g,colorless) $\square \quad 2 \mathrm{NO}_{2}$ (g,red)

$$
K_{p}=\frac{p_{N O_{2}}^{2}}{p_{N_{2} O_{4}}}=\frac{2(1+\square) P_{T}{ }^{2}}{\frac{(1 \square D)}{(1+\square)} P_{T}}=\frac{4 \square^{2}}{1 \square \square^{2}} P_{T}
$$

$\mathrm{N}_{2} \mathrm{O}_{4}$ (g,colorless) $\square \quad 2 \mathrm{NO}_{2}$ (g.red)

- Sample problem:
- Consider a mixture of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at a total pressure of $1.5 \mathrm{~atm} .$. resulting from the dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$.
- If $\mathrm{Kp}=0.14$ at the temperature of the experiment, what fraction of the $\mathrm{N}_{2} \mathrm{O}_{4}$ originally present dissociated?
- What happens if P_{T} falls to 1.0 atm ?

Phosgene Decomposition

- $\left.\mathrm{COCl}_{2}(\mathrm{~g})\right] \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
- Write a general expression in terms of
- the fraction \square decomposed
- the total pressure P_{T}
- the equilibrium constant K_{p}
- Demonstrates the pressure-dependency for an equilibrium system where $n \neq 0$

$\left.\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})\right] \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$

- If $\mathrm{Kp}=0.11$ at the temperature of the experiment, what is the the partial pressure of NH_{3} ? Of $\mathrm{H}_{2} \mathrm{~S}$?
- Add solid $\mathrm{NH}_{4} \mathrm{HS}$ into a reactor containing 0.50 atm of NH_{3} and calculate the partial pressures of both gases at equilibrium.

