1.10 The Shapes of Some Simple Molecules

Methane

tetrahedral geometry H—C—H angle = 109.5°

Methane

tetrahedral geometry each H—C—H angle = 109.5°

Valence Shell Electron Pair Repulsions

The most stable arrangement of groups attached to a central atom is the one that has the maximum separation of electron pairs (bonded or nonbonded). Figure 1.9 (a): Water

bent geometry H—O—H angle = 105°

but notice the tetrahedral arrangement of electron pairs

Figure 1.9 (b): Ammonia

trigonal pyramidal geometry H—N—H angle = 107°

but notice the tetrahedral arrangement of electron pairs

Figure 1.9 (c): Boron Trifluoride

F—B—F angle = 120° trigonal planar geometry allows for maximum separation of three electron pairs

Multiple Bonds

Four-electron double bonds and six-electron triple bonds are considered to be similar to a two-electron single bond in terms of their spatial requirements.

Figure 1.11: Formaldehyde

H—C—H and H—C—O angles are close to 120° trigonal planar geometry

Figure 1.12: Carbon Dioxide

O—C—O angle = 180° linear geometry

1.11 Molecular Dipole Moments

Dipole Moment

A substance possesses a dipole moment if its centers of positive and negative charge do not coincide. $m = e \times d$ (expressed in Debye units)

Dipole Moment

A substance possesses a dipole moment if its centers of positive and negative charge do not coincide. $m = e \times d$ (expressed in Debye units)

Molecular Dipole Moments

molecule must have polar bonds necessary, but not sufficient need to know molecular shape because individual bond dipoles can cancel Molecular Dipole Moments

Carbon dioxide has no dipole moment; $\mu = 0 D$

Figure 1.13

Carbon tetrachloride

m = 0 D

Dichloromethane

m= 1.62 D

Carbon tetrachloride has no dipole moment because all of the individual bond dipoles cancel.

m= 1.62 D

The individual bond dipoles do not cancel in dichloromethane; it has a dipole moment.