Chapter 4 Alcohols and Alkyl Halides

Overview of Chapter

This chapter introduces chemical reactions and their mechanisms by focusing on two reactions that yield alkyl halides.

(1) alcohol + hydrogen halide $ROH + HX \oslash RX + H_2O$ (2) alkane + halogen $RH + X_2 \oslash RX + HX$ Both are substitution reactions 4.1 IUPAC Nomenclature of Alkyl Halides **IUPAC** Nomenclature

There are several kinds of IUPAC nomenclature. The two that are most widely used are: functional class nomenclature substitutive nomenclature

Both types can be applied to alcohols and alkyl halides.

Functional Class Nomenclature of Alkyl Halides

Name the alkyl group and the halogen as separate words (*alkyl* + *halide*)

CH₃F

CH₃CH₂CH₂CH₂CH₂CH₂CI

CH₃CH₂CH₂CH₂CH₂CH₃ | Br

Functional Class Nomenclature of Alkyl Halides

Name the alkyl group and the halogen as separate words (*alkyl* + *halide*)

CH₃F Methyl fluoride CH₃CH₂CH₂CH₂CH₂CH₂CI Pentyl chloride

CH₃CH₂CHCH₂CH₂CH₃ | Br

1-Ethylhexyl bromide

Cyclohexyl iodide

Name as halo-substituted alkanes.

Number the longest chain containing the halogen in the direction that gives the lowest number to the substituted carbon.

CH₃CH₂CH₂CH₂CH₂F

CH₃CHCH₂CH₂CH₃ | Br

CH₃CH₂CHCH₂CH₃

Name as halo-substituted alkanes.

Number the longest chain containing the halogen in the direction that gives the lowest number to the substituted carbon.

CH₃CH₂CH₂CH₂CH₂F 1-Fluoropentane

CH₃CH₂CHCH₂CH₃

CH₃CHCH₂CH₂CH₃ | Br

2-Bromopentane

Halogen and alkyl groups are of equal rank when it comes to numbering the chain.

Number the chain in the direction that gives the lowest number to the group (halogen or alkyl) that appears first.

5-Chloro-2-methylheptane

2-Chloro-5-methylheptane

4.2

IUPAC Nomenclature of Alcohols

Functional Class Nomenclature of Alcohols

Name the alkyl group and add "alcohol" as a separate word.

CH₃CH₂OH

CH₃ | CH₃CCH₂CH₂CH₃ | OH

CH₃CHCH₂CH₂CH₂CH₂CH₃

Functional Class Nomenclature of Alcohols

Name the alkyl group and add "alcohol" as a separate word.

CH₃CH₂OH Ethyl alcohol

CH₃CHCH₂CH₂CH₂CH₃ | OH CH₃ | CH₃CCH₂CH₂CH₃ | OH

1,1-Dimethylbutyl alcohol

1-Methylpentyl alcohol

Name as "alkanols." Replace -e ending of alkane name by -ol.

Number chain in direction that gives lowest number to the carbon that bears the —OH group.

Name as "alkanols." Replace -e ending of alkane name by -ol.

Number chain in direction that gives lowest number to the carbon that bears the —OH group.

 $\begin{array}{c} \mathsf{CH}_{3}\mathsf{CH}_{2}\mathsf{OH} & \mathsf{CH}_{3} \\ \mathsf{E} \text{thanol} & \mathsf{CH}_{3}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{3} \\ \mathsf{CH}_{3}\mathsf{CH}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{2}\mathsf{CH}_{3} & \mathsf{OH} \\ \mathsf{OH} & \mathsf{OH} \\ \mathsf{OH} & \mathsf{2-Methyl-2-pentanol} \\ \mathsf{2-Hexanol} \end{array}$

Hydroxyl groups outrank alkyl groups when it comes to numbering the chain.

Number the chain in the direction that gives the lowest number to the carbon that bears the OH group

4.3

Classes of Alcohols and Alkyl Halides **Classification**

Alcohols and alkyl halides are classified as primary secondary tertiary according to their "degree of substitution."

Degree of substitution is determined by counting the number of carbon atoms directly attached to the carbon that bears the halogen or hydroxyl group. **Classification**

secondary alcohol

CH₃CHCH₂CH₂CH₃ | Br

CH₃CH₂CH₂CH₂CH₂F

primary alkyl halide

CH₃ CH₃CCH₂CH₂CH₃ OH

secondary alkyl halide

tertiary alcohol