4.4 Bonding in Alcohols and Alkyl Halides **Dipole Moments**

alcohols and alkyl halides are polar

Dipole Moments

alcohols and alkyl halides are polar

m= 1.7 D

Dipole-Dipole Attractive Forces

Dipole-Dipole Attractive Forces

4.5

Physical Properties of Alcohols and Alkyl Halides: Intermolecular Forces

> Boiling point Solubility in water Density

Effect of Structure on Boiling Point				
	CH ₃ CH ₂ CH ₃	CH ₃ CH ₂ F	CH ₃ CH ₂ OH	
Molecular weight	44	48	46	
Boiling point, °C	-42	-32	+78	
Dipole moment, D	0	1.9	1.7	

Effect of Structure on Boiling Point

CH₃CH₂CH₃

Molecular
weight44Intermolecular forces
are weak.Boiling
point, °C-42Only intermolecular
forces are induced
dipole-induced dipole
attractions.Dipole
moment, D0

Effect of Structure on Boiling Point

CH₃CH₂F

Molecular
weight48Boiling
point, °C-32Dipole
moment, D1.9

A polar molecule; therefore dipole-dipole and dipole-induced dipole forces contribute to intermolecular attractions.

Effect of Structure on Boiling Point

Highest boiling point; strongest intermolecular attractive forces.

Hydrogen bonding is stronger than other dipole-dipole attractions.

Figure 4.4 Hydrogen bonding in ethanol

Figure 4.4 Hydrogen bonding in ethanol

Boiling point increases with increasing number of halogens

Compound	Boiling Point
CH ₃ CI	-24°C
CH_2CI_2	40°C
CHCl ₃	61°C
CCl ₄	77°C

Even though CCl₄ is the only compound in this list without a dipole moment, it has the highest boiling point.

Induced dipole-induced dipole forces are greatest in CCl₄ because it has the greatest number of Cl atoms. Cl is more polarizable than H.

But trend is not followed when halogen is fluorine

Compound	Boiling Point
CH ₃ CH ₂ F	-32°C
CH ₃ CHF ₂	-25°C
CH ₃ CF ₃	-47°C
CF ₃ CF ₃	-78°C

But trend is not followed when halogen is fluorine

Compound	Boiling Point
CH ₃ CH ₂ F	-32°C
CH ₃ CHF ₂	-25°C
CH ₃ CF ₃	-47°C
CF ₃ CF ₃	-78°C

Fluorine is not very polarizable and induced dipoleinduced dipole forces decrease with increasing fluorine substitution. Solubility in water

Alkyl halides are insoluble in water.

Methanol, ethanol, isopropyl alcohol are completely miscible with water.

The solubility of an alcohol in water decreases with increasing number of carbons (compound becomes more hydrocarbon-like). Figure 4.5 Hydrogen Bonding Between Ethanol and Water

Density

Alkyl fluorides and alkyl chlorides are less dense than water.

Alkyl bromides and alkyl iodides are more dense than water.

All liquid alcohols have densities of about 0.8 g/mL.