4.6 Acids and Bases: General Principles

4.6 Acids and Bases: General Principles

Brønsted-Lowry definition an acid is a proton donor a base is a proton acceptor

Proton Transfer from HBr to Water

Acid Strength

A strong acid is one that is completely ionized in water.

A weak acid is one that ionizes in water to the extent of less than 100%.

Acid strength is measured by K_a or pK_a

Equilibrium constant for proton transfer

Acid	Ka	р <i>К</i> а	Conj. Base
HI	~10 ¹⁰	-10	I
HBr	~10 ⁹	-9	Br ⁻
HCI	~10 ⁷	-7	CI
H ₂ SO ₄	1.6 x 10 ⁵	-4.8	HSO_4^-
H_3O^+	55.5	-1.7	H ₂ O

strong acids are stronger than hydronium ion

Acid	Ka	р <i>К</i> а	Conj. Base
H_3O^+	55.5	-1.7	H ₂ O
HF	3.5×10^{-4}	3.5	F
CH ₃ CO ₂ H	1.8 x 10 ⁻⁵	4.6	$CH_3CO_2^-$
NH_4^+	5.6 x 10 ⁻¹⁰	9.2	NH ₃
H ₂ O	1.8 x 10 ⁻¹⁶	15.7	HO ⁻

weak acids are weaker than hydronium ion

Acid	Ka	р <i>К</i> а	Conj. Base
H ₂ O	1.8 x 10 ⁻¹⁶	15.7	HO
CH ₃ OH	~10 ⁻¹⁶	~16	CH ₃ O [−]
CH ₃ CH ₂ OH	~10 ⁻¹⁶	~16	CH ₃ CH ₂ O ⁻
(CH ₃) ₂ CHOH	~10 ⁻¹⁷	~17	(CH ₃) ₂ CHO ⁻
(CH ₃) ₃ COH	~10⁻¹⁸	~18	(CH ₃) ₃ CO ⁻

alcohols resemble water in acidity; their conjugate bases are comparable to hydroxide ion in basicity

Acid	Ka	р <i>К</i> а	Conj. Base
NH ₃	~10 ⁻³⁶	~36	NH_2^-
(CH ₃) ₂ NH	~10 ⁻³⁶	~36	(CH ₃) ₂ N ⁻

ammonia and amines are very weak acids; their conjugate bases are very strong bases

Proton Transfer to Alcohols

alkyloxonium ion

4.7 Acid-Base Reactions: A Mechanism for Proton Transfer

Proton Transfer from HBr to Water

