5.5
Physical Properties of Alkenes
Dipole moments

What is direction of dipole moment?
Does a methyl group donate electrons to the double bond, or does it withdraw them?

\[
\mu = 0 \text{ D}
\]

\[
\mu = 0.3 \text{ D}
\]
Chlorine is electronegative and attracts electrons.

Dipole moments

\[\mu = 1.4 \text{ D} \]

\[\mu = 0 \text{ D} \]

\[\mu = 0.3 \text{ D} \]
Dipole moment of 1-chloropropene is equal to the sum of the dipole moments of vinyl chloride and propene.

\[\mu = 1.4 \text{ D} \]

\[\mu = 1.7 \text{ D} \]

\[\mu = 0.3 \text{ D} \]
Therefore, a methyl group donates electrons to the double bond.
Alkyl groups stabilize sp2 hybridized carbon by releasing electrons.

$\text{R-C}^+\quad$ is more stable than H-C^+

$\text{R-C}^\cdot\quad$ is more stable than H-C^\cdot
Alkyl groups stabilize sp² hybridized carbon by releasing electrons.

- $R-C^+$ is more stable than $H-C^+$
- $R-C^-$ is more stable than $H-C^-$
- $R-C$ is more stable than $H-C$
5.6
Relative Stabilities of Alkenes
Double bonds are classified according to the number of carbons attached to them.

monosubstituted

R
\[
\begin{array}{c}
\text{C} \\
\text{R} \\
\text{H} \\
\text{H} \\
\text{H}
\end{array}
\]

disubstituted

R
\[
\begin{array}{c}
\text{C} \\
\text{R} \\
\text{H} \\
\text{H} \\
\text{H} \\
\text{R'}
\end{array}
\]

disubstituted

R
\[
\begin{array}{c}
\text{C} \\
\text{R} \\
\text{H} \\
\text{H} \\
\text{R'}
\end{array}
\]

R
\[
\begin{array}{c}
\text{C} \\
\text{R} \\
\text{H} \\
\text{H} \\
\text{R'}
\end{array}
\]
Double bonds are classified according to the number of carbons attached to them.

- **Trisubstituted**: R'R''
- **Tetrasubstituted**: R'R'''
Substituent Effects on Alkene Stability

Electronic

disubstituted alkenes are more stable than monosubstituted alkenes

Steric

trans alkenes are more stable than cis alkenes
Figure 5.4 Heats of combustion of \(\text{C}_4\text{H}_8 \) isomers.

\[
\text{C}_4\text{H}_8 + 6\text{O}_2 \rightarrow 4\text{CO}_2 + 8\text{H}_2\text{O}
\]

- 2717 kJ/mol
- 2710 kJ/mol
- 2707 kJ/mol
- 2700 kJ/mol
Electronic

alkyl groups stabilize double bonds more than H

more highly substituted double bonds are more stable than less highly substituted ones.
Problem 5.8

Give the structure or make a molecular model of the most stable C$_6$H$_{12}$ alkene.
Give the structure or make a molecular model of the most stable C_6H_{12} alkene.

\[
\begin{align*}
\text{H}_3\text{C} & \quad \text{CH}_3 \\
\text{C} & \quad \text{C} \\
\text{H}_3\text{C} & \quad \text{CH}_3
\end{align*}
\]
Steric effects

trans alkenes are more stable than *cis* alkenes

cis alkenes are destabilized by van der Waals strain
van der Waals strain due to crowding of cis-methyl groups

Figure 5.5

* cis and trans-2-Butene

* cis-2-butene

* trans-2-butene*
van der Waals strain due to crowding of cis-methyl groups

Figure 5.5

cis and trans-2-Butene

cis-2-butene

trans-2-butene
Steric effect causes a large difference in stability between cis and trans-(CH₃)₃CCH=CHC(CH₃)₃

cis is 44 kJ/mol less stable than trans
5.7
Cycloalkenes
Cyclopropene and cyclobutene have angle strain.

Larger cycloalkenes, such as cyclopentene and cyclohexene, can incorporate a double bond into the ring with little or no angle strain.
Stereoisomeric cycloalkenes

cis-cyclooctene and trans-cyclooctene are stereoisomers

cis-cyclooctene is 39 kJ/ mol more stable than trans-cyclooctene
cis-cyclooctene and trans-cyclooctene are stereoisomers.

* cis-cyclooctene is 39 kJ/ mol more stable than trans-cyclooctene.*

Stereoisomeric cycloalkenes

- **cis-cyclooctene**
- **trans-cyclooctene**
Stereoisomeric cycloalkenes

trans-cyclooctene is smallest *trans*-cycloalkene that is stable at room temperature

* cis* stereoisomer is more stable than *trans* through \(C_{11} \) cycloalkenes

* cis* and *trans*-cyclododecene are approximately equal in stability
Stereoisomeric cycloalkenes

trans-cyclooctene is smallest *trans*-cycloalkene that is stable at room temperature

* cis* stereoisomer is more stable than *trans* through C₁₁ cycloalkenes

* cis* and *trans*-cyclododecene are approximately equal in stability
Stereoisomeric cycloalkenes

trans-cyclooctene is smallest *trans*-cycloalkene that is stable at room temperature

* cis* stereoisomer is more stable than *trans* through C$_{11}$ cycloalkenes

* cis* and *trans*-cyclododecene are approximately equal in stability

When there are more than 12 carbons in the ring, *trans*-cycloalkenes are more stable than *cis*. The ring is large enough so the cycloalkene behaves much like a noncyclic one.