5.5

Physical Properties of Alkenes

What is direction of dipole moment? Does a methyl group donate electrons to the double bond, or does it withdraw them?

m= 1.4 D Н Н H Н H₃C $\mathbf{m} = 0 \mathbf{D}$ Н m = 0.3 D

Chlorine is electronegative and attracts electrons.

Dipole moment of 1chloropropene is equal to the sum of the dipole moments of vinyl chloride and propene.

m = 1.4 D

Η

Therefore, a methyl group donates electrons to the double bond.

Alkyl groups stabilize sp² hybridized carbon by releasing electrons

Alkyl groups stabilize sp² hybridized carbon by releasing electrons

5.6 Relative Stabilities of Alkenes

Double bonds are classified according to the number of carbons attached to them.

monosubstituted

Double bonds are classified according to the number of carbons attached to them.

trisubstituted

tetrasubstituted

Substituent Effects on Alkene Stability

Electronic

disubstituted alkenes are more stable than monosubstituted alkenes

Steric

trans alkenes are more stable than cis alkenes

Substituent Effects on Alkene Stability

Electronic

alkyl groups stabilize double bonds more than H more highly substituted double bonds are more stable than less highly substituted ones. Problem 5.8

Give the structure or make a molecular model of the most stable C_6H_{12} alkene.

Problem 5.8

Give the structure or make a molecular model of the most stable C_6H_{12} alkene.

Substituent Effects on Alkene Stability

Steric effects

trans alkenes are more stable than *cis* alkenes *cis* alkenes are destabilized by van der Waals strain

Figure 5.5 cis and trans-2-Butene

van der Waals strain due to crowding of cis-methyl groups

cis-2-butene

trans-2-butene

Figure 5.5 cis and trans-2-Butene

van der Waals strain due to crowding of cis-methyl groups

cis-2-butene

trans-2-butene

van der Waals Strain

Steric effect causes a large difference in stability between *cis* and *trans*- $(CH_3)_3CCH=CHC(CH_3)_3$

cis is 44 kJ/mol less stable than trans

5.7 Cycloalkenes

Cycloalkenes

Cyclopropene and cyclobutene have angle strain.

Larger cycloalkenes, such as cyclopentene and cyclohexene, can incorporate a double bond into the ring with little or no angle strain.

cis-cyclooctene and *trans*-cyclooctene are stereoisomers

cis-cyclooctene is 39 kJ/ molmore stable than *trans*-cyclooctene

cis-Cyclooctene

trans-Cyclooctene

cis-cyclooctene and *trans*-cyclooctene are stereoisomers

cis-cyclooctene is 39 kJ/ molmore stable than *trans*-cyclooctene

cis-Cyclooctene

trans-Cyclooctene

trans-cyclooctene is smallest *trans*-cycloalkene that is stable at room temperature

cis stereoisomer is more stable than trans through C_{11} cycloalkenes

cis and trans-cyclododecene are approximately equal in stability

trans-Cyclooctene

trans-cyclooctene is smallest *trans*-cycloalkene that is stable at room temperature

cis stereoisomer is more stable than *trans* through C₁₁ cycloalkenes

cis and *trans*-cyclododecene are approximately equal in stability

trans-Cyclododecene

trans-cyclooctene is smallest *trans*-cycloalkene that is stable at room temperature

cis stereoisomer is more stable than *trans* through C₁₁ cycloalkenes

cis and *trans*-cyclododecene are approximately equal in stability

When there are more than 12 carbons in the ring, *trans*-cycloalkenes are more stable than *cis*. The ring is large enough so the cycloalkene behaves much like a noncyclic one.