5.14 Dehydrohalogenation of Alkyl Halides

b-Elimination Reactions Overview

dehydrogenation of alkanes: X = Y = H

dehydration of alcohols: X = H; Y = OH

dehydrohalogenation of alkyl halides: X = H; Y = Br, etc.

b-Elimination Reactions Overview

dehydrogenation of alkanes: industrial process; not regioselective

dehydration of alcohols: acid-catalyzed

a

dehydrohalogenation of alkyl halides: consumes base Dehydrohalogenation

is a useful method for the preparation of alkenes

likewise, NaOCH₃ in methanol, or KOH in ethanol

Dehydrohalogenation

When the alkyl halide is primary, potassium *tert*-butoxide in dimethyl sulfoxide is the base/solvent system that is normally used.

CH₃(CH₂)₁₅CH₂CH₂CI dimethyl sulfoxide

 $CH_3(CH_2)_{15}CH=CH_2$

(86%)

follows Zaitsev's rule

more highly substituted double bond predominates

5.15 Mechanism of the Dehydrohalogenation of Alkyl Halides: The E2 Mechanism

Facts

 (1) Dehydrohalogenation of alkyl halides exhibits second-order kinetics first order in alkyl halide first order in base rate = k[alkyl halide][base]

> implies that rate-determining step involves both base and alkyl halide; i.e., it is bimolecular

Facts

(2) Rate of elimination depends on halogen weaker C—X bond; faster rate rate: RI > RBr > RCl > RF

implies that carbon-halogen bond breaks in the rate-determining step The E2 Mechanism

concerted (one-step) bimolecular process
single transition state
 C—H bond breaks
 π component of double bond forms
 C—X bond breaks

5.16 Anti Elimination in E2 Reactions

Stereoelectronic Effects

cis-1-Bromo-4-*tert*-butylcyclohexane

Stereoelectronic effect

trans-1-Bromo-4-*tert*butylcyclohexane

 $(CH_{3})_{3}C$

(CH₃)₃C / / / KOC(CH₃)₃ (CH₃)₃COH

Br

H that is removed by base must be anti periplanar to Br Two anti periplanar H atoms in cis stereoisomer

H that is removed by base must be anti periplanar to Br No anti periplanar H atoms in trans stereoisomer; all vicinal H atoms are gauche to Br

<u>,</u>

Stereoelectronic effect

cis more reactive

trans less reactive

Stereoelectronic effect

An effect on reactivity that has its origin in the spatial arrangement of orbitals or bonds is called a stereoelectronic effect.

The preference for an anti periplanar arrangement of H and Br in the transition state for E2 dehydrohalogenation is an example of a stereoelectronic effect.

5.17 A Different Mechanism for Alkyl Halide Elimination: The E1 Mechanism

The E1 Mechanism

- 1. Alkyl halides can undergo elimination in absence of base.
- 2. Carbocation is intermediate
- 3. Rate-determining step is unimolecular ionization of alkyl halide.

