6.8 Free-radical Addition of HBr to Alkenes

The "peroxide effect"

Addition of HBr to 1-Butene

CH₃CH₂CH=CH₂

HBr

addition opposite to Markovnikov's rule

occurs with HBr (not HCl or HI) CH₃CH₂CH₂CH₂Br

only product when peroxides added to reaction mixture

Photochemical Addition of HBr

Addition of HBr with a regiochemistry opposite to Markovnikov's rule can also occur when initiated with light with or without added peroxides. Mechanism

Addition of HBr opposite to Markovnikov's rule proceeds by a free-radical chain mechanism.

Initiation steps:

Mechanism

Addition of HBr opposite to Markovnikov's rule proceeds by a free-radical chain mechanism.

Initiation steps:

Propagation steps:

 $CH_3CH_2CH = CH_2 + Br$:

Mechanism

 $CH_3CH_2CH-CH_2-Br$

6.9 Addition of Sulfuric Acid to Alkenes

follows Markovnikov's rule: yields an alkyl hydrogen sulfate

Mechanism Ö $CH_3CH \stackrel{\prime}{=} CH_2 + H$ SO₂OH slow ---CH₃CH—CH₃ +:O-SO2OH fast CH₃CHCH₃ : OSO₂OH

Alkyl hydrogen sulfates undergo hydrolysis in hot water

Application: Conversion of alkenes to alcohols

(75%)

But...

not all alkenes yield alkyl hydrogen sulfates on reaction with sulfuric acid

these do:

H₂C=CH₂, RCH=CH₂, and RCH=CHR'

these don't:

 $R_2C=CH_2$, $R_2C=CH_2$, and $R_2C=CR_2$