6.18 Epoxidation of Alkenes

are examples of heterocyclic compounds three-membered rings that contain oxygen ethylene oxide propylene oxide

Epoxide Nomenclature

Substitutive nomenclature: named as epoxy-substituted alkanes. "epoxy" precedes name of alkane 1,2-epoxypropane 2-methyl-2,3-epoxybutane H_3 2 3 4 CHCH₃ CHCH₃ H₂C H₃C

Problem 6.17 Give the IUPAC name, including stereochemistry, for disparlure.

cis-2-Methyl-7,8-epoxyoctadecane

Epoxidation of Alkenes

Stereochemistry of Epoxidation

Problem 6.18 Give the structure of the alkene, including stereochemistry, that you would choose as the starting material in a preparation of synthetic disparlure.

Problem 6.18 Give the structure of the alkene, including stereochemistry, that you would choose as the starting material in a preparation of synthetic disparlure.

Relative Rates of Epoxidation

ethylene	$H_2C=CH_2$	1
propene	CH ₃ CH=CH ₂	22
2-methylpropene	$(CH_3)_2C=CH_2$	484
2-methyl-2-butene	(CH ₃) ₂ C=CHCH ₃	6526

More highly substituted double bonds react faster. Alkyl groups on the double bond make it more "electron rich."

Mechanism of Epoxidation

6.19 Ozonolysis of Alkenes

Ozonolysis has both synthetic and analytical applications.

synthesis of aldehydes and ketones identification of substituents on the double bond of an alkene **Ozonolysis of Alkenes**

First step is the reaction of the alkene with ozone. The product is an *ozonide*.

Ozonolysis of Alkenes

Second step is hydrolysis of the ozonide. Two aldehydes, two ketones, or an aldehyde and a ketone are formed.

Ozonolysis of Alkenes

As an alternative to hydrolysis, the ozonide can be treated with dimethyl sulfide.

