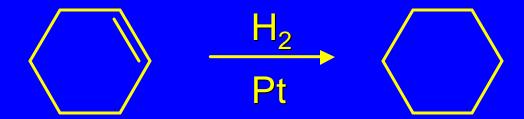

6.20 Introduction to Organic Chemical Synthesis


devise a synthetic plan

reason backward from the target molecule always use reactions that you are sure will work

$$-\frac{H_2}{Pt}$$

ask yourself the key question

"Starting with anything, how can I make cyclohexane in a single step by a reaction I am sure will work?"

The only reaction covered so far for preparing alkanes is catalytic hydrogenation of alkenes.

This leads to a new question. "Starting with anything, how can I prepare <u>cyclohexene</u> in a single step by a reaction I am sure will work?"

Alkenes can be prepared by dehydration of alcohols.

The synthesis is complete.

Prepare 1-bromo-2-methyl-2-propanol from tert-butyl alcohol

"Starting with anything, how can I make the desired compound in a single step by a reaction I am sure will work?"

The desired compound is a vicinal bromohydrin. How are vicinal bromohydrins prepared?

Prepare 1-bromo-2-methyl-2-propanol from tert-butyl alcohol

$$(CH_3)_2C = CH_2 \xrightarrow{Br_2} (CH_3)_2CCH_2Br$$
OH

Vicinal bromohydrins are prepared by treatment of alkenes with Br₂ in water.

How is the necessary alkene prepared?

Prepare 1-bromo-2-methyl-2-propanol from tert-butyl alcohol

$$(CH_3)_3COH$$
 H_2SO_4
 $heat$
 Br_2
 $(CH_3)_2C \longrightarrow CH_2 \longrightarrow H_2O$
 H_2O
 OH

2-Methylpropene is prepared from *tert*-butyl alcohol by acid-catalyzed dehydration.

The synthesis is complete.