7.13 Chemical Reactions That Produce Diastereomers

Stereochemistry of Addition to Alkenes

 $\begin{array}{c} C = C \\ C = C \\ \end{array} + E - Y \longrightarrow E - C - C - Y \\ C = C \\ \end{array}$

In order to know understand stereochemistry of product, you need to know two things:

(1) stereochemistry of alkene (cis or trans;
Z or E)
(2) stereochemistry of mechanism (syn or anti)

Bromine Addition to trans-2-Butene Fig. 7.14 (p 284)

meso

anti addition to *trans*-2-butene gives meso diastereomer

Bromine Addition to cis-2-Butene Fig. 7.15 (p 285)

50%

50%

anti addition to *cis*-2-butene gives racemic mixture of chiral diastereomer

Epoxidation of trans-2-Butene Problem 7.17 (p 285)

50%

50%

syn addition to *trans*-2-butene gives racemic mixture of chiral diastereomer

Epoxidation of cis-2-Butene Problem 7.17 (p 285)

meso syn addition to *cis*-2-butene gives meso diastereomer

Stereospecific reaction

of two stereoisomers of a particular starting material, each one gives different stereoisomeric forms of the product

related to mechanism: terms such as syn addition and anti addition refer to stereospecificity

Stereoselective reaction

a single starting material can give two or more stereoisomeric products, but gives one of them in greater amounts than any other

7.14

Resolution of Enantiomers

separation of a racemic mixture into its two enantiomeric forms

enantiomers

diastereomers

7.15 Stereoregular Polymers atactic isotactic syndiotactic Atactic Polypropylene

random stereochemistry of methyl groups attached to main chain (stereorandom) properties not very useful for fibers etc. formed by free-radical polymerization

Isotactic Polypropylene

stereoregular polymer; all methyl groups on same side of main chain

useful properties

prepared by coordination polymerization under Ziegler-Natta conditions

Syndiotactic Polypropylene

stereoregular polymer; methyl groups alternate side-to-side on main chain useful properties prepared by coordination polymerization under Ziegler-Natta conditions

7.16

Stereogenic Centers Other Than Carbon

silicon, like carbon, forms four bonds in its stable compounds and many chiral silicon compounds have been resolved

Nitrogen in amines

pyramidal geometry at nitrogen can produce a chiral structure, but enantiomers equilibrate too rapidly to be resolved

Phosphorus in phosphines

pyramidal geometry at phosphorus can produce a chiral structure; pyramidal inversion slower than for amines and compounds of the type shown have been resolved

Sulfur in sulfoxides

pyramidal geometry at sulfur can produce a chiral structure; pyramidal inversion is slow and compounds of the type shown have been resolved