$\begin{array}{c} 8.8\\ \text{Unimolecular Nucleophilic Substitution}\\ S_{N}1\end{array}$

A question...

Tertiary alkyl halides are very unreactive in substitutions that proceed by the S_N2 mechanism. Do they undergo nucleophilic substitution at all?

Yes. But by a mechanism different from $S_N 2$. The most common examples are seen in solvolysis reactions.

-<mark>-</mark>--

This is the nucleophilic substitution stage of the reaction; the one with which we are concerned.

-<mark>-</mark>--

The reaction rate is independent of the concentration of the nucleophile and follows a first-order rate law. rate = $k[(CH_3)_3CBr]$

-<mark>-</mark>--

<u>Rr</u>

The mechanism of this step is not $S_N 2$. It is called $S_N 1$ and begins with ionization of $(CH_3)_3 CBr$. Kinetics and Mechanism

rate = k[alkyl halide]
First-order kinetics implies a unimolecular
rate-determining step.

Proposed mechanism is called S_N1, which stands for *substitution nucleophilic unimolecular*

Mechanism

$H_{3}C \xrightarrow{H_{3}} H_{3}C \xrightarrow{H_{$

Mechanism

Characteristics of the S_N1 mechanism

first order kinetics: rate = k[RX]unimolecular rate-determining step carbocation intermediate rate follows carbocation stability rearrangements sometimes observed reaction is not stereospecific much racemization in reactions of optically active alkyl halides

8.9 Carbocation Stability and S_N1 Reaction Rates

Electronic Effects Govern S_N1 Rates

The rate of nucleophilic substitution by the S_N1 mechanism is governed by electronic effects.

Carbocation formation is rate-determining. The more stable the carbocation, the faster its rate of formation, and the greater the rate of unimolecular nucleophilic substitution. Table 8.5 Reactivity toward substitution by the $S_N 1$ mechanism

RBr solvolysis in aqueous formic acid

Alkyl bromide	Class	Relative rate
CH ₃ Br	Methyl	1
CH ₃ CH ₂ Br	Primary	2
(CH ₃) ₂ CHBr	Secondary	43
(CH ₃) ₃ CBr	Tertiary	100,000,000

8.10 Stereochemistry of S_N1 Reactions

Generalization

Nucleophilic substitutions that exhibit first-order kinetic behavior are not stereospecific.

Ionization stepgives carbocation; threebonds to stereogeniccenter become coplanar

 \diamondsuit

More than 50%

Less than 50%

8.11 Carbocation Rearrangements in S_N1 Reactions

Because...

carbocations are intermediates in S_N1 reactions, rearrangements are possible.

8.12 Solvent Effects

In general...

S_N1 Reaction Rates Increase in Polar Solvents

Table 8.6S_N1 Reactivity versus Solvent Polarity

Solvent	Dielectric	Relative
	constant	rate
acetic acid	6	1
methanol	33	4
formic acid	58	5,000
water	78	150,000

transition $d_+ R - - - X d_$ state stabilized by polar solvent R^+ energy of RX not much affected by polarity of RX solvent

In general...

S_N2 Reaction Rates Increase in Polar Aprotic Solvents

An aprotic solvent is one that does not have an —OH group.

Table 8.7S_N2 Reactivity versus Type of Solvent

$CH_3CH_2CH_2CH_2Br + N_3^-$

Solvent	Туре	Relative rate
CH ₃ OH	polar protic	1
H ₂ O	polar protic	7
DMSO	polar aprotic	1300
DMF	polar aprotic	2800
Acetonitrile	polar aprotic	5000

Mechanism Summary $S_N 1$ and $S_N 2$

When...

primary alkyl halides undergo nucleophilic substitution, they <u>always</u> react by the S_N^2 mechanism

tertiary alkyl halides undergo nucleophilic substitution, they <u>always</u> react by the S_N^1 mechanism

secondary alkyl halides undergo nucleophilic substitution, they react by the

S_N1 mechanism in the presence of a weak nucleophile (solvolysis)

S_N2 mechanism in the presence of a good nucleophile